
sensors

Article

rTLS: Secure and Efficient TLS Session Resumption
for the Internet of Things †

Koen Tange * , Sebastian Mödersheim, Apostolos Lalos, Xenofon Fafoutis and Nicola Dragoni

����������
�������

Citation: Tange, K.; Mödersheim, S.;

Lalos, A.; Fafoutis, X.; Dragoni, N.

rTLS: Secure and Efficient TLS

Session Resumption for the Internet

of Things. Sensors 2021, 21, 6524.

https://doi.org/10.3390/s21196524

Academic Editors: Wenjuan Li,

Weizhi Meng, Sokratis Katsikas and

Peng Jiang

Received: 8 September 2021

Accepted: 26 September 2021

Published: 29 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

DTU Compute, Department of Applied Mathematics and Computer Science, Technical University of Denmark,
Richard Petersens Plads, 2800 Kongens Lyngby, Denmark; samo@dtu.dk (S.M.); lalosapost@gmail.com (A.L.);
xefa@dtu.dk (X.F.); ndra@dtu.dk (N.D.)
* Correspondence: kpta@dtu.dk
† This paper is an extended version of our paper published in the 2020 International Conference on Information and

Communications Security as “rTLS: Lightweight TLS Session Resumption for Constrained IoT Devices”.

Abstract: In recent years, the Transport Layer Security (TLS) protocol has enjoyed rapid growth
as a security protocol for the Internet of Things (IoT). In its newest iteration, TLS 1.3, the Internet
Engineering Task Force (IETF) has standardized a zero round-trip time (0-RTT) session resumption
sub-protocol, allowing clients to already transmit application data in their first message to the
server, provided they have shared session resumption details in a previous handshake. Since it is
common for IoT devices to transmit periodic messages to a server, this 0-RTT protocol can help in
reducing bandwidth overhead. Unfortunately, the sub-protocol has been designed for the Web and is
susceptible to replay attacks. In our previous work, we adapted the 0-RTT protocol to strengthen it
against replay attacks, while also reducing bandwidth overhead, thus making it more suitable for IoT
applications. However, we did not include a formal security analysis of the protocol. In this work,
we address this and provide a formal security analysis using OFMC. Further, we have included more
accurate estimates on its performance, as well as making minor adjustments to the protocol itself to
reduce implementation ambiguity and improve resilience.

Keywords: network; security; protocol; formal verification

1. Introduction

There are many examples of well-established communication protocols that are able to
satisfy contextually-defined requirements and are in use in modern technology. Arguably
the most well-known example is the TLS protocol [1]. This protocol is widely used in
today’s Internet, although originally designed for the Web. Recently, this protocol has been
gaining traction in the IoT domain, as well. To better suit the heterogeneous needs present
in this domain, adaptions and new extensions of the TLS protocol are needed, specifically
to enable extremely lightweight devices to partake in TLS connections, as well.

While securely browsing the Web, it is not unusual for a TLS handshake to require
between 1 and 4 KB of traffic. For consumer devices with browsers, this is often not an
issue, but it is a lot of traffic overhead for lightweight devices running on battery power,
where powering a wireless radio is very costly. Therefore, there is a need to reduce this
handshake overhead as much as possible. To reduce bandwidth overhead, as well as latency,
TLS 1.3 features a new zero round-trip time (0-RTT) session resumption protocol capable
of transmitting application data already in its first flight of messages. This allows for the
quick reopening of a session without having to go through an expensive full handshake
again. Unfortunately, this resumption protocol is susceptible to replay attacks, a design
decision deemed acceptable by the TLS committee since web connections usually start an
HTTP GET request, which is idempotent. For IoT applications, however, this assumption
does not hold. For example, consider a temperature sensor that periodically reports its

Sensors 2021, 21, 6524. https://doi.org/10.3390/s21196524 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-8757-2831
https://orcid.org/0000-0002-9871-0013
https://orcid.org/0000-0001-9575-2990
https://doi.org/10.3390/s21196524
https://doi.org/10.3390/s21196524
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21196524
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21196524?type=check_update&version=2

Sensors 2021, 21, 6524 2 of 21

readings to a server. This is our primary motivation for extending the 0-RTT protocol with
an IoT-friendly alternative.

As a secondary goal, we aim to further reduce traffic overhead of the resumption
handshake. The reason for this is that the financial costs of sending TLS handshakes
for every periodic IoT transmission could increase rapidly. For example, it is expected
that many network providers for 5G and Low-Power Wide Area Networks (LPWAN)
will charge their users based on data usage [2–4]. Additionally, the transmission cost of
setting up a secure connection should be within reasonable proportions to the size of the
payload itself. If it is tens of times higher, users might choose not to use secure channels, or
alternatively implement their own cryptographic protocols, with associated risks.

The standard TLS protocol is designed with the assumption in mind that servers do
not keep state on a client in between sessions. This is justifiable for the Web, where the set of
potential clients is unbounded and it is often hard to predict if a client will resume a session
at all. However, for many IoT systems, it is reasonable to assume that the set of clients
is fairly static and known a priori, or otherwise traceable through a key infrastructure.
Thus, keeping state on these clients in between sessions is a lot easier than for the Web,
and having state information at the ready can aid in further reducing handshake overhead.
TLS 1.3 does not offer any such mechanism, leaving this as a gap that can be filled by
IoT-friendly extensions.

In previous work, we introduced rTLS [5], a TLS extension that can authenticate two
endpoints and set up a secure connection with minimal additional overhead, given that
the client and server have initiated a session in the past. We described how the extension
changes the 0-RTT session resumption protocol to reduce overhead compared to the
standard protocol, while adding new security features including replay protection, forward
secrecy, and break-in protection. We built the protocol on the assumption that servers can
store state on clients, with the IoT in mind. Additionally, we provided equations on the
lower bound for traffic overhead of any TLS resumption protocol, as well as our proposed
extension, and compared it to overhead observed from the OpenSSL [6] implementation of
TLS 1.3. We also provided estimations for storage overhead for both client and server.

In this work, we extend upon the original work on multiple points. The first and
main extension point is the addition of a formal analysis of protocol security using the
Open-source Fixed-point Model Checker (OFMC) [7], including the development of a
new intermediate specification language to help with this verification. To this end, the
original text covering security analysis has been completely revised and is included in
a new separate section, Section 4. Other points include the addition of more accurate
performance and storage overhead estimates, based on better observations and a better
understanding of TLS implementations. The protocol itself has also received some minor
updates relating mainly to which data is stored between sessions. Further, we have made
minor improvements to the presentation of the protocol design section.

The remainder of this paper is organized as follows: In Section 2, we briefly discuss
the foundations necessary to understand our proposed extension. We then explain our
extension in detail in Section 3. After that, we provide a formal analysis of several secu-
rity properties in Section 4. Then, we evaluate the storage and transmission overhead
in Section 5, after which we discuss related work in Section 6. Finally, we conclude in
Section 7.

2. Preliminaries

In this section, we briefly discuss the essentials needed to understand the concepts
upon which our proposed solution is built. First, we summarize the TLS 1.3 protocol, after
which we discuss the Double Ratchet algorithm and Key Derivation Function (KDF)-chains.
Both of these are described in more detail in the the Signal documentation pages [8].

Sensors 2021, 21, 6524 3 of 21

2.1. TLS 1.3

The TLS 1.3 protocol [1] establishes a secure communication channel (a session)
between a client (the initiator) and a server. The most common use establishes one-way
authentication; only the server is authenticated, using a key distribution method, such as
certificate authorities.

In the most typical scenario, one-way authentication is provided, that is, the server
authenticates itself to the client, building on the certificate authority paradigm for key
distribution. The protocol also supports session resumption, allowing users to quickly
renegotiate a session in fewer round-trips, leveraging state data from past sessions between
those two users. In this section, we only briefly discuss necessary elements of the protocol.
For a more in-depth discussion, we refer to the standard [1].

