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Abstract: During critical moments, disaster and accident victims may not be able to request help
from the emergency response center. This may happen when the victim’s vehicle is located within a
coverage hole in a wireless network. In this paper, we adopt an unmanned aerial vehicle (UAV) to
work as an automatic emergency dispatcher for a user in a vehicle facing a critical condition. Given
that the UAV is located within a coverage hole and a predetermined critical condition is detected, the
UAV becomes airborne and dispatches distress messages to a communication network. We propose
to use a path loss map for UAV trajectory design, and we formulate our problem mathematically as
an Integer Linear Program (ILP). Our goals are to minimize the distress messages delivery time and
the UAV’s mission completion time. Due to the difficulty of obtaining the optimal solution when
the scale of the problem is large, we proposed an efficient algorithm that reduces the computational
time significantly. We simulate our problem under different scenarios and settings, and study the
performance of our proposed algorithm.

Keywords: unmanned aerial vehicle (UAV); emergency; emergency dispatcher; coverage holes; path
loss map

1. Introduction

With the rapid advancement in communications and electronics, unmanned aerial ve-
hicles (UAVs) have emerged as promising enablers for the next generations of wireless net-
works [1,2]. UAV communications open the door for the innovator and the entrepreneurs
to come up with disruptive solutions and a massive number of beneficial applications [3].
The applications of the UAV communications include (1) coverage extension for commu-
nication networks after disasters, (2) message relying between Internet of Things (IoT)
devices, and (3) dispatching distress messages from a device located within a coverage
hole to the emergency center.

In [4], the authors considered a joint optimization for resource allocation and UAV
deployment in emergency scenarios. They proposed a scheme for recovering and maintain-
ing the network connectivity in disasters. The work in [5] presents a UAV serving a group
of users with different quality of service requirements in an emergency. The UAV supports
the downlink for the users while optimizing its 3D location and power and bandwidth
allocations.

In [6], a framework for UAV-assisted emergency network is proposed based on col-
laborated multi-UAVs. To achieve the goal, the trajectory and scheduling of the UAV are
optimized. Moreover, a multi-hop device-to-device communication is established to extend
the coverage of the network. The UAVs relay the information from the disaster area to an
emergency communication vehicle. A UAV-assisted Wi-Fi network is proposed in [7] to
help the personnel in the relief centers to gather surveillance information. The proposed
network aims to expedite the rescue operations and provide an updated information about
the disaster. UAV-assisted emergency communication is employed in a heterogenous IoT
in [8]. The authors proposed a multi-objective resource allocation scheme to accommodate
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the surviving users and IoT devices during disasters to quickly recover the connectivity
to them.

In [9], the authors considered an energy-efficient scheme used by cooperative UAVs
that collect and disseminate data. Given that a set of fields are located within coverage
holes, a cooperative set of UAVs collect data from these fields and cooperate in delivering
the collected data to prolong the lifetimes of the UAVs. A group of UAVs can meet at a
certain way point and send their messages to only one UAV. Then, the UAV that received
the collected data from that group of UAV proceeds its flight to a communication network
to deliver the messages or meets another cooperative UAV at a way point. After the
UAV delivers the message to another UAV at a way point or delivers it directly to a
communication network, the UAV returns to its field. In [10], a data dissemination scheme
is proposed to disseminate data to a set of IoT devices using a UAV. The UAV is equipped
with a cognitive radio, and it accesses a licensed band opportunistically when it is idle.

It is shown in [11] that a group of UAVs can be used to detect incidents on the roads of
the urban areas. The UAVs provide the rescue teams with helpful information to expedite
the rescue process. A robust routing scheme is introduced to guarantee communication
stability during the process of delivering the distress information. A novel UAV path
planning frame work is introduced in [12] for emergency messages transmission and
collection. The motion and transmission power of the UAV is optimized while visiting
access points for sending and collecting the emergency messages.

