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Abstract: Walking has been demonstrated to improve health in people with diabetes and peripheral
arterial disease. However, continuous walking can produce repeated stress on the plantar foot and
cause a high risk of foot ulcers. In addition, a higher walking intensity (i.e., including different speeds
and durations) will increase the risk. Therefore, quantifying the walking intensity is essential for
rehabilitation interventions to indicate suitable walking exercise. This study proposed a machine
learning model to classify the walking speed and duration using plantar region pressure images.
A wearable plantar pressure measurement system was used to measure plantar pressures during
walking. An Artificial Neural Network (ANN) was adopted to develop a model for walking intensity
classification using different plantar region pressure images, including the first toe (T1), the first
metatarsal head (M1), the second metatarsal head (M2), and the heel (HL). The classification consisted
of three walking speeds (i.e., slow at 0.8 m/s, moderate at 1.6 m/s, and fast at 2.4 m/s) and two
walking durations (i.e., 10 min and 20 min). Of the 12 participants, 10 participants (720 images) were
randomly selected to train the classification model, and 2 participants (144 images) were utilized to
evaluate the model performance. Experimental evaluation indicated that the ANN model effectively
classified different walking speeds and durations based on the plantar region pressure images.
Each plantar region pressure image (i.e., T1, M1, M2, and HL) generates different accuracies of the
classification model. Higher performance was achieved when classifying walking speeds (0.8 m/s,
1.6 m/s, and 2.4 m/s) and 10 min walking duration in the T1 region, evidenced by an F1-score of 0.94.
The dataset T1 could be an essential variable in machine learning to classify the walking intensity at
different speeds and durations.

Keywords: artificial neural network; automatic classification; plantar region pressure image; walking
speed; walking duration

1. Introduction

Walking has been universally recommended as a rehabilitation strategy to improve
physical and psychological health in people with Parkinson’s disease [1], diabetes mellitus
(DM), and peripheral arterial disease [2,3]. Regarding the characterization of the walking
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volume (i.e., different speeds and durations), the American Physical Activity Guidelines
recommend that people should engage in moderate-intensity physical activity for at least
150 min/week or vigorous-intensity physical activity for at least 75 min/week [2]. Walking
is an effective rehabilitation intervention to improve the health of DM patients [4]. However,
moderate and vigorous physical activity, such as brisk walking, will increase the load on
plantar soft tissues for causing high peak plantar pressure (PPP). An increase in walking
duration will increase the repetitive load on plantar soft tissues, which results in increased
stiffness and PPP [5–7]. Increased stiffness of plantar soft tissue has been considered as a
risk factor of foot ulcers in DM patients [8]. Appropriate walking intensity has been shown
to reduce plantar soft tissue stiffness [7] and decrease PPP [9]. Measurement of walking
intensity is a major challenge fundamentally because the development of foot ulcers is
influenced by repetitive loads on the plantar soft tissues.

Researchers have attempted to address this situation through analysis of plantar
pressure patterns to study the development of foot ulcers [10,11]. The plantar pressure
patterns are essential information to detect the development of foot ulcers, which have
enabled to reach state-of-the-art predictive performance in classification tasks [12]. Fur-
thermore, plantar pressure values, such as PPP, vary during gait in different areas of the
plantar foot [13]. Research studies analyzed PPP values and demonstrated that four plantar
regions are at a higher risk of foot ulcers, namely first toe (T1), first metatarsal head (M1),
second metatarsal head (M2), and heel (HL) [14,15]. Fundamentally, the tissue thickness
of the T1 is thinner than M1, M2, and HL [9]. This argument led this study to introduce
the hypothesis: the T1 region may play a significant role in the development of foot ulcers.
Hence, analyzing the four plantar regions may provide more detailed patterns of the foot
plantar thus could be used to assess the appropriate intensity of exercise for patients at risk
for foot ulcers.