In order to speed up session negotiation, TLS 1.3 provides several improvements over
its predecessor, TLS 1.2 [9]. One of the major improvement points is the introduction of
0 Round-Trip Time session resumption, or 0-RTT. The defining feature of 0-RTT resumption
is that application data can already be transmitted to the server in the first message sent by
the client. The standard refers to this as early data. The standard specification comes with
a caveat: early data must be idempotent, that is, it should result in a state change on the
server. This is because 0-RTT handshakes are susceptible to replay attacks.

The 0-RTT protocol is set up as follows: After the initial (non-resumption) handshake,
0-RTT key data is transmitted to the client in a NewSessionTicket message. The message
contains a ticket, as well as other data later needed by the server to continue a session.
When the client later initiates a session resumption, it will send this ticket to the server as
part of the first message, enabling the server to continue the session without needing a full
TLS handshake. Note that, while the standard describes a structure for NewSessionTicket
messages, it does not not prescribe a specific structure for the tickets which these encap-
sulate, essentially leaving room for a variety of implementations from, e.g., databases
with lookup keys to self-encrypted and authenticated messages. In this work, we assume
the mechanism first introduced in RFC 5077 [10], a solution optimized for the Web, and
which requires no server-side state variables on closed sessions. This method has already
seen use in TLS 1.2 and is supported by many TLS libraries, such as OpenSSL [6] and
WolfSSL [11]. With this approach, the ticket contains all state variables needed by the server
and is encrypted with a key known only to the server. From the client’s perspective, it
receives an opaque blob of encrypted data. When the client initiates session resumption, it
will send over this ticket, which can then be decrypted by the server, enabling it to restore
the session state.

2.2. Double Ratchet Algorithm

The Double Ratchet Algorithm [8] is a cryptographic protocol enabling highly secure,
asymmetric message exchange between multiple parties. The protocol was originally
developed for Signal [12] but is now also used in the popular messaging app WhatsApp [13].
It has received significant cryptographic attention and has been formally verified [14].

At the heart of this protocol lies a KDF-chain. This is a KDF function that can be
iteratively applied to its own output, creating a feedback loop where part of the output
of each iteration is fed back into the function as input for the next iteration, while also
providing key material for encrypting messages. This construction is commonly referred to
as a ratchet because of the one-way nature of the KDF function; new keys can be generated
constantly, but one cannot reverse the process to produce old keys. Because of this, when
used correctly ratchets are resilient against replay attacks and can provide forward secrecy.

A double ratchet is a combination of multiple ratchet-like constructions. Firstly, it
contains one “outer” ratchet, and secondly one or more “inner” ratchets. These ratchets
work together to provide stronger security properties. The outer ratchet receives periodic
(e.g., every 10 messages) external entropy from a Diffie-Hellman (DH) handshake as part of
its input. Whenever this outer ratchet is spun (i.e., its KDF function is invoked), its output
includes new input keys for the inner ratchets. These inner ratchets are reset completely and

Sensors 2021, 21, 6524 4 of 21

seeded with the new input keys. This provides post-compromise, or break-in, protection.
One can also spin just one of the inner ratchets to produce keys that can be used to encrypt
or decrypt messages. The outer ratchet is also commonly referred to as the DH ratchet,
and the inner ratchets are often called symmetric ratchets (because their input keys are
symmetric). Figure 1 illustrates the ratchet process. As can be seen in the figure, with
the progression of time, multiple symmetric ratchets may be instantiated in succession
(or, in other words, the same inner ratchet is reset whenever the outer ratchet is spun).
The first inner ratchet, producing keys K1, K2, and K3 received entropy from the first DH
handshake (this is visualized by a yellow color). When the outer ratchet is spun a second
time, the inner ratchet will be reset and receive fresh entropy from the outer ratchet, which
we emphasize with a green color, to indicate that the inner ratchets have different entropy.

DH

Sym.

K1 K2 K3

Sym.

K4 K5 K6

DH secret 1 DH secret 2

time

outer ratchet

inner ratchet

Figure 1. The double ratchet process and structure. Rectangles indicate initial states, circles indicate
“spins” of the ratchets, and colors indicate the flow of entropy from a DH exchange. The outer ratchet
is depicted on the bottom, with the inner ratchet above it.

In the standard Double Ratchet Algorithm, both parties maintain one DH ratchet and
two symmetric ratchets, respectively, for outgoing incoming messages. In our work, we
use only one symmetric ratchet, as only the client will ever initiate a connection, and, thus,
the client will only need a ratchet for sending, while the server only needs one for receiving.
For more details on the double ratchet algorithm, we refer the reader to Reference [8].

3. Ratchet TLS (rTLS)

In this section, we specify our proposed extension, ratchet TLS (rTLS). Note that
we have designed the specification with the following design goals in mind: firstly, to
maximize the use of existing extensions and utilities in the TLS suite; secondly, to require
only minimal changes to those parts that are changed; thirdly to minimize bandwidth
overhead; and, finally, to provide stronger 0-RTT security properties.

Our extension relies on a Symmetric Ratchet to generate the encryption keys for early
data encryption in session resumption. Further, it builds on standard TLS extensions to
provide an (outer) DH ratchet, providing forward secrecy and break-in protection. We
can elegantly transmit the data relevant to our new extension as a Pre-Shared Key (PSK),
and can signal support for rTLS by making use of the psk_key_exchange_modes extension
specified in RFC 8446 [1]. As the following sub-sections will show, the changes necessary
to the TLS protocol to achieve this are kept to a minimum.

We will first discuss the differences between standard TLS handshakes and ratchet-
mode handshakes. First, we will discuss the changes to the initial handshake in Section 3.1,
after which we look at the differences for the resumption handshake in Section 3.2. Finally,
we specify the protocol setup and operation in detail in Section 3.3.

3.1. Initial Handshake

Figure 2a shows the communication pattern of the initial handshake of a typical rTLS-
enabled TLS sessions. For ease of comparison with the RFC [1], we utilize the same syntax
and have adopted the common extensions depicted in the standard. The communication

Sensors 2021, 21, 6524 5 of 21

pattern of this handshake looks identical to a standard TLS handshake. This is because no
new extensions are added. Rather, we further extend the existing PSK-related extensions.
In the figure, the extensions that are affected by rTLS are denoted in blue.

Client Server
ClientHello

+key_share

+psk_key_exchange_modes

ServerHello

+key_share

{EncryptedExtensions}

{CertificateRequest*}

{Certificate*}

{CertificateVerify*}

{Finished}

[Application Data*]

{Certificate*}

{CertificateVerify*}

{Finished}

[NewSessionTicket]

[Application Data][Application Data]

(a) The communication pattern of the initial
handshake.

Client Server
ClientHello

+early_data

+key_share*

+psk_key_exchange_modes

+pre_shared_key

(Application Data)

ServerHello

+pre_shared_key

+key_share*

{EncryptedExtensions}

+early_data*

{Finished}

[Application Data*]

(EndOfEarlyData)

{Finished}

[Application Data][Application Data]

(b) The communication pattern of the re-
sumption handshake.

Figure 2. (a,b) The initial resumption handshake communication patterns, respectively. + denotes an extension, and
* denotes an optional or situational component, while {} and [] denote encryption with a derivation of the handshake or
application secret, respectively. Modifications from the original handshakes are printed in blue.

In the first flight of messages, the psk_key_exchange_modes extension is included by
the client to tell the server that it wants to obtain a session ticket. The client and server must
agree on a KDF and which ciphers to use for resumption. In principle, any secure KDF and
cipher can be used; however, to keep the number of protocol changes to a minimum, we
reuse the ciphers included in the cipher-suite, agreed upon by both parties through the
TLS handshake. This way, we can ensure that both client and server support the chosen
ciphers. Additionally, this makes reasoning about the protocol easier because we only have
to consider one type of KDF. Note that the agreement on which cipher-suite to use is only
finalized after the server has sent its ServerHello message. The secret key derived from
the DH handshake conducted through the key_share extension is used in the derivation of
all secrets used in TLS, including the PSK resumption secret. Thus, whenever a key_share
extension is part of a handshake, a fresh entropy source is introduced into the key schedule.
The psk_key_exchange_modes extension consists of a list of a byte-sized enumerated type.
This type indicates the PSK mode to use. Currently, TLS supports value 0 for a static
PSK and 1 for an (EC)DHE established PSK. We extend this by adding another value
indicating a PSK with key ratcheting. This list of PSK modes advertises which types the
client supports to the server.