UAVs are considered essential enablers for intelligent transportation systems in the
smart city [13,14]. The next generation of intelligent transportation systems requires
integration of connected and autonomous vehicles. UAVs support the other vehicles on
the ground by providing wireless network connectivity in an efficient way. It is shown
in [13] that UAVs can work as flying accident report agents, flying roadside units or
flying police eyes. In [14], a generic management framework for the UAVS in intelligent
transportation systems is proposed. The authors investigated the UAV communication
coverage in intelligent transportation systems. Moreover, they studied the problem of
charging and docking the UAVs in the intelligent transportation systems.

UAVs can be used as aerial base stations for public safety applications. In [15], the
authors studied the deployment of the UAVs as a part of the heterogeneous network
when the network infrastructure is damaged. Then, the UAVs are utilized in public safety
communication during disasters such as earthquakes. The authors analyzed the throughput
achieved when utilizing the UAVs, and they proposed a genetic algorithm that optimizes
the locations of the UAVs while supporting the public safety communication. The work
in [16] presented the importance of incorporating the UAVs in heterogenous networks for
supporting the public safety communication. It is shown that the UAVs can improve public
safety communication by extending the network coverage and capacity.

In [17,18], UAV-based disaster-resilient architectures are presented. The proposed
architecture in [17] consists of three layers: (1) a Software-Defined Networking (SDN)
layer for centralized control, (2) UAV cloudlet that enables emergency communication,
and (3) A radio access layer. This architecture supports delay sensitive applications such
as the applications of emergency response systems. In [18], a distributed and expansible
architecture for emergency communications is proposed. The area affected by disaster is
divided into numerous sub-areas. Then, a UAV is assigned to each sub-area to help relay
the emergency message to a communication network.

In [19], a scheme is proposed which utilizes sensors to detect a predetermined condi-
tion and a UAV to convey an emergency message to the closest communication network.
The UAV is attached to an object, and it becomes airborne when a predetermined condition
is detected. When the UAV is located within a coverage hole, it flies to the closest network
access and sends the distress messages. In this paper, we investigate the proposed scheme
by modeling the system, formulate the problem mathematical and optimize the delivery
time for the distress message and the mission completion time for the UAV.
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We assume in our work that the UAV is attached to a vehicle, and it detaches from it
when a triggering event happens, such as a rapid and sudden change in the acceleration
of the vehicle. Once an accident is confirmed, the UAV checks to see whether it is located
within a coverage hole or not. If it is located within a communication network, it sends a
distress message directly to the emergency response center. Otherwise, it flies to a location
where a communication network is accessible and sends the distress message accordingly.
Figure 1 shows an application of our proposed solution. First, two vehicles enter a coverage
hole area where the communication service is not available. Second, an excessive change
in the vehicle acceleration is detected by the UAV. Third, the UAV detaches itself from the
vehicle right after the prediction of the accident. Forth, the UAV searches for the closest
location with an access to a communication service once the collision is confirmed. Finally,
the UAV sends the distress messages to the emergency center.

1

 2
 3

4 5

Figure 1. The UAV conveys emergency messages and sends them to the closest available network
access point.

Motivations and Contributions

It is not unusual nowadays that some people die because they face a problem with their
vehicles outside the urban area. They may not be able to ask for help due to unavailability
of the communication services. The problems that the traveler’s vehicle may face include
accidents, battery discharging, running out of gas, being stuck in sand dunes, failure of the
Global Positioning System (GPS) and many other problems.

It is reported in [20] that a couple died of thirst in a Saudi southern desert, where
something went wrong with their vehicle. They could not ask for help due to unavailability
of the cellular communication in the vast empty desert. Moreover, it is reported in [21] that
three persons died near an outback community in central Australia. Their car broke down
and they could not call for emergency due to unavailability of the cellular coverage. Even
when the communication services are available in general, small coverage holes are still
an issue in some areas such as valleys. When an accident happens in a coverage hole, an
automatic emergency message dispatcher is needed to save the lives of the people. Accord-
ingly, we proposed a UAV-based system to detect the accident of the vehicle and dispatches
emergency messages automatically (or manually if needed) to the emergency center.