Several approaches have been implemented to analyze the pattern inside the images,
one of the most superior is the application of machine learning [16,17]. Machine learning
methods such as artificial neural networks (ANN), can be used to classify plantar pressure
patterns result in a faster and more accurate diagnostic process to aid in treatment, early
detection, and prevention strategies [18]. The ANN is a machine learning method that
replicates how experienced experts solve problems. The ANN learns through experience
by establishing patterns and relationships from datasets. Recent studies have applied
the ANN model for plantar pressure image classification and estimation. Rupérez et al.
showed that the ANN model achieved satisfactory accuracy in estimating the maximum
pressure on the plantar surface exerted by a plantar pressure image for three distinct phases
of the gait cycle [19]. The ANN model is an automated solution that can classify different
walking speeds from different patterns of plantar pressure images [20]. However, this
model is only tested for the classification of walking speed. On the other hand, the duration
of walking (i.e., repetitive stress on the soft tissues of the plantar foot) may increase the risk
of foot ulcers [2]. According to Bowling et al., reduced soft tissue thickness can contribute
to greater stiffness (i.e., increased risk of foot ulcers), especially with repetitive loads at
longer walking duration [21]. Therefore, the walking duration is important for DM patients
who are at risk of foot ulcers. The ANN could provide an appropriate architecture to
infer features, from plantar pressure images, that accurately classify the exercise volume.
However, regarding the latest studies that utilize the ANN model, there is no research that
has considered walking speed and walking duration for plantar foot pressure classification.

Based on the above studies, walking exercise is an excellent intervention to improve
the health of people with DM, but the appropriate walking intensity is critical. Therefore,
it is necessary to classify walking speed and walking duration to find the proper walking
intensity. In this work, the credential of ANN is implemented as a potential classifier of
walking speed and walking duration in three different ways: (1) Demonstrate that ANN
can accurately predict walking speed and walking duration using plantar region pressure
images and compare predictions with preliminary approaches; (2) establish the region
analysis of predictions using a dataset of four different regions; (3) assess the proposed
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scheme’s reliability using cross-validation of F1-scores. The results of this study provide
a foundation for understanding the pattern of plantar pressure during various walking
activities for detecting appropriate exercise volume in patients at risk for foot ulcers.

2. Materials and Methods

This section describes the plantar pressure recording, the labeling process, and the
design of the classification model. The dataset of plantar pressure images was recorded
from the participants who walked at different speeds and durations. This dataset is a set of
plantar pressure images that represent pressure acting on the plantar foot. As the classifi-
cation model, an ANN model was used to classify the dataset of plantar pressure images.
The ANN model has gained popularity due to its ability to extract unique representations
from image data [22]. The ANN model could be utilized to extract image properties (i.e.,
statistical stationarity and pixel-dependent locality) for image classification [23].

Modifying the ANN model, such as a multi-layer perceptron with sigmoid activation
rules and two hidden layers, provides better performance capabilities [24]. The more
hidden layers are used, the better the ANN model learns more complex patterns in a
dataset. However, the large number of hidden layers did not guarantee an increase in
performance. On the contrary, it wasted data processing resources [25]. Therefore, this
study applied two hidden layers to extract data patterns efficiently while keeping resources
to a minimum. Finally, this study presented an ANN model to improve performance for
classification at various walking speeds and durations.

2.1. Participants

Twelve healthy participants between the ages of 18 and 45 years who can walk inde-
pendently without using an assistive device were recruited from the University of Illinois
at Urbana-Champaign and the nearby community. Participants who were not eligible
included those having active foot ulcers, diabetes mellitus, pain in any lower extremity
joint, obvious foot deformities (flat foot or high arch) [26], a history of foot amputation, or
any other lower extremity surgery. The study received the approval of the Institutional
Review Board of the University of Illinois at Urbana-Champaign. All participants signed
an informed consent form before screening and examination procedures.

2.2. Procedures

The experimental procedures were based on our previous study [9,27]. Meanwhile,
this study examined three walking speeds (slow at 0.8 m/s, moderate at 1.6 m/s, and
fast at 2.4 m/s) and two walking durations (10 and 20 min). Three speeds were selected
to simulate three common speeds in adults [28], and two durations were selected based
on average walking time and physical activity [29]. All participants were asked to walk
on a treadmill at speeds of 0.8 m/s (first week), 1.6 m/s (second week), and 2.4 m/s
(third week) in a room with a temperature of 24 ± 2 ◦C. Each week, participants were
assigned randomly to either 10 or 20 min of walking. Then, the participant rested for at
least 20 min between two walking trials to avoid carryover effects and muscle fatigue. The
wearable plantar pressure measurement system, F-Scan® (Tekscan Inc., South Boston, MA,
USA), was utilized to record plantar pressure images during continuous walking [8,9]. The
sampling frequency was set to 300 Hz. The F-Scan® in-shoe system provides dynamic
pressure information to foot function and gait analysis. The F-scan® in-shoe sensor has
960 sensing elements that are constructed using patented thin-film sensors. Each sensing
element measures biological tissue with an area of 5.08 mm × 5.08 mm. The participants
were provided with a suitable pair of shoes and socks (Altrex, Teaneck, NJ, USA) equipped
with F-scan® in-shoe sensors located between the socks and insoles. Before the walking
experiment, participants were instructed to walk for 3 to 5 min to adapt the shoes.
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2.3. Labeling