After finalizing the initial handshake, the server sends a NewSessionTicket to the
client. The specification explicitly allows for sending multiple tickets in one session,
although this is not necessary, since session resumption by itself can add fresh entropy
when needed (through a DH handshake), thereby introducing freshness into resumption
tickets at a later time. All fields specified in the TLS specification for the NewSessionTicket
structure are listed in Table 1.

Since the specification enables the ticket field to carry opaque binary data, we specify it
to include a 4-byte “connection identifier” that the server can later use to uniquely identify
the session so that it may access the locally stored state for that session. Note that it does
not include a shared resumption key. The standard defines the resumption key as being
derived from the ticket nonce and TLS master secret. Further, we include a fresh DH public
key generated by the server, which the client will use to initialize its DH ratchet for the first

Sensors 2021, 21, 6524 6 of 21

resumption. In later resumptions, DH parameters can be shared through the key_share
extensions; however, for the very first resumption, we have to make an exception since
the client needs to be able to initialize the ratchet. The extensions field should include
the early_data extension, which tells the client that this PSK can be used to transmit
early data.

Table 1. Layout of the NewSessionTicket structure.

Type Field Name Description

uint_32 ticket_lifetime ticket lifetime in seconds
uint_32 ticket_age_add used to obscure ticket age
opaque ticket_nonce (max. 255 bytes) nonce
opaque ticket (max. 232 bytes) ticket itself

Extension extensions (max. 232 bytes) extensions

3.2. Session Resumption

Figure 2b shows the resumption handshake communication pattern. Again, it looks
indistinguishable from a standard TLS 0-RTT resumption handshake, but the elements
noted in blue text indicate that they deviate in usage or content in rTLS.

Firstly, the client can optionally include a key_share extension. This is not necessary
for every resumption handshake, and the exact frequency with which these should be
included depends on the desired granularity of break-in resilience; if it is included in every
handshake, then break-in recovery occurs with every resumption, while including it only
every n resumption handshakes will imply break-in recovery every n resumptions and so
on. We refer to the frequency with which n is included as the DH exchange period. If the
server receives a key_share from the client, it will reply with a key_share of its own, to
complete the DH handshake.

Secondly, the client includes a psk_key_exchange_modes extension indicating which
PSK mode is used for the pre_shared_key field. This should be set to the enumerated type
value representing rTLS.

The pre_shared_key field contains the connection identifier, which the server can
identify this session, as well as the current ratchet index used by the client. Based on this
index, the server can determine if it missed any previous resumption attempts and spin
its ratchet enough times to catch up and ensure the encryption keys are synchronized
with the client. The pre_shared_key contains a list of PskIdentity structures, as well as a
list of PskBinderEntry structures. Each entry in the PskIdentity consists of an identity
value and a obfuscated_ticket_age value. We do not make any changes to the ticket
age, and refer to the standard for details on how to derive the obfuscated ticket age. The
identify field is defined as opaque binary data, which allows us to use it to transmit
the 4-byte connection ID that was transmitted by the server in the initial handshake, as
well as a 1-byte ratchet index representing the current index (after having derived the
latest resumption master secret) of the symmetric KDF-chain. The PskBinderEntry list is a
list of Hash-Based Message Authentication Code (HMAC) values which authenticate the
handshake from the ClientHello up to (and including) the list of PSKIdentity entries.

The client spins its symmetric ratchet whenever it initiates a resumption handshake,
thereby ensuring that the resumption master secret changes all the time. As described in
the standard, an early traffic is derived from the resumption master secret, which, in turn, is
used as an encryption key for the early data. The server can decrypt this early data once it
has received a ClientHello with the necessary extensions for ratchet-mode resumption. It
is then able to access the ratchet state for the given connection ID and spin this ratchet until
it is equal to the received ratchet index, thereby obtaining the keys necessary to decrypt the
early data.

When a DH handshake occurs during the resumption handshake (i.e., a key_share
extension is included by both parties), the shared DH secret is used to derive all subsequent

Sensors 2021, 21, 6524 7 of 21

secrets for a TLS session as specified in the key schedule [1]. The TLS key schedule is
included in Figure 3, with rTLS additions marked in red. This figure is an adaption of the
one included in RFC 8446 [1]; for details on the key schedule itself, we refer the reader
to the RFC. If a resumption secret already exists (e.g., because this is not the first session
resumption), then the derivation will depend on both the existing resumption secret and
the DH shared secret. This produces a new master secret, which (as per the key schedule)
eventually generates a new resumption master secret, as can be seen by following the
arrows in Figure 3. Whenever a DH handshake occurs, the ratchet index must be reset to
0, as the inner ratchets will be completely reset. Additionally, this makes it harder for a
Man In The Middle (MITM) adversary to replace the client’s shared_key field with its own
parameters, as it will also need to know the existing resumption secret, implying it would
need to have access to either client or server already. Note that, when no DH handshake is
performed, the ratchet Root Key is not updated at all. Instead, the Chain key feeds into
itself (a ratchet step) and into the Early Secret.

0

Early Secret

Binder Key

Client Early Traffic Secret

Early Exporter Master Secret

Handshake Secret

Client Handshake Traffic Secret

Server Handshake Traffic Secret

Master Secret0

Client Application Traffic Secret

Server Application Traffic Secret

Exporter Master Secret

Resumption Master Secret

Chain KeyRoot Key

Res. Master Secret

(EC)DHE

Figure 3. The rTLS key schedule. Red indicates added KDF instances. Blue indicates a default TLS
HKDF instance. Grey diamonds indicate applications of the KDF function to produce a key.

Sensors 2021, 21, 6524 8 of 21

Since we expect that, for virtually every scenario, one will want to reset the ratchets
well before 255 communication attempts have been made, we only reserve 1 byte for the
ratchet index. Additionally, when the ratchet index hits 255, we require both parties to
delete their PSK and negotiate a new PSK with a standard handshake.

3.3. Double Ratchet Setup and Operation

Next, we summarize the extra steps needed for both the initial and resumption
handshakes in a step-by-step fashion.

3.3.1. Initial Handshake

The initial handshake is largely unmodified, but some special steps have to be taken
by both the client and the server.

1. ID generation: The server generates a globally unique connection ID. This ID is
transmitted to the client in the NewSessionTicket, together with a DH public key
that the Client can use to initialize future resumption handshakes.

2. Symmetric ratchet initialization: The client and server initialize the ratchet index
variable to 0. The symmetric ratchet root key is the resumption master secret.

3. Persistent state storage: Both client and server store their state variables for antici-
pated session resumptions.

3.3.2. Resumption

Below we describe the extra steps needed for a typical session resumption. A DH
exchange may take place, but we do not consider that as an extra step—the TLS standard
already accommodates for this.

Client

1. Ratchet step: The client ratchets its symmetric ratchet before the resumption master
secret is used to derive any other secret. Thus, the early-data secret is derived from
the ratcheted master secret.

2. PSK exchange: During the handshake, the client sends its ratchet index and connec-
tion ID to the server, as part of the pre_shared_key. If a DH exchange happens, the
ClientHello includes a key_share structure, as well.

Server

1. Access state: The server receives a 0-RTT resumption, and after having verified the
pre_shared_key’s HMAC field, finds the relevant state variables using the received
connection ID as a key (e.g., in a hash map).

2. Replay condition The server ensures that is < ic, where is and ic are, respectively, the
server received client ratchet indices for this connection.