The contributions of our paper can be summarized as follows.

• We propose the path loss map to model the uplink transmission of the UAV and the
trajectory design.

• We model the problem of sending the distress messages from the location of the
accident to the communication network when the accident happens within a cover-
age hole.
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• We propose an algorithm that solves our formulated problem more efficiently and
provides a solution while reducing the computational time significantly.

• We simulate our problem and study the performance of our proposed algorithm under
different scenarios and setting.

The rest of the paper is organized as follows. We describe the system model in
Section 2, then we formulate our optimization problem in Section 3. Section 4 presents the
proposed algorithm to solve our problem more efficiently. Finally, we shows the simulation
results in Section 5, and conclude our paper in Section 6.

2. System Model

We consider a vehicle located outside the coverage of the communication services.
This vehicle faces an accident, and it requires sending distress messages to the emergency
center. Inspired by the work in [19], the UAV is attached to the vehicle and equipped with
acceleration sensors. The UAV keeps measuring the acceleration while it is attached to the
vehicle. Once the acceleration of the vehicle reaches a threshold π, the UAV detaches itself
from the vehicle. Then, the UAV goes to the closest location with communication services
and sends the distress messages. These messages include information such as the location
of the accident, video, images, sounds and sensor data related to the accident. Once the
UAV sent the distress messages, it will go to its predefined final location.

The UAV moves in a three-dimensional space to convey the distress messages. There-
fore, there are infinity points in the three-dimensional space can be used to represent
all possible locations of the UAV during each time slot. Consequently, we discretize the
three-dimensional space, as shown in Figure 2, to make our model practical. We define
the “Path Loss Map” to be a three-dimensional map showing a set of points in a three-
dimensional space, and each point is associated with a path loss value as shown in Figure 3.
The path loss map consists of N points, and each point i is associated with a location on
the three-dimensional space, (xi, yi, zi), in addition to the path loss value. The number of
access points is B, and the path loss value at any location is associated with one access
point that results in the minimum path loss value. The color of each point in the path loss
map indicates the path loss value in dB as shown in the colored scale.

Figure 2. Three-dimensional path loss map.
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Figure 3. Colored path loss map indicating the path loss values (in dB) associated with each point.

The UAV uses the path loss map to send the distress message from one or more
locations that have path loss values less than or equal to a threshold λ. The UAV is
equipped with a GPS device to use it for navigation, and it flies with a maximum speed
of S m/s. The flight time is slotted into T time slots, where the duration of each slot is
δ seconds. The time slot duration includes the time for the UAV movement and data
transmission. The UAV receives an acknowledgment from the access point when the
message is received successfully. Otherwise, the UAV adjusts its location and resends the
message again. Without loss of generality, we assume that the access point receives the
message sent by the UAV successfully if the message is sent from a location where the path
loss value is less than or equals to λ.

Channel Model

Let li =
(

xi, yi, zi
)

be a 3D vector representing the location i on the path loss map.
Path loss of the link between the UAV and the receiving access point when they are located
at location i and j, respectively, is given by [22,23]

PLij = Pr(LoS, θij) PLLoS(i, j) + Pr(NLoS, θij) PLNLoS(i, j) (1)

where Pr(LoS, θij) is the probability of Line of Sight (LoS) communication between the
UAV and the receiving access point when they are located at i and j, respectively, and
the elevation angle between them is θij. Similarly, Pr(NLoS, θij) is the probability of the
Non-Line-of-Sight (NLoS) link between the UAV and the receiving access point. PLLoS(i, j)
and PLNLoS(i, j) are the LoS and NLoS path loss of the link between the UAV and the
receiving access point when they are located at i and j, respectively.

Pr(NLoS, θij) = 1 − Pr(LoS, θij), and Pr(LoS, θij), PLLoS(i, j) and PLNLoS(i, j) are
given, respectively, by [23]

Pr(LoS, θij) =
1

1 + a exp[−b θij + ab] (2)

PLLoS(i, j) =
(4π f )2

c2 (‖li − lj‖2) ηLoS (3)

PLNLoS(i, j) =
(4π f )2

c2 (‖li − lj‖2) ηNLoS (4)
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where a and b are parameters selected based on the environment, c is speed of light, f is
the system frequency, and ηLoS and ηNLoS are the excessive path loss for LoS and NLoS
links, respectively.