The labeling stage is critical for the ANN model as the system will learn classification
tasks from an extensive collection of images that have been labeled differently for each
category [30]. The ANN model that trains labeled data can improve performance in solving
classification problems [31]. Data labeling is often performed to reference the ground truth.
Ground truth labeling is a vital step in classification tasks as it provides a foundation for the
performance evaluation of the proposed model [32]. This study used the labeling process
to categorize the plantar pressure image data into six categories: a slow walking speed of
0.8 m/s, a moderate walking speed of 1.6 m/s, and a fast walking speed of 2.4 m/s with
two walking durations (10 and 20 min). The examples of plantar pressure distribution
images of the individual participant at different walking speeds and walking durations are
presented in Figure 1.
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Figure 1. Examples of plantar pressure images after different walking speeds and durations in a
representative participant. (a) 0.8 m/s for 10 min; (b) 1.6 m/s for 10 min; (c) 2.4 m/s for 10 min,
(d) 0.8 m/s for 20 min; (e) 1.6 m/s for 20 min; (f) 2.4 m/s for 20 min.

2.4. Pre-Processing of Training Model

Image segmentation into regions of interest (ROI) aims to make an image more mean-
ingful and easier to analyze and interpret [32]. Image cropping could also be implemented
as an image resizing operation and ROI extraction. ROI on the plantar foot is divided into
four regions consisting of T1, M1, M2, and HL based on the risk for foot ulcers [14,15]. A
crucial role in image processing is the ROI analysis method because it identifies features
and patterns in the image [33]. Analyzing the plantar pressure regions characterized by the
ROI can improve the performance of the classification model than examining pressure on
the entire foot [30]. The plantar pressure image of each region was resized from 5 × 5 pixels
to 100 × 100 pixels using MATLAB R2019b (MathWorks, Inc., Natick, MA, USA). Resizing
the image of each region would increase the performance of the classification model [34].
Resized images enhance the high resolution to raise more features in the dataset. The
images of ROI from four plantar regions were then used for the ANN model training
(Figure 2a).
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HL; (b) the ANN model architecture is utilized for classifying walking speeds and walking durations. T1, first toe; M1, first
metatarsal head; M2, second metatarsal head; HL, heel.

2.5. Artificial Neural Network (ANN)

As illustrated in Figure 2b, the ANN model architecture in this study consisted of a
one-dimensional input layer, two hidden layers, and one output layer. The input layer was
constructed using 10,000 neurons. The number of the output layer was matched with the
number of classes that determined the walking speed and the walking duration. First, the
plantar region images were converted into one-dimensional value series using the flatten
layer. Then, the series was used as the input of the ANN model. The hidden layers were
used between the input layer and the output layer to propagate the training mechanism.
The artificial neuron had weighted inputs and a procedure to generate neuron output
through an activation function [35]. This study used two hidden layers (500 neurons in the
first hidden layer and 30 neurons in the second hidden layer). Finally, the output layer was
the last layer of neurons, producing a 6-neuron output system to classify the condition of
walking speed and walking duration. The dataset consists of 864 plantar pressure images
obtained from 12 participants × 3 speeds (0.8, 1.6, and 2.4 m/s) × 2 durations (10 and
20 min) × 3 steps × 4 ROI (T1, M1, M2, and HL). The images recorded from ten participants
(i.e., randomly selected) were used to train the model, and two participants were used to
verify the performance of the classification model. Specifically, 720 images were recorded
from ten participants, while 144 images were collected from two participants to meet the
80:20 testing ratio as suggested by Joo and colleagues [20].