3. Ratchet step: The server spins the symmetric ratchet ic − is times, where ic is the
received ratchet index in pre_shared_key, and is its own ratchet index. The early
data encryption key is derived from the new state of the sym. ratchet.

Both

1. Reset ratchet index: If a DH exchange was performed during the resumption hand-
shake, then the client and server reset their ratchet index to 0.

2. Persistent state storage: Both the client and server store their state variables for future
session resumptions.

3.4. Ratchet State Variables

This extension expects both the client and server to maintain some state for each
connection. This state consists of the following data:

1. Mapping: a connection ID→ ratchet mapping, to identify which ratchet belongs to
which connection. We set the connection ID to be 4 bytes in size as an initial estimate.
It can be increased if necessary.

Sensors 2021, 21, 6524 9 of 21

2. Ratchet Index: To indicate the number of ratchet steps that occurred since the last
DH exchange (1 byte).

3. Private DH key: Current private DH key, used to compute a DH secret from which a
common root key can be derived (32 bytes).

4. Remote public DH key: Last received remote public DH key for deriving aforemen-
tioned secret (32 bytes). Additionally, the Client and Server are expected to keep track
of the Resumption Master Secret. We do not list it with the above state variables
as this is something that already comes with standard TLS, thus not being unique
to rTLS.

4. Security Evaluation

In this section, we discuss and analyze the security properties of the rTLS protocol
extension. We formally define the intruder model, and then present a formal model of the
rTLS protocol extension itself. Various security properties are automatically verified by the
OFMC software, thereby giving us high certainty that they hold for the protocol, as well.

4.1. Formal Verification

Now, we present a formalization and verification in OFMC [7], a tool for formal veri-
fication of security protocols. It uses a symbolic Dolev-Yao-style model of cryptography,
i.e., messages are represented in a term algebra where the algebraic properties of operators
are represented (e.g., the properties of exponentiation needed for Diffie-Hellman). It formal-
izes a state-transition system through multi-set rewriting rules, and the main technique is a
constraint-based representation of the intruder, dubbed the lazy intruder, which allow for
verification without bounding the number of steps that the intruder can perform. However,
the steps that the honest participants can perform needs to be bounded (or the tool will
not terminate, in general). This choice of formal analysis software is motivated by the
fact that most tools, such as ProVerif and Tamarin, run into problems with the ratchets
since in an unbounded number of sessions, this creates structures for which the usual
abstractions and bounding lemmata fail, but they do work in OFMC due to the bounds,
allowing us to express the ratchets without problems. There are several input languages for
OFMC, the native one being the AVISPA Intermediate Format IF [15] based on set-rewriting
(similar to the input language of Tamarin). This can be considered kind-of a “protocol
assembly language”, i.e., it is hard to write by hand. The high-level languages available
are Alice-and-Bob-style language AnB, but this language is too limited to express ratchets.
There is also the AVISPA [16] High-Level Protocol Specification Language HLPSL [17] and
its successor ASLan from the AVANTSSAR project [18]. Both languages would be suitable
for our purposes, but the updating of local states that we have to perform make them not
much more easy for the specification than IF, so we directly relied on IF for an initial formal
verification [19]. We have, however, inspired by this work, developed a more high-level
notation for protocols of this style and are currently working on a general compiler from
this notation to IF to benefit in similar projects from it. We will use this high-level notation
in the following presentation to explain our formal model.

4.1.1. Intruder Model

We define two roles, Client and Server. Each role can, in principle, be instantiated
arbitrarily often by any number of clients and servers. We need to limit this for OFMC to
two sessions, albeit symbolic ones, meaning that the name of the client and the server is a
variable where the intruder can determine who is playing. Thus we include at all kinds of
two-session scenarios, e.g., an honest Alice as client with the intruder as server in parallel
with a session between honest Alice and Bob as client and server. Note that the intruder
can play any of the roles under his real name, where he has access to appropriate initial key
material shared with a client or server; the payload messages exchanged in such a session
are of course not secret. To allow the intruder to participate as a “normal” agent is essential
to capture attacks where an intruder is, for instance, a dishonest server contacted by an

Sensors 2021, 21, 6524 10 of 21

honest Alice, and uses part of the messages from this session to attack another session, as
in the famous Needham-Schroeder PublicKey Protocol (NSPK) attack [20].

In the style of the Dolev-Yao intruder model, the intruder also controls the network,
i.e., every message an honest agent sends goes to the intruder, and every message an honest
agent receives comes from the intruder. The intruder can perform normal cryptographic
operations with keys he knows, just as any other agent.

The starting point is that a Client and Server have successfully established a secure
TLS 1.3 session in the past and, thus, share a resumption master secret; moreover, the Client
has obtained a session ticket containing a DH public key, as well as connection ID from
the Server.

4.1.2. Resumption Handshake Model

Next, we present a detailed model of the resumption handshake protocol. This is
effectively the standard TLS 1.3 0-RTT resumption protocol, with early data protected
through a rotating (ratcheted) key.

First, every session of an agent is characterized by a number of state variables that are
updated during the course of the session. These are shown in Table 2. Both share the same
resumption master secret (RES_MASTER_SECRET) and connection ID (CONN_ID). In OFMC,
we model this by a secret function resMasterSecret(C, S, CONN_ID) that, for a given client
name, servername, and connection ID, returns a unique strong key; the intruder is given
all keys where he is C or S. The root key RK is derived from RES_MASTER_SECRET. Note
that CONN_ID is simply a unique identifier.

Table 2. The initial state for both client and server.

Client State Server State
State Variable Initial State State Variable Initial State

RES_MASTER_SECRET from TLS RES_MASTER_SECRET from TLS
RK . . . RK . . .

CONN_ID from TLS CONN_ID from TLS
ServerDHsPub gX ClientDHsPub -

currPrivate - currPrivate X
ClientCKs - ServerCKr -
ClientNs 0 ServerNr 0

CHR - CHR -
SHR -

Step 0 Step 0

Both the Client and Server store the latest DH public key received from the other
side as ServerDHsPub and ClientDHsPub, respectively. They also store their own latest
DH private key currPrivate. Because the Client has received a DH public key from the
server during the first session in a NewSessionTicket, we assume that ServerDHsPub and
the Server’s currPrivate are initially populated. In OFMC, we model the initial private
key of the server again with a private function secret_exponent(S, CONN_ID) for the server
(known to the intruder whenever S = i).

Finally, the Client needs to store its sending chain and the server needs to store
its receiving chain. These consist of a chain key and a chain index, which are defined
as ClientCKs and ClientNs for the Client, and ServerCKs and ServerNs for the server.
However, these do not need to be initialized at the start. The Client will compute its private
key before transmitting the first resumption message.

Similar to the session bounding in OFMC, we also need to bound how many ratchet
turns each agent can make in each session. Again we have to limit ourselves to a quite low
bound of 2 repetitions, but this should cover all likely scenarios. As a modeling trick, we
just initialize both counters with 2, and, in each resumption, we decrease until it is 0.

Sensors 2021, 21, 6524 11 of 21

4.1.3. Step 1: ClientHello

Now, we use the state variables to construct a detailed description of an execution of
the 0-RTT protocol. Note that all steps come in two variants: with a new DH key exchange
and without. In the OFMC implementation, the client can choose which variant. We
describe only the variant in detail that does the DH key exchange, and we only mention
the difference when no DH key exchange is done.