When the UAV is located at location i, the path loss at that location is the minimum
path loss value out of all possible path loss values associated with B access points. Therefore,
we have

PLi = min(PLi1, ..., PLiB) (5)

where PLi is the minimum path loss value at location i.

3. Problem Formulation

Let Lij(t) be a binary variable equals to one only when the UAV moves from location
i to location j during slot t. During each time slot, the UAV moves only between two
different locations or hovers at the same location. Therefore,

∑
i∈N

∑
j∈N

Lij(t) ≤ 1, 1 ≤ t ≤ T. (6)

The UAV movement during each time slot is restricted by the maximum distance that can
be traveled, which is Sδ. Therefore, we have

Lij(t) dij ≤ S δ, ∀i, j ∈ N, 1 ≤ t ≤ T. (7)

where dij is the distance between location i and location j.
Let α be the place of the incident for the object attached to the UAV and β be the final

place that the UAV should go to after delivering the distress messages. The UAV uses the
following three constraints to plan its flight trajectory starting from location α and ending
at location β. First, the UAV should start flying right after the accident happened, i.e.,

∑
j∈N

Lαj(t̂) = 1 (8)

where t̂ is the time slot associated with the accident. Moreover, the UAV goes to the final
location, β, after delivering the distress messages and stays there, i.e.,

T

∑
t=1

∑
i∈N

Liβ(t) = 1 (9)

For a location j other than α and β, the UAV moving from location i to j during slot t must
move from j to location k during the next time slot. Therefore, we have

∑
i∈N

Lij(t)− ∑
k∈N

Ljk(t + 1) = 0, ∀j ∈ N\(α ∪ β), 1 ≤ t ≤ T. (10)

Let I(t) be an indicator function equals to one only when the UAV is located at a point
in the path loss map associated with a path loss value less than or equals to λ, i.e.,

I(t) =
{

1, if PL(t) ≤ λ
0, otherwise.

(11)

where PL(t) is the path loss value associated with the location of the UAV during slot t.
Note that PL(t)

λ ≤ 1 when I(t) = 1 and 1 < PL(t)
λ when I(t) = 0. We define PL(t) by

PL(t) = ∑
i∈N

∑
j∈N

Lij(t) PLj +
(
1− F(t)

)
M (12)
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where M is a large number and F(t) is described as follows:

F(t) =
{

1, when the UAV is flying
0, otherwise.

(13)

From the description of F(t), we have

F(t) = ∑
i∈N

∑
j∈N

Lij(t), 1 ≤ t ≤ T. (14)

To replace the indicator function in (13) by constraints, we add the following two
constraints:

1− I(t) <
PL(t)

λ
, 1 ≤ t ≤ T. (15)

and
PL(t)

λ
≤ 1 +

[
1− I(t)

]
M, 1 ≤ t ≤ T. (16)

From constraint (15) and (16), I(t) = 0 when 1 < PL(t)
λ ≤ 1 + M, and I(t) = 1 when

0 < PL(t)
λ ≤ 1.

The UAV tracks the acceleration of the object attached to it until it accedes the threshold
π. Then, it detaches itself from the object and starts its mission in delivering the distress
messages. Let a(t) be the maximum acceleration of the object attached to the UAV during
time slot t. We define a binary variable, A(t), which equals one only when a(t) accedes the
threshold π, as follows:

A(t) =
{

1, if π ≤ a(t)
0, otherwise.