Hyperparameters are variables that determine the structure of the network and or-
ganize how the model learns. Properly selected hyperparameter values could assist in
solving overfitting and underfitting problems. Therefore, hyperparameter tuning is an
essential step in the learning model training process [36]. The parameters in this research
model were optimized to maximize the learning model performance by adjusting hy-
perparameters with the learning rate of: 1 × 10−3, batch size: 24, epochs: 1000. Model
optimization with Adam was chosen for this study because it was straightforward to
implement, computationally efficient, requires little memory, and was well suited for many
data and parameters [37]. The model in this study was trained using a personal computer
with the operating system Windows 10, 64 bits based on an Intel (R) Core i7-10700k CPU
@ 3.80 GHz 3.79 GHz, 32 GB RAM, 10 GB display memory (VRAM), and supported by a
super GPU (NVIDIA Ge-Force RTX 3080).
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Examples of an accuracy graph and loss graph of the ANN model in this study for
walking speed classifications (0.8, 1.6, and 2.4 m/s) of 10 min using a plantar pressure
image in the T1 region are presented in Figure 3. The epoch represents a forward pass and
a backward pass calculation during training the model. In Figure 3a, the training accuracy
is calculated from the correct predictions divided by the total number of predictions made
using the training dataset. The validation accuracy is calculated by comparing the model’s
predictions to the total number of predictions made using the validation dataset. The
ratio between the training dataset with the validation dataset is 80:20. From the graph of
model accuracy, the classification model can be trained appropriately because the trend
of accuracy in both data sets (training and validation) can reach an accuracy value of 0.94.
Furthermore, the training line and the validation line coincide with each other. It shows that
neither overfitting nor underfitting occurs in the classification model. Figure 3b illustrates
the training loss, i.e., the loss function of the training dataset and model predictions.
Conversely, the validation loss is the difference between the model’s predictions and the
validation dataset’s loss function. The grey line denotes model validation, and the black line
represents model training. The graph of model loss shows that the model has comparable
performance on the training and validation datasets with a loss value of 0.05.
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2.6. Evaluation

The F1-score is a measure of a model’s accuracy in classifying datasets. This measure
combines precision and recalls to represent the harmonic mean of the model [38]. The
F1-score is usually used to evaluate binary or multiclass classification models on various
types of machine learning and deep learning models. The performance of the learning
model was evaluated using the F1-score defined by Equation (1), as follows:

F1 − score = 2×precision × recall
precision + recall

=
TP

TP+ 1
2 (FP + FN)

, (1)

where TP is true positive, TN is true negative, FP is false positive, and FN is false nega-
tive; precision is defined as the fraction of all positive predictions that are true positives
TP/(TP + FP); recall is defined as the fraction of all actual positives that are predicted
positive TP/(TP + FN).

3. Results

The demographic data were (mean ± standard deviation): age, 27.1 ± 5.8 years; height,
1.703 ± 0.100 m; weight, 63.5 ± 13.5 kg; and body mass index (BMI), 21.7 ± 2.9 kg/m2. The
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results of interviews with all participants stated that all participants were right-handed.
Therefore, the leg that dominates all participants is the right side.

The effect of walking speed for 10 min, the T1 region showed a substantial difference
amount the different walking speeds between 0.8, 1.6, and 2.4 m/s with the F1-scores of
0.91, 0.92, and 1.00, respectively. On the other hand, the F1-scores in the M1 region between
0.8, 1.6, and 2.4 m/s were 0.36, 0.55, and 0.71, respectively. Thus, the T1 region showed
better F1-scores than the M1 regions. However, there was a decrease in the F1-score at the
moderate walking speed (1.6 m/s) for 10 min walking duration in the M2 and HL regions
(Table 1 and Figure 4).

Table 1. Effect of walking speed on the F1-score in four plantar regions.

Walking
Duration

Plantar
Region

F1-Score of Walking Speed

0.8 m/s 1.6 m/s 2.4 m/s

10 min

T1 0.91 0.92 1.00
M1 0.36 0.55 0.71
M2 0.71 0.22 0.80
HL 0.35 0.00 0.50

20 min

T1 0.80 0.22 0.17
M1 0.50 0.29 0.40
M2 0.67 0.20 0.18
HL 0.50 0.29 0.22

Note: T1, first toe; M1, first metatarsal head; M2, second metatarsal head; HL, heel.
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Figure 4. Comparison of the F1-scores of walking speed (0.8, 1.6, and 2.4 m/s) in four plantar regions for two walking
durations. (a) 10 min walking duration; (b) 20 min walking duration. T1, first toe; M1, first metatarsal head; M2, second
metatarsal head; HL, heel.