If a DH key exchange is to be included in the handshake, then, the first action is that
the Client generates a new private key, as well as a shared DH key, together with the
Server’s DH public key. When the Client has computed this DH secret, it passes the key
into its inner ratchet, by applying the KDF function on the DH secret combined with a root
key RK, and, finally, obtains the ClientCKs:

new currPrivate
RK := bkdf(RK ,exp(ServerDHsPub ,currPrivate))
ClientCKs := kdf(RK)

where we use kd f and bkd f to model the corresponding key derivation functions.
Now, we can describe the initial message sent from a Client. First, it spins its ratchet

and increases ClientNs by one (i.e., actually in the OFMC model, decreases, if not yet zero).
The key generated through this is used as input material for the Early Secret in the TLS key
schedule. We focus only on the relevant parts of a resumption ClientHello message, specif-
ically, the early data itself (MOUT, TLS session ID, client randomness and the relevant resump-
tion parameters. The keys K1, the client_early_traffic_secret and K2, the binder_key
are derived from the Early traffic secret as can be seen in Figure 3. At this point, it is impor-
tant to note that since the Client can choose to include an optional key_share extension
(DH handshake) in the ClientHello, the inclusion of ClientDHsPub in the resumption hand-
shake is also optional. The early data is encrypted with client_early_traffic_secret.
Additionally, the plaintext data is integrity protected through a MAC with key binder_key.
Both keys are derived from the master key conform the TLS standard:

let MSG1=step0(ClientNs ,exp(g,currPrivate),CHR)
let K1=hkdf(ClientCKs ,MSG1)
let K2=hkdf(ClientCKs ,pair(exp(ServerDHsPub ,currPrivate),pair(

C,S)))
send(step1(scrypt(K2 ,MOUT),hmac(K1,MSG1),MSG1))

Here, step0 and step1 are message formats that represent how the cleartext data is
serialized (i.e., every agent, including the intruder, can compose and decompose such
messages without any keys). hkd f is another key-derivation function, pair stands for pure
string concatenation, and scrypt(k, m) stands for symmetric encryption of message m with
key k, and hmac(k, m) stands for a hash-mac with key k of message m.

When the Server receives a ClientHello with early data indication, it first has to spin
its inner ratchet to derive an early_secret identical to that of the Client. Included in this
step is the incrementing of ServerNr. The Server can then derive the keys necessary to
authenticate and decrypt the received early data. After this point, the Server proceeds
differently based on whether the key_share extension was included by the Client. If
the extension was not included, the Server continues using the current chain for future
resumptions and can simply continue the current handshake as usual. If the extension was
included, the Server will have to spin its DH ratchet, as well, which, in turn, leads to an
update of the Server’s receiving chain root key. Note that this new DH secret is not just
for future sessions and is already used in the remainder of this handshake as it normally
would be in a TLS session, as we explain in the next paragraph.

In the high-level notation, we have:

receive(step1(SM2 ,HM1 ,M1))
try step0(SN,ClientDHsPub ,CHR)==M1

Sensors 2021, 21, 6524 12 of 21

let DH = exp(ClientDHsPub ,currPrivate)
RK := bkdf(RK ,DH)
ServerCKr := kdf(RK)

let K1=hkdf(ServerCKr ,M1)
try HM1==hmac(K1 ,M1)

let K2=hkdf(ServerCKr ,pair(DH,pair(C,S)))
try MIN== dscrypt(K2 ,SM2)

Note that the try is used to describe operations that might fail, such as trying to
decrypt, parse, or check for equality. When it fails, the agent simply does aborts the
transaction and rolls back to the state before the transaction. In particular, the first try in
the above code snippet parses the received message M1 as the step0 format, extracting the
three components of the message. The next try is checking that the received hmac HM1 is
the same as constructing hmac(K1,M1), and the last try is trying to decrypt the message
SM2. Note that we assume here symmetric encryption with MACs that tells us if decryption
succeeded. Observe the contrast to the let x=t command, which simply means replacing
all further occurrences of x with t, and the x:=t command, which means that the state
variable x is set to t.

4.1.4. Step 2: ServerHello

Next, the Server will reply with a ServerHello message. If the Client included
a key_share extension, then the server will reply with its newly generated DH public
key from the previous step. Before the response can be sent, the Server has to com-
pute all the remaining keys from the TLS key schedule. This starts with computing the
handshake_secret. The KDF function for this secret takes two inputs, one being the hash
product of the previous phase in the key schedule, and another being fresh Input Key
Material (IKM). If a DH handshake occurred, then the resulting DH secret should be used
as IKM here. If no DH handshake occurred, the IKM is simply set to 0. The ServerHello
response itself includes a number of fields which are not relevant for our verification, so
we leave them out. We do include EncryptedExtensions (EE) as a representative message
payload and the contents of the Finished message type, which has a field verify_data,
containing an HMAC of the handshake context. This HMAC protects the integrity of
ServerDHsPub and Server_rand, as well; therefore, we add these to the encrypted payload,
while leaving other parts out to keep the model concise. We can do this, as the HMAC key is
directly derived from the server_handshake_traffic_secret. We include Server_rand,
as this is 32 bytes or randomness that is used for various cryptographic purposes and
acts as a nonce. Finally, the Server has the opportunity to already send application data
(App_Data) with its response.

Different parts of the transmission are encrypted with different keys derived from the
master secret conform the TLS standard. The remainder of the handshake, i.e., most of the
ServerHello message is encrypted with the server_handshake_traffic_secret. If the
Server chooses to include a response payload, then this optional response can already be
encrypted with the server_application_traffic_secret.

new currPrivate
new SHR
let DH = exp(ClientDHsPub ,DHs)
RK := bkdf(RK,DH)
ServerCKr := kdf(RK)

let K2=serverK(hkdf(DH ,pair(ServerCKr ,pair(CHR ,pair(C,S)))))
let MSG2=scrypt(K2 ,pair(exp(g,DHs),SHR))
let K1=serverK(hkdf(DH ,pair(ServerCKr ,pair(SHR ,pair(CHR ,pair(C

,S))))))

Sensors 2021, 21, 6524 13 of 21

let MSG1=scrypt(K1 ,MOUT)
send(step2(MSG1 ,MSG2 ,SHR ,exp(g,DHs)))

When the Client receives the Server’s ServerHello, it first has to continue with its
own execution of the TLS key schedule. If the Client initiated with a new DH public key
and, thus, a key_share extension, the server replied with a fresh DH public key in its own
key_share. This is then used by the Client as input for the handshake secret identically
to how the server processed the DH secret. With this, the Client can continue the TLS key
schedule until all keys are derived. Note that, for both the Server and Client, the newly
computed Resumption Master Secret is assigned to the inner chain’s root key, but not
necessarily included in the current chain; if no DH handshake was included, the inner
chain is not reset. This does not matter, as no new entropy was introduced during the
handshake either way. As is evident from the description of the operations of the rTLS
resumption process given in this section, the optional DH exchanges feed into the TLS
keyschedule and provide new entropy that gets propagated through to the inner chains
and as a result future executions of the key schedule.

receive(step2(M1 ,M2 ,SHR ,ExpgDHs))
let DH=exp(ExpgDHs ,currPrivate)

ServerDHsPub := ExpgDHs
RK :=bkdf(RK,DH)
ClientCKs :=kdf(RK)
ClientNs :=s(ClientNs)

let K2=serverK(hkdf(DH ,pair(ClientCKs ,pair(CHR ,pair(C,S)))))
try pair(ExpgDHs ,SHR)== dscrypt(K2,M2)

let K1=serverK(hkdf(DH ,pair(ClientCKs ,pair(SHR ,pair(CHR ,pair(C
,S))))))

try MIN== dscrypt(K1 ,M1)

4.1.5. Step 3: Finished

The Client finishes the 0-RTT handshake with an EndOfEarlyData message and a
Finished message. The EndOfEarlyData message is simply an indicator that the Client
has no more early data to transmit and that all future data will be encrypted with the
client_application_traffic_secret.

let TMP=pair(pair(C,S),pair(ExpgDHs ,pair(CHR ,SHR)))
let K3=clientK(hkdf(DH ,pair(ClientCKs ,TMP)))
send (scrypt(K3 ,MOUT))

4.1.6. Verification

We verify a number of security goals, the first of which is secrecy. We want the early
data, i.e., MOUT/MIN payloads, to be secret between Client and Server. The second security
goal we verify is injective agreement [21]. This means that, when an honest party B receives
a payload message apparently from A, then, either A is the intruder under his real name
(no authentication guarantees) or A indeed sent that payload message for B (and they
agree on all roles). Moreover, this is injective in the sense that B does not accept the same
payload more often than it was sent by A, so there is no replay.