(17)

where 1 ≤ a(t)
π when A(t) = 1 and a(t)

π < 1 when A(t) = 0. To replace the indicator
function in (17) by constraints, we add the following two constraints:

A(t) ≤ a(t)
π

, 1 ≤ t ≤ T. (18)

and
a(t)
π

< 1 + A(t) M, 1 ≤ t ≤ T. (19)

Then, we introduce the binary variable Ā(t) which equals to one only when the acceleration
of the attached object acceded the threshold π during current or a previous time slot, i.e.,

Ā(t̄) =
{

1, if ∃ A(t) = 1 s.t. t ≤ t̄.
0, otherwise.

(20)

From (20), we introduce the following two constraints:

A(t) ≤ Ā(t̄), t ≤ t̄. (21)

and

Ā(t) ≤
t

∑̄
t=1

A(t̄), 1 ≤ t ≤ T. (22)

Constraint (21) sets Ā(t̄) to one when there is t, where t ≤ t̄, such that A(t) = 1. On the
other hand, constraint (22) sets Ā(t) to zero when there is no t̄, where t̄ ≤ t, such that
A(t̄) = 1. When the acceleration of the object attached to the UAV does not exceed the
acceleration threshold π, then the UAV should not fly. Consequently, the variable Li,j(t) is
set to zero. Thus,

Li,j(t) ≤ Ā(t), ∀i, j ∈ N, 1 ≤ t ≤ T. (23)
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Let γ be the minimum number of slots required by UAV to send the distress messages.
Therefore, the UAV needs to include in its flying trajectory a minimum of one to γ nodes in
the path loss map such that the path loss at these node is less than or equals to λ. The UAV
transmits the distress messages over γ time slot and from one to γ locations. Let Tx(t) be a
binary variable defined as follows:

Tx(t) =


1, if the UAV sends a distress message

during time slot t.
0, otherwise.

(24)

As the UAV should send γ messages to the emergency center, we have

T

∑
t=1

Tx(t) = γ (25)

Moreover, the UAV does not send a distress message during time slot t unless two condi-
tions are satisfied: (1) the path loss value from the location of the UAV during slot t is less
than or equals to the threshold λ and (2) the acceleration of the object attached to the UAV
reached the threshold π during slot t̂, such that t̂ ≤ t. Accordingly, we add the following
constraints:

Tx(t) ≤ I(t) Ā(t), 1 ≤ t ≤ T. (26)

Constraint (26) is nonlinear because the product of I(t) and Ā(t) is nonlinear. To linearize
constraint (26), we introduce a new binary variable, Φ(t) = I(t) Ā(t), and replace (26) by
the following constraints:

Φ(t) ≤ I(t), 1 ≤ t ≤ T. (27)

Φ(t) ≤ Ā(t), 1 ≤ t ≤ T. (28)

I(t) + Ā(t)− 1 ≤ Φ(t), 1 ≤ t ≤ T. (29)

In our optimization problem, we have three objectives with different priorities ordered
as follows: (1) minimizing the distress messages delivery time, (2) minimizing the UAV
mission completion time and (3) minimizing the UAV traveled distance, which is related
to the energy consumption of the UAV. As our objectives are prioritized, we can use the
weighted sum method to formulate our objective function. Therefore, the formulation of
our optimization problem is given by

Minimize w1ΩD + w2ΩF + w3

T

∑
t=1

∑
i∈N

∑
j∈N

Lij(t)dij (30)

Subject to:

Constraints (6)–(10), (12), (14)–(16), (18), (19), (21)–(23), (25) and (27)–(29).

Tx(t) t ≤ ΩD, 1 ≤ t ≤ T. (31)

Liβ(t) t ≤ ΩF, ∀i ∈ N, 1 ≤ t ≤ T. (32)

0 ≤ ΩD, ΩF, ΩD, ΩF ∈ Z. (33)

Lij(t), I(t),F(t), A(t), A(t), Φ(t), Tx(t) ∈ {0, 1},
∀i, j ∈ N, 1 ≤ t ≤ T.