The effect of walking speed for 20 min, the T1 region showed a substantial difference
in walking speeds between 0.8, 1.6, and 2.4 m/s with F1-scores of 0.80, 0.22, and 0.17,
respectively. In the M2 region between 0.8, 1.6, and 2.4 m/s, the F1-scores were 0.67, 0.20,
and 0.18, respectively. In the HL region between 0.8, 1.6, and 2.4 m/s, the F1-scores were
0.50, 0.29, and 0.22, respectively. The T1 region showed better F1-scores than the M2 and
HL regions. There was an increase in the F1-score at the fast walking speed (2.4 m/s) for
20 min walking duration in the M1 region (Table 1 and Figure 4).

The F1-score achieved by the classification model at the four plantar regions is shown
in Table 1. These results indexed that the F1-score was higher in the T1 region. The highest
results were at 0.8 m/s walking speeds (F1-score = 0.91), 1.6 (F1-score = 0.92), and 2.4 m/s
(F1-score = 1.00) at 10 min walking duration.

Regarding the effect of walking durations, the comparison of walking duration be-
tween 10 min versus 20 min was presented at walking speeds of 0.8 m/s, 1.6 m/s, and
2.4 m/s, as seen in Figure 5 and Table 2. The results indicate that the walking duration in-
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fluences the F1-score, especially in all four plantar regions. The F1-score of shorter walking
duration (10 min) tends to be higher than the longer duration (20 min).
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Figure 5. Comparison of F1-scores on walking duration (10 min and 20 min) in the four plantar regions at walking speed (a)
0.8 m/s, (b) 1.6 m/s, and (c) 2.4 m/s. T1, first toe; M1, first metatarsal head; M2, second metatarsal head; HL, heel.

Table 2. Effect of walking duration on the F1-score in four plantar regions.

Walking Speed Plantar Region
F1-Score of Walking Duration

10 min 20 min

0.8 m/s

T1 0.91 0.80
M1 0.36 0.50
M2 0.71 0.67
HL 0.35 0.50

1.6 m/s

T1 0.92 0.22
M1 0.55 0.29
M2 0.22 0.20
HL 0.00 0.29

2.4 m/s

T1 1.00 0.17
M1 0.71 0.40
M2 0.80 0.18
HL 0.50 0.22

Note: T1, first toe; M1, first metatarsal head; M2, second metatarsal head; HL, heel.

Table 2 shows the comparison of the F1-scores obtained from all four plantar regions at
walking durations of 10 min and 20 min. In the T1 region, there were differences in the F1-
score between 10 min and 20 min walking duration in 0.8 m/s walking speed (0.91 vs. 0.80),
1.6 m/s walking speed (0.92 vs. 0.22), and 2.4 m/s walking speed (1.00 vs. 0.17). In the M1
region, there were differences in the F1-score between 10 min and 20 min walking duration
in 0.8 m/s walking speed (0.36 vs. 0.50), 1.6 m/s walking speed (0.55 vs. 0.29), and 2.4 m/s
walking speed (0.71 vs. 0.40). In the M2 region, there were differences in the F1-score
between 10 min and 20 min walking duration in 0.8 m/s walking speed (0.71 vs. 0.67),
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walking speed of 1.6 m/s (0.22 vs. 0.20), and walking speed of 2.4 m/s (0.80 vs. 0.18). In
the HL region, there were differences in the F1-score between 10 min and 20 min walking
duration in 0.8 m/s walking speed (0.35 vs. 0.50), 1.6 m/s walking speed (0.00 vs. 0.29),
and 2.4 m/s walking speed (0.50 vs. 0.22).