Using OFMC, we verify the described properties to hold for the rTLS resumption
protocol. Due to an exponential increase of the search spaces with the number of sessions
and resumptions, we bounded the number of sessions to 2, and the number of resumptions
in each session also to 2. Note, however, that we have here symbolic sessions, i.e., they can
be arbitrarily instantiated, including with the intruder as a client or server. Moreover, in
each session and resumption, the client can decide to either perform a new DH key or not.
We also extensively tested the specification, namely that all expected steps could be taken,

Sensors 2021, 21, 6524 14 of 21

in particular that honest agents can communicate, and the intruder can play each of its
roles under his real name as a normal participant.

OFMC reported that no attacks were found in any runs which gives a high assurance
that the rTLS session resumption protocol provides secrecy and injective agreement: While
this is only proved for 2 sessions and with 2 resumptions each, it seems unlikely that further
sessions and resumptions would allow for additional attacks because of the symmetry of
all further repetitions.

Finally, we want to look at the so-called selfie attack [22]: this is an attack that works
on some pre-shared-key deployments of TLS 1.3, where a client C and server S use the
same pre-shared key psk(C, S) = psk(S, C) in both directions of communication, allowing
for reflection attacks. Similarly, if we allow in our rTLS model:

RES_MASTER_SECRET(C, S, CONN_ID) = RES_MASTER_SECRET(S, C, CONN_ID),

then we still do not get a selfie-attack because the setup of the Diffie-Hellman ratchet is
different for client and server role. This is, however, looking only at the initial state of the
resumption handshake rTLS, not at the preceding steps of the original TLS. This means that,
if the setup of TLS is such that it does not allow for a selfie attack, then, by construction,
rTLS cannot induce a selfie attack either.

5. Performance Evaluation

In this section, we present numeric estimates of the performance of rTLS, with as
performance indicators traffic overhead and storage overhead. The numerical data is based
on the estimated data structure size of the state variables and TLS message structures as
they are defined in the TLS standard.

5.1. Traffic Overhead Estimation
5.1.1. Initial Handshake

The rTLS initial handshake does not differ in traffic overhead from a normal TLS
handshake, since the only change defines an extra value for an enumerated field, which
is (psk_key_exchange_modes). After finishing the handshake, the server transmits a
NewSessionTicket message to the client. While technically not part of the initial hand-
shake, we consider it as such in this context; without it, resumption would not be possible.
The structure and size of a minimal NewSessionTicket message are displayed in Table 3.
Here, |X| indicates the size in bytes of element X. The client does not need to send any
reply to this message. The ticket field itself has to contain the connection identifier, as well
as a public DH key that the client can use for the first resumption; so, we set the size of
the ticket field to 4 + 32 bytes, and we include a 32 byte nonce, as well. We do not need to
explicitly include a ratchet index here, as it can be initialized to 0 by both parties. Therefore,
compared to no session resumption at all, minimal overhead is 14 + 36 + 32 = 72 bytes.
Compared to a session ticket in standard TLS 1.3, which, in OpenSSL, is typically around
528 bytes, this is a significant improvement of 86 percent.

5.1.2. Resumption Handshake

It is important to reduce traffic overhead for the resumption handshake as much
as possible, since this will typically be performed much more often than an initial hand-
shake. The minimal cost for any resumption handshake consists of boilerplate parts of the
handshake that cannot be eliminated without rigorous change to the TLS protocol. In the
following, we write client and server as c and s, respectively. We map symbols to every
message element in the resumption handshake in Table 4, where x can be either c or s to
indicate the message sender.

Sensors 2021, 21, 6524 15 of 21

Table 3. The message structure and size of a minimal NewSessionTicket message. Here, |T| refers
to the ticket length, and |N| to the size of the nonce.

Size (bytes) Field Name

4 ticket_lifetime
4 ticket_age_add;
|N| ticket_nonce
|T| ticket
2 extensions length
4 Early data extension

Total 14 + |T|+ |N|

Table 4. Symbol definitions for message elements, where x ∈ {c, s} refers to the message sender
(client resp. server).

Symbol Description

Hx (Client or Server) Hello
edx early_data
Dx Application data
pex psk_key_exchange_modes
pskx pre_shared_key
ksx key_share
ee EncryptedExtensions

eed EndOfEarlyData
f Finished
R Record Layer headers

We define the minimal traffic overhead cost C of any 0-RTT resumption handshake as:

C = 3|R|+ |Hc|+ |Hs|+ |edc|+ |pex|+ |ee|+ 2| f |+ |eed|. (1)

This cost is not a fixed number of bytes but, rather, is not negotiable; any PSK extension
will have to include these elements, and their size is independent of the actual PSK mode.
The total cost of a minimal resumption handshake is then C + |pskc|+ |psks|. Note that
ksc and kss are not required for a minimal handshake. Conforming to the standard, psks is
defined as a 2-byte value representing an identity index in pskc and is wrapped in a 4-byte
TLS extension structure. However, ksc is more complex, and we write the full layout in
Table 5. Note that the term “identifier” here refers in the standard to the ticket field itself,
but we use it to transmit a concatenation of the connection identifier and ratchet index.
Because we only send one identity and binder, The size of pskc becomes |pskc| = 15+ α+ β,
where α denotes the size of the identity field, and β the size of the binder HMAC. The
identifier field PSKID can be written as PSKID = ID||i, where ID is the identifier received
in the session ticket during the initial handshake, and i is the symmetric KDF chain index.
Now, |PSKID| = |ID| + 1 = 5. The exact value of β depends on the chosen HMAC
function, which is usually either Secure Hash Algorithm (SHA)-256 (32 bytes) or SHA-384
(48 bytes). The complete traffic cost c1 for session resumption can, thus, be written as
c = |psks|+ |pskc|+ C = 26 + β + C, and it is 58 + C if SHA-256 is chosen.

When a DH exchange is included, we will have to add the size of the ksc and kss
elements. The size of ksc is of variable length depending on the number of supported
DH groups the client advertises. Each key share entry takes up 4 + l bytes, where l is the
size of the supported group. The smallest supported group is X25519 with a 32-byte field,
while the largest is P-521 with 132 bytes. ksc also reserves 2 bytes to denote the number of
listed groups. If we only transmit one group, the size is, therefore, ksc = 6 + l. The server
replies with a single key share entry; thus, kss = 4 + l. As with any TLS extension, both kss

Sensors 2021, 21, 6524 16 of 21

and ksc are wrapped in an extension structure with a 4-byte type field. The total cost of a
resumption with DH exchange is, thus, c2 = c1 + |ksc|+ |kss| = c1 + 18 + 2l.

Table 5. Layout of the pre_shared_key structure and its sub-structures, when sent by a client.

pre_shared_key
Size Field Name Description

2 extension_type Extension type
2 extension_data Size of the extension
2 PSKIdentities_length Nr. of PSK identities

identities PSKIdentity values
2 binders_length Nr. of PSK binders

binders PSKBinder values

PSKIdentity
2 identity length Size of identity field
α identity value of this identity
4 obfuscated_ticket_age ticket age (see Reference [1])

PSKBinder
1 binder length size of the binder value
β binder HMAC value (see Reference [1])

If we take into account a key_share every n messages, we arrive at the final equation
for the total average cost ct:

ct =

{
26 + β + C for n = 0
26 + β + 18+2l

n + C for n > 0

}
, (2)

where β is the hash digest size, l the elliptic curve coordinate length, n the DH handshake
rate, and C the minimal cost. Figure 4 shows the average overhead (i.e., without C) versus
the key exchange period, for various common cipher suites.

0 5 10 15 20 25 30 35 40 45
Diffie-Hellman key exchange period

50

100

150

200

250

300

350

tra
ns

m
iss

io
n

ov
er

he
ad

 (b
yt

es
) P-512/SHA256

P-256/SHA256
X25519/SHA256
P-512/SHA384
P-256/SHA384
X25519/SHA384

Figure 4. Average transmission overhead versus DH key exchange period.