(34)

ΩD and ΩF represent the number of used time slots to deliver the distress messages
and complete the UAV mission, respectively. w1, w2 and w3 are weights used to make
a priority of a certain objective over another, where w3 � w2 � w1. ΩD and ΩF are
positive integer variables used in the objective function and the constraints (31) and (32) to
minimize the maximum time slot indices associated with delivering the distress messages
and completing the UAV mission.
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4. Problem Solution

The optimization problem in Section 3 is in a form of Integer Linear Program (ILP),
which is known to be NP-Complete [24]. To solve our problem in a polynomial time, we
propose a Prioritized Multi-objective UAV Trajectory Optimization algorithm, as described
in Algorithm 1. The UAV’s first and second priorities are delivering the distress messages
and finishing the mission completion time, respectively, as soon as possible. The third
priority is to go to its final location over the shortest path to safe the energy of the UAV’s
battery. After successfully achieving these three goals, the UAV can reduce the time to
dispatch the distress messages and the time of its active operation.

Algorithm 1 Prioritized Multi-objective UAV Trajectory Optimization.

1: Set Ncurrent to the node ID associated with accident location.
2: Set Nnext to the node ID associated with the closest location that has an access to a communication

service.
3: Find the shortest path, P1, from Ncurrent to Nnext.
4: Set Ncurrent = Nnext.
5: P2 = φ.
6: for z = 2 · · · γ do
7: if ∃ n ∈ Neighbor(Nnext) s.t. PLn ≤ λ and n is the closest to the final location among all

neighboring nodes and Ncurrent then
8: Add n to P2.
9: Nnext = n.

10: else
11: P2 = Ncurrent.
12: Exit the loop.
13: end if
14: end for
15: Ncurrent = Nnext.
16: Find the shortest path, P3, from Ncurrent to the final location.
17: Set the UAV trajectory path, P, to (P1 ∪ P2 ∪ P3).

The input to Algorithm 1 is a weighted graph, G, generated from the path loss map.
The graph consists of all nodes in the path loss map, and there is an edge between any pair
of adjacent nodes if the distance between them can be traveled by the UAV within one time
slot. The weight of each edge is the UAV flying time between the pair of nodes associated
with this edge. We utilize Dijkstra’s algorithm to calculate the shortest path between any
pair of source and destination nodes.

In step 1 of Algorithm 1, we denote the location of the UAV after the accident happened
by Ncurrent. Then, the UAV searches for the closest node in the graph associated with a
path loss value less than or equals to λ. We denote this node by Nnext, as shown in step 2.
The UAV calculates the shortest path, P1, from Ncurrent to Nnext and flies to location Nnext.
Next, the UAV starts sending its distress message to the emergence center. The UAV set
Ncurrent = Nnext as shown in step 4.

Once the UAV reaches to a communication network access point, it can stay there until
sending all distress messages then goes to its final location. However, the UAV can reduce
its mission time by jointly sending the distress messages while going to its final location.
In other words, the UAV can send its first distress message at Nnext node and send the
remaining messages in the beginning of the return path to its final location. Accordingly,
the UAV flies to a neighboring node to Nnext if the following conditions are met: (1) the
neighboring node, n, satisfies the condition PLn ≤ λ and (2) the location of the neighboring
node, n, is closer to the final location. The UAV repeats the same process to send the
subsequent distress messages until all messages are sent. If the two conditions are not met,
the UAV stays at Nnext until sending all distress messages as described in the steps 5–14.
Finally, the UAV flies to its final location and finishes its mission. The union of the three
derived paths forms the UAV trajectory, as described in the steps 16–17.
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Time Complexity Analysis

In some steps of Algorithm 1, we find the shortest path between a pair of points using
Dijkstra’s algorithm. The time complexity of finding the shortest path between two points
using Dijkstra’s algorithm is O

(
|E|+ |V| log2 |V|

)
, where |E| and |V| are the number of

edges and nodes in the graph, respectively. Let K be the maximum number of neighboring
nodes connected to each node in the graph G. It is shown in step 7 of Algorithm 1 that
the algorithm goes over K neighboring nodes to node Nnext, in worst case, to search for
the next candidate destination. This process is repeated for (γ−1) times in the worst case.
Accordingly, the time complexity of Algorithm 1 is O

(
(|E|+ |V| log2 |V|) K(γ− 1)

)
.