4. Discussion

This study showed that higher F1-scores are generated by the classification model
when using a fast walking speed (2.4 m/s) compared to moderate and lower walking
speeds (1.6 m/s and 0.8 m/s). Fast walking speed (2.4 m/s) significantly increased plantar
skin blood flow compared to moderate (1.6 m/s) and slow (0.8 m/s) walking speeds [29].
Hence, the plantar pressure images produced at the fast walking speed are more prominent
than those at moderate and slow walking speeds. Previous studies have shown that faster
walking speeds significantly increased maximum force and PPP compared to slower walk-
ing speeds [39–41]. These events affect pixel values in plantar pressure images. Therefore,
faster walking speeds can result in higher pixel levels in plantar pressure images than
slower speeds [42]. Therefore, the ANN model could more accurately recognize the plantar
pressure pattern at a faster walking speed. Furthermore, a striking difference between the
F1-scores obtained when walking at a speed of 2.4 m/s for 10 min and those for 20 min was
observed. The F1-score for the walking duration of 10 min is higher than those for 20 min.
A fast walking speed (2.4 m/s) with a walking duration of 10 min results in a more stable
gait, resulting in a more consistent pattern of plantar pressure distribution than walking
at 20 min. In addition, the plantar image generated at a fast walking speed with a shorter
duration has more visible patterns than those with a longer duration, making it easier for
the ANN model to classify each walking speed. Our finding, supported by Bhatt et al. and
Young and Dingwell [43,44], suggested that a higher walking speed and a shorter walking
duration improve walking stability. Our finding implies that a faster walking speed with a
walking duration of 10 min could result in a more consistent pattern in plantar pressure
distribution than those with a waking duration of 20 min.

The proposed model achieved the highest F1-score that is occurred in T1 region (0.94),
then followed by M2 (0.61), M1 (0.56), and HL (0.41), respectively. Each region of plantar
pressure data will generate a different F1-score of the ANN model. The pressure load
distribution on distinct regions of the foot varies greatly during walking activities [45].
The highest PPP is in the first toe (T1), then followed by PPP in the forefoot (M1, M2, and
HL) [40]. The first toe region was subjected to the heaviest loads, and the highest peak
pressure values (over 430 kPa on average) are observed under the first toe pad during
the push-off phase [46]. Additionally, Tanaka et al. demonstrated that the first toe (T1)
pressure under the foot provides biomechanical information on the foot, such as balance
and stable gait for determining human health conditions [47]. The analysis of fast walking
speed shows where the maximum peak pressure is absorbed in the first toe region [48].
Chou et al. suggesting that the first toe is vital for balance and can be considered in the
future when considering toe amputation or transfer [49].

PPP is one of the in-shoe pressure variables that has been highlighted to be suitable
for classifying the development of foot ulcers [5]. Based on this assumption, this study
proposed that in-shoe plantar pressure images (i.e., includes detailed PPP in the spatial
space) are variables that should be examined in a diabetic patient at risk for foot ulcers.
However, this study only referred to the dataset of walking speed and walking duration of
healthy participants rather than patients with abnormal gait for training and validation of
the classification model. Although this study only refers to the healthy participants, the
results showed that the walking speed and walking duration could be classified using the
ANN model. Therefore, patients can be warned during their physical activity based on
the classification of exercise volume. Furthermore, the results supported by Lung et al. [9],
which observed correlation coefficients between healthy and diabetic participants, revealed
that the PPP values of the healthy and the diabetic participants were similar. In conclu-
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sion, our study can be used by diabetic patients to provide an appropriate assessment of
exercise volume.

The boxplots in Figure 6 show the distribution of four F1-scores by 5-fold cross-
validation [20,38] when classifying a class label of 10 min speed in every plantar region (i.e.,
T1, M1, M2, and HL). The outermost horizontal lines indicate the maximum and minimum
values of the F1-score. The horizontal lines below and above the box are the lower and
upper quartiles, respectively. The center lines are the median values. The closer the box of
F1-score is to 1, the higher the accuracy of the model. In addition, the narrower the gap
between the maximum and minimum values, the higher the robustness of the classification
model. For this study comparing the boxplots of F1-scores for each plantar region, the
dataset of T1 has higher accuracy with a mean F1-score of 0.94 and a narrower box than
three other datasets (i.e., M1, M2, and HL). In addition, the dataset of M1 and M2 achieve
similar performance.
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Meanwhile, the dataset of HL generates a lower performance compared to the other
three datasets. The T1 region is more dominant in walking or running movements, es-
pecially during the pre-swing phase but has a thinner tissue thickness [9,50]. Repeated
pressure on these soft tissues causes the T1 region to have a greater potential for foot
ulcers. Visually, the global data used in this study are often at the boundary of the criteria
for classifying foot plantar images, which is somewhat ambiguous in features, resulting
in poor performance compared to if the image is analyzed regionally. Therefore, a deep
analysis through regional feature extraction is needed to ensure that the plantar patterns
can be extracted consistently. The main finding of this study is that the dataset on the T1
region achieves the best performance with the highest accuracy and minor variance. Thus,
it can be seen that analysis of plantar region pressure images is essential to increase the
classification performance of walking speed and walking duration.