Giving an exact value for C is somewhat difficult: multiple fields in Hc, Hs, and ee can
vary a lot in length, depending on the supported cipher suites and provided extensions
among other things. Instead, we count the minimum size for these fields as they are defined
in the standard, thereby giving a lower bound for C. Note that, in practice, a handshake
with so few extensions is not useful for overhead minimization, as more round-trips will
be needed to establish necessary parameters, such as the cipher suite. Moreover, it leaves
out extensions meant to increase overall security. Minimal sizes, including all headers, for

Sensors 2021, 21, 6524 17 of 21

Hc and Hs are 50 and 48 bytes, respectively. edc and eed both require 2 and 4 bytes. pex is,
at least, 3 + m bytes in size, where m is the number of supported modes (at least 1). ee is,
at least, 6 bytes in size but may vary a lot, depending on the supported extensions. The
length of f is determined by the chosen hash function. The record layer headers are 5 bytes
in size. With one PSK key exchange mode and the SHA-256 hash function, the total cost of
C is then, at least, 193 bytes. Therefore, the lower bound on transmission overhead of a
resumption handshake with our extension is 251 bytes without, or 333 bytes with a key
exchange. If we include several extensions for a more realistic minimal handshake, we can
expect the cost to be between 400 and 600 bytes.

5.2. Storage Overhead Estimation

Both the client and server need to store some state variables in between sessions. This
differs from the standard session resumption protocol where only the client stores the PSK.
The client needs to securely store the secret KDF key (depends on digest size), as well as its
connection ID (4 bytes) and the ratchet index (1 byte). Additionally, the client needs to keep
track of its current DH private key and the last received DH public key from the server,
the size of these depends on the chosen group. Thus, the client needs to store 101 bytes if
SHA-256 and X25519 are used.

The server needs to store the same amount of state, but for every client that it shares
a ratchet for resumption with. This can be done through, e.g., a hash map using the
connection ID as a key, and a structure containing the other state variables as value. If state
is being kept for the maximum amount of clients of 232 (with a 4-byte connection ID), this
amounts to roughly 433 GB worth of data. When there is a large set of clients connecting
to the server and, thus, a large amount of state variables, one should be mindful of access
times and pick data structures that minimize access time, such as hash maps, to provide
some protection against denial of service attacks.

5.3. Overhead Comparison with TLS 1.3

Based on measurements performed on OpenSSL [6], a standard PSK in TLS 1.3 adds
571 and 603 bytes of overhead, respectively, when SHA-256 SHA-384 is used. In Table 6,
we compare the overhead of rTLS for various key exchange periods n to that of a standard
TLS 1.3 PSK. We use a higher value of 408 for C, obtained from handshake measurements
in OpenSSL, which includes a minimal number of extensions by default, and acts as
an indicative value that represents a lightweight use case. In this table, the values are
computed using the smallest allowed hash function (SHA-256) and curve (X25519). As
can be seen, a rTLS PSK requires only roughly 11% of the traffic overhead compared to
a standard TLS PSK and can be expected to reduce the total amount of transmitted data
roughly by half.

Table 6. A comparison between rTLS session resumption and OpenSSL standard session resumption.

Indicative Lightweight Use (C = 408)
Scenario Avg. Overhead (b) Avg. Total Size (b)

rTLS, n = 0 58 466
rTLS, n = 1 108 516
rTLS, n = 10 63 471

Standard TLS 1.3 571 979

6. Related Work

There exist ample communication security protocols aimed at embedded devices [23].
We look at the TLS protocol and its variants, specifically those that are relevant to the usage
of this protocol in embedded environments. We also briefly look at QUIC.

Initially developed for Web security, TLS is now gaining traction in the IoT world,
partly due to widely available libraries and broad support in software relevant to IoT. For

Sensors 2021, 21, 6524 18 of 21

example, many Message Queuing Telemetry Transport (MQTT) brokers support TLS as a
security layer.

While this is fine for most devices (mostly upwards from class 1 in the IETF classifica-
tion [24]), it becomes problematic when working with class 0 or low-end class 1 devices, as
they do not possess the capability to maintain TLS connections or can simply not afford
it due to resource constraints (e.g., due to a power budget). To address this, several opti-
mizations have been proposed over the years. One of the first was Sizzle [25], which is an
implementation of the Secure Socket Layer (SSL) protocol, capable of running on extremely
constrained devices with only tens of kilobytes of memory. While the authors showed that
heavyweight cryptographic operations required for the protocol to function were certainly
possible on heavily constrained devices, they did not attempt to reduce the amount of
transmitted data.

Datagram Transport Layer Security (DTLS) [26] modifies the TLS protocol to work
over User Datagram Protocol (UDP), while retaining most of the security guarantees
provided by TLS. This reduces the data overhead and latency somewhat. Recently, the
DTLS 1.3 draft [27] was approved by the IETF. This revision brings 0-RTT and other
TLS 1.3 improvements to DTLS. There exist multiple open-source implementations [28],
and several works exist detailing extremely lightweight implementations [29,30]. In these
works, lightweight mostly pertains to computational and memory cost, while transmission
overhead is either not addressed or addressed to a much lesser degree. Other approaches
have been taken, as well, such as Reference [31], compressing DTLS messages to fit into
6LowPAN frames. Recently, a performance comparison of TLS 1.3 and DTLS 1.3 on
lightweight IoT devices was published [32], showing that, while both TLS and DTLS 1.3
add suffer from larger overhead in terms of memory usage and transmission overhead,
these are within bounds for these protocols to be used on devices that can already run
the 1.2 version. Additionally, the authors state that there is room for optimizations in
software to further reduce the overhead. In Reference [33], a DTLS fast session resumption
mechanism is proposed, making use of free UDP ports on the server-side. However,
the proposed protocol does not address forward security and provides no analysis of its
security claims.

While DTLS has less bandwidth overhead than TLS, it is still not ideal for lightweight
scenarios with message proxies (e.g., brokers, such as in MQTT). To address this, the
recently standardized application-layer Object Security for Constrained RESTful Environ-
ments (OSCORE) protocol aims to enable selective encryption of parts of the Constrained
Application Protocol (CoAP) protocol. Gunnarsson et al. [34] show that this provides a
slight performance improvement over the default DTLS security option. Due to OSCORE’s
selective encryption approach, it can provide end-to-end encryption in situations where
messages are relayed through proxies, whereas TLS-based protocols have to setup separate
secure channels between each proxy. However, when no proxies are needed, TLS-based
protocols might offer better performance especially when 0-RTT is taken into account.

Several extensions for TLS have been proposed that also bring the potential to lower
message overhead. The TLS Cached Info specification [35] allows clients to store server cer-
tificates and certificate requests, making it possible to leave these out in future handshakes.
The TLS Raw Public Key extension [36] allows clients and servers to authenticate each
other through public keys, instead of X.509 certificates. This can significantly reduce the
handshake size. This method does require an out-of-band means of verifying public keys,
which might very well be possible in a controlled environment, such as a factory. Another
promising adaptation of TLS that might lower the size overhead of TLS significantly is the
Compact Transport Layer Security (CTLS) IETF draft [37]. In this draft, the authors pro-
pose optimizing the TLS protocol for size by eliminating redundancy where possible and
making aggressive use of space-optimization techniques, such as variable-length integers.
The result is isomorphic to TLS, but not interoperable.

Additionally, in our previous work [5], we introduced rTLS, a TLS 1.3 protocol exten-
sion that focuses specifically on the 0-RTT session resumption protocol, with the goal of

Sensors 2021, 21, 6524 19 of 21

making it more usable for the IoT. In our original work, we presented the protocol and
included numerical estimates on its performance but did not include a thorough analysis of
its security properties. In this work, we extended upon that and present a formal security
analysis, as well as some fixes to the protocol that were overlooked in the original work.
The rTLS extension is compatible with the aforementioned cTLS draft, as well as other TLS
extensions. For DTLS, it is very likely that some adjustments are necessary as the DTLS
resumption protocol is slightly different.