5. Simulation Results

We consider a UAV serving as an automatic emergency dispatcher for a vehicle located
at a coverage hole. Two base stations are located far away from the UAV, where their
locations in the three-dimensional spaces are (8000, 0, 20) and (8000, 8000, 20). Based on
the location of the base stations, we derive the path loss map. We use a three-dimensional
space, 5000 m × 5000 m × 250 m, to model the path loss map. To study the effect of the
number of points in the path loss map on the computational time, we consider two different
grid sizes: (1) dense grid and (2) sparse grid. The dense grid, shown in Figure 4, consists of
500 path loss points (10 × 10 × 5 points, with a vertical/horizontal spacing of 50/1000 m).
On the other hand, the sparse grid, shown in Figure 5, consists of 125 path loss points
(5 × 5 × 5 points, with a vertical/horizontal spacing of 50/500 m).

The time is slotted into 20 time slots, with slot durations of 30 and 60 s when the
path loss grid is dense and sparse, respectively. We assume that the vehicle served by
the UAV faces an accident at location 1 and during the beginning of time slot 5. At time
slot 5, the acceleration becomes 20 m/s2, which is above the threshold value 10 m/s2, i.e.,
π = 10 m/s2. The UAV should dispatch the distress messages and go to its final location.
Unless specified otherwise, Table 1 shows the parameters used in our simulations.

5.1. Performance versus Path Loss Map Density

First, we investigate the effect of the path loss map density (number of points) on the
accuracy of the optimal solution and the computational time required to get the optimal
solution. As shown in Table 2, we can get a better solution when we adopt the dense
grid. The dense gird has a larger number of nodes distributed over the 3D space, which
allows the UAV to have more shorter path options. Therefore, the dense grid provides
more flexibility for the UAV to reach to a location with low path loss value and to reach to
the final location in a shorter distance and time. On the other hand, it is shown in Table 2
that adopting the sparse grid can reduce the computational time significantly although it
leads to degrading the obtained solution. Therefore, there is a trade-off between getting
a more accurate solution and reducing the computational time. Hence, we should select
the path loss map density based on the UAV computational power and our flexibility of
getting a less accurate result.
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Figure 4. Dense path loss map.

Figure 5. Sparse path loss map.

Table 1. Simulation parameters.

Parameter Value Parameter Value

N 125, 500 f 2 GHz
δ 30, 60 s c 3× 108 m/s
T 20 a 11.25, 8.96
S 23 m/s b 0.06, 0.04
B 2 γ 3

ηLoS 0.1, 1.6 dB λ 132–138 dB
ηNLoS 21, 23 dB π 10 m/s2
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Table 2. Computational vs. delivery time.

Dense Grid Sparse Grid

Slot duration (s) 30 60
Computational time (s) 1505 13

Slots to deliver the message 11 9
Slots to return to final location 16 12
Time to deliver the message (s) 330 540
Time to return to final location 480 720

5.2. Optimal versus Algorithm 1’s UAV Routing Trajectories

Figures 6–9 show the UAV’s trajectories for scenarios 1 and 2, when we solve the
original optimization problem and Algorithm 1. We assume that the threshold λ = 133 dB.
Therefore, the UAV flies to one or more locations associated with path loss vales less than
or equal to 133 dB and sends the distress message from them. In scenarios 1 and 2, the
UAV goes to locations 21 and 123, respectively, after delivering the distress messages.

In Figure 6, we present the optimal UAV trajectory of scenario 1. After the acceleration
of the UAV exceeds the threshold π, it searches for the closest location that has an access to
the communication network (i.e., closest location j such that PLj ≤ λ). Accordingly, the
UAV goes from location 1 to location 106, and stays there for γ slots to sends the distress
message. Then, it flies to the final location to node 21. Similarly, Figure 7 shows the UAV
trajectory generated using Algorithm 1. The UAV flies to location 101 and sends the first
distress message, then flies to location 106 and 111 to sends the rest of the distress messages.
Finally, it goes back to its final location. In both solutions, the UAV finishes delivering the
distress message and goes back to its final location by the end of slot 11 and 14, respectively.