This study was compared with other related studies to evaluate the performance of
the classification model (Table 3). However, they used the ANN model with a different
framework to analyze problems related to plantar pressure data, as Joo et al. used an ANN
model with one hidden layer to analyze gait speed [20]. Meanwhile, Begg and Kamruz-
zaman used a neural network to analyze gait changes [51]. The proposed ANN model
uses two hidden layers architecture to classify walking speed and walking duration. It has
been proven that the proposed ANN model increases the performance of the classification
model based on the plantar region pressure image. Compared with other studies, Joo et al.
analyzed plantar pressure data using the ANN model with one hidden layer [20]; this
model achieved an accuracy of 0.71. In comparison, Begg and Kamruzzaman using an
ANN model with three hidden layers, obtained a better model accuracy of 0.83 [51].
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Table 3. Comparison of the performance of the classification model based on plantar pressure images
with relevant studies.

References Study Case Target Method Accuracy F1-Score

Begg and Kamruzzaman
(2006) [51]

Plantar foot
data Gait changes ANN

(3 hidden layers) 0.83 -

Joo et al. (2014) [20]
99 sensing nodes

Plantar
pressure data Gait speed ANN

(1 hidden layer) 0.71 -

Chen et al. (2021) [52]
A preliminary study

global pattern
(660 sensing nodes)

Plantar
pressure images Walking speed Convolutional

Neural Network - 0.86

This study
region pattern

(660 sensing nodes)

Plantar region
pressure images

Walking speed
and walking

duration

ANN
(2 hidden layers) 0.94 0.94

This study demonstrated better performance of the classification model than other
studies, with an F1-score of 0.94. These results are still better than the preliminary study
Chen et al. [52]. The preliminary study used a convolutional neural network (CNN) to
analyze plantar pressure images. Although CNN has a better ability to extract features
in two-dimensional data, the inconsistency of the dataset prevents this method from
producing high accuracy. One of the major challenges in recording plantar pressure data
is the data generation which is sometimes inconsistent due to slips between the sensor
layer and the insole, variations in movement that are not uniform between participants,
and the physical condition of the participants [53]. The ANN model, which focuses on
extracting plantar data regionally, is proven to be superior in producing higher F1-scores,
especially in datasets that are generally inconsistent. In addition, training local patterns
comprehensively using ANN can improve the accuracy of the classification system. The
results demonstrate the competitiveness of this study with previous studies, especially for
the classification of walking speed and walking duration.

This research has some limitations. First, this study only refers to the dataset of walk-
ing speed and walking duration of healthy participants rather than those of patients with
abnormal gait for training and validation of the classification model. Second, there are more
data features in time series plantar pressure images due to different walking intensities over
time. The ANN model could not capture temporal patterns inside these spatiotemporal
plantar pressure datasets. However, it is possible that these temporal patterns can provide
additional information that can be used to improve the performance of the classification
model. A spatiotemporal classification model can be used to study sequential data because
it can extract time-series patterns in spatiotemporal datasets, such as plantar pressure
images. These spatiotemporal datasets could be analyzed accurately by using the deep
spatiotemporal classification model [22] and spatiotemporal data analysis [54]. Third, the
plantar pressure image generated using the insole-type F-scan system measurement device
is not very detailed in terms of resolution and measurement in this study. High image
resolution can reveal more detailed image features that can improve the performance
of neural networks in various machine learning tasks [55]. Therefore, a general clinical
model based on actual patient data needs to be developed in future studies. It is expected
that the method proposed in this study would be the foundation for the establishment of
new research methods for the assessment of the development of foot ulcers, especially in
DM patients.

5. Conclusions

This study revealed that the proposed ANN-based method can classify walking speed
and walking duration using plantar pressure images. Furthermore, the model achieved
the highest F1-score using fast walking speed compared to moderate and slow walking
speed. Visually, the faster walking speed with a walking duration of 10 min resulted
in a more consistent plantar pressure distribution pattern than a walking duration of
20 min. Therefore, this consistent information produces a higher performance achieved
by the proposed model. Specifically, the plantar pressure image at the first toe region (T1)
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provided a more detailed pressure pattern at each walking speed; therefore, the proposed
model could easily recognize the images. Finally, this results of this study could be used
as a detection system suitable for walking exercise and rehabilitation interventions for
patients at risk for foot ulcers.
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