DTLS is also proposed as the default mechanism to secure connections in the QUIC
protocol, a network protocol building on UDP that provides advanced features, such as
multiplexing and authenticated encryption of its data by default.

Session resumption in TLS 1.3 has been subject to debate, as it is vulnerable to replay
attacks and provides no forward secrecy [1]. While, for a Web environment, there exists
some justification for these design choices, for an IoT environment where short conversa-
tions with short messages are the norm, this is less than ideal, as it effectively removes the
possibility to optimize overhead through use of the session resumption protocol. None of
the extensions discussed in this section address session resumption, which means that this
is an open issue we think has significant potential for minimizing protocol overhead, when
designed carefully.

At the time of writing, National Institute of Standards and Technology (NIST) is
hosting an ongoing competition for lightweight cryptographic primitives [38]. Many of
the candidates specifically target very short messages. Once the candidates have received
sufficient cryptanalytic attention, these can become valuable tools in future lightweight
communication protocols, as well as potentially helping protocols, such as TLS adapt to
constrained devices.

In Reference [39], Hall-Andersen et al. acknowledge the complexity of TLS and pro-
pose nQUIC as a lightweight, less complex alternative to QUIC’s default TLS configuration.
Their experiments show a significant reduction in bandwidth compared to TLS.

7. Conclusions

In this work, we extended upon an IoT-friendly and standard-compliant adaption
of the TLS 1.3 0-RTT session resumption protocol. We first argued that, in order to be
applicable to IoT, replay resistance is a necessary property, as lightweight sensor devices
are much more likely to transmit data that will change server state.

Building from the observation that, in IoT scenarios, the group of possible clients for a
server changes relatively slowly and is typically much smaller than possible clients for a
Web server, we argued that it is reasonable to require a server to keep some state variables
for each of its clients. We then took inspiration from the Double Ratchet algorithm to
design a 0-RTT resumption protocol that fits neatly into the existing message structure,
and makes use of existing functionality where possible. In our extension, the PSK utilizes
a ratchet construction, which provides replay protection, as well as forward secrecy and
break-in resilience to early data transmitted in a 0-RTT handshake. The introduction
of these properties in the 0-RTT sub-protocol is a step toward making TLS suitable for
IoT scenarios.

We estimated a lower bound of 193 bytes on traffic overhead for any 0-RTT resumption
protocol in TLS 1.3 and then showed that a resumption handshake with our protocol
would result in around 466–516 transmitted bytes, depending on the chosen DH key
exchange period. Compared to the standard session resumption transmission size of
roughly 979 bytes, this is a significant improvement.

Extending our previous work, the protocol received minor updates relating to what
state should be kept. Additionally, we improved the presentation of the protocol, including
a more detailed description of how the TLS key schedule is affected. These minor changes
are also propagated into the performance evaluation estimates, affecting mainly the storage
overhead estimates. We also added a new section detailing a formal security analysis of

Sensors 2021, 21, 6524 20 of 21

the protocol in the Dolev-Yao model. The results of this analysis give high assurance that
the protocol provides secrecy, as well as security against replay attacks.

In future work, we aim to further reduce the transmission overhead by exploring
different opportunities, such as replacing the original message structure for resumption
altogether, thereby reducing the fixed cost. Moreover, we are currently testing a proof-of-
concept implementation to support the overhead estimations with empirical results.

Author Contributions: Conceptualization, K.T.; Methodology, K.T. and X.F.; Validation, K.T. and
S.M.; Formal Analysis, S.M. and A.L.; Writing—original draft preparation, K.T. and S.M.; writing—
review and editing, K.T., S.M., A.L., X.F. and N.D.; supervision: X.F. and N.D. All authors have read
and agreed to the published version of the manuscript.

Funding: This is work was part of the Fog Computing for Robotics and Industrial Automation
(FORA) European Training Network (ETN) funded by the European Union’s Horizon 2020 research
and innovation program under the Marie Skłodowska-Curie grant agreement No 764785.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Rescorla, E. The Transport Layer Security (TLS) Protocol Version 1.3. Available online: https://rfc-editor.org/rfc/rfc8446.txt

(accessed on 9 August 2021).
2. AT&T. LTE-M and NB-IoT. Available online: https://www.business.att.com/products/lpwa.html (accessed on 9 August 2021).
3. Verizon. Verizon Thingspace. Available online: https://thingspace.verizon.com/services/connectivity.html (accessed on

9 August 2021).
4. Hologram. Hologram Pricing. Available online: https://hologram.io/pricing/ (accessed on 9 August 2021).
5. Tange, K.; Howard, D.; Shanahan, T.; Pepe, S.; Fafoutis, X.; Dragoni, N. rTLS: Lightweight TLS Session Resumption for

Constrained IoT Devices. In Proceedings of the 22nd International Conference on Information and Communications Security,
Copenhagen, Denmark, 24–27 August 2020; pp. 243–258. [CrossRef]

6. OpenSSL Software Foundation. OpenSSL. Available online: https://www.openssl.org (accessed on 9 August 2021).
7. Basin, D.A.; Mödersheim, S.; Viganò, L. OFMC: A symbolic model checker for security protocols. Int. J. Inf. Sec. 2005, 4, 181–208.

[CrossRef]
8. Perrin, T.; Marlinspike, M. The Double Ratchet Algorithm. Available online: https://www.signal.org/docs/specifications/

doubleratchet/doubleratchet.pdf (accessed on 9 August 2021).
9. Rescorla, E.; Dierks, T. The Transport Layer Security (TLS) Protocol Version 1.2. Available online: https://rfc-editor.org/rfc/rfc5

246.txt (accessed on 9 August 2021).
10. Salowey, J.; Zhou, H.; Eronen, P.; Tschofenig, H. Transport Layer Security (TLS) Session Resumption without Server-Side State.

Available online: https://rfc-editor.org/rfc/rfc4507.txt (accessed on 9 August 2021).
11. WolfSSL. WolfSSL Embedded SSL/TLS Library. Available online: https://www.wolfssl.com/ (accessed on 21 September 2021).
12. Systems, O. Signal. Available online: https://www.signal.org (accessed on 9 August 2021).
13. WhatsApp. WhatsApp Encryption Overview. Available online: https://www.whatsapp.com/security/WhatsApp-Security-

Whitepaper.pdf (accessed on 9 August 2021).
14. Cohn-Gordon, K.; Cremers, C.; Dowling, B.; Garratt, L.; Stebila, D. A Formal Security Analysis of the Signal Messaging Protocol.

In Proceedings of the 2017 IEEE European Symposium on Security and Privacy (EuroS&P), Paris, France, 26–28 April 2017;
pp. 451–466. [CrossRef]

15. Armando, A.; Basin, D.A.; Boichut, Y.; Chevalier, Y.; Compagna, L.; Cuéllar, J.; Drielsma, P.H.; Héam, P.; Kouchnarenko, O.;
Mantovani, J.; et al. The AVISPA Tool for the Automated Validation of Internet Security Protocols and Applications. In
Proceedings of the Computer Aided Verification, 17th International Conference, CAV 2005, Edinburgh, UK, 6–10 July 2005;
Etessami, K., Rajamani, S.K., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3576, pp. 281–285.

16. European Union. The AVISPA Project. Available online: http://www.avispa-project.org/main.html (accessed on 9 August 2021).
17. Yannick, C.; Compagna, L.; Cuellar, J.; Drielsma, P.; Mantovani, J.; Mödersheim, S.A.L.V. A High Level Protocol Specification

Language for Industrial Security-Sensitive Protocols. In Proceedings of the SAPS’04, Linz, Austria, 20–24 September 2004.
18. Viganò, L. Automated validation of trust and security of service-oriented architectures with the AVANTSSAR platform. In

Proceedings of the 2012 International Conference on High Performance Computing