UAV's Routing Trajectory

0
1000

2000
3000

4000

x axis0

1000

2000

3000

4000

y axis

19

19.5

20

20.5

21

U
A

V
 h

ei
gh

t

1
26

51
76

1068666
4121

132

133

134

135

136

137

138

P
at

h 
lo

ss
 (

dB
)

Figure 6. Optimal UAV’s trajectory design over the path loss map (Scenario 1).
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Figure 7. UAV’s trajectory design over the path loss map using Algorithm 1 (Scenario 1).

The UAV’s trajectories of scenario 2 derived after solving the original optimization
problem and Algorithm 1 are shown in Figures 8 and 9, respectively. Scenario 2 is similar to
scenario 1 except that the final location is at location 123. In both solutions, the UAV delivers
the distress messages and goes back to the final location by the end of time slot 11 and 12,
respectively. Although Algorithm 1 solution is similar to the optimal, the computational
time is reduced significantly, as shown in Table 3.

Figure 8. Optimal UAV’s trajectory design over the path loss map (Scenario 2).

Table 3. Computational time.

Scenario 1 Scenario 2

Time to get the optimal solution 57 s 60 s
Time to get Algorithm 1 solution 0.023 s 0.023 s
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Figure 9. UAV’s trajectory design over the path loss map using Algorithm 1 (Scenario 2).

5.3. The Effect of the Path Loss Threshold Value on the Performance

We present the relationship between the threshold λ and the distress messages Deliv-
ery Time (DT) and the UAV Finishing Time (FT) in Figure 10. DT is the time slot during
which the UAV delivers all distress messages, where FT is the time slot that the UAV
finishes its task and returns to its final location. It is shown that the solution of Algorithm 1
is similar to the optimal under different values for λ. As we increase the value of λ, the
UAV has more chances to reach to a closer location with an access to a communication
network. Therefore, the UAV can deliver the distress messages and return to its final
location within a shorter time. Moreover, the gap between DT and FT decreases when λ
increases as the UAV will have more options to go to locations in the direction of the final
location to deliver the distress messages.
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Figure 10. Finishing time vs. delivery time vs. λ.

We present the effect of the environment on DT and FT in Figure 11. Given a certain
location in the path loss map, the path loss value in the dense urban environment is higher
compared to the path loss value in the suburban environment. Therefore, DT and FT
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are shorter in the suburban environment. The gap between the solutions under these
different environments is large, where the FT in the suburban environment is similar to DT
in the dense urban environment. From Figures 10 and 11, we observe that the value of the
threshold λ and the environment where the UAV flies can significantly affect the required
time to send the distress messages. The selection for the value of λ depends on the quality
of service requirement, the environment where the UAV flies, and the delay tolerance for
delivering the distress messages.
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Figure 11. Finishing time vs. delivery time vs. the environment.

6. Conclusions

In this paper, we proposed a UAV-based method for conveying the distress messages
from coverage holes to the emergency center. First, we model the problem using a three-
dimensional path loss map. Then, we formulate a mathematical model to minimize the
time required to deliver the distress message and complete the UAV’s mission time. We
proposed a heuristic algorithm to solve our problem more efficiently. Additionally, we
investigate our scheme and simulate the proposed algorithm under different scenarios. The
effect of the path loss map density is studied, where the dense map allows finding more
accurate results. On the other hand, sparse path loss map simplifies the routing problem
and allows solving the problem in a shorter time. Moreover, we verify the advantage of our
proposed heuristic algorithm where it finds the solution with a significant reduction in the
computational time. Our results show that the value of the threshold λ has a great impact
on the distress messages delivery time. Therefore, a higher quality of service requirements
for delivering the distress messages results in more delay in the delivery.

7. Patents

The US patent titled “Emergency unmanned aerial vehicle and method for deploying
an unmanned aerial vehicle” with number 9834306 results from this paper.
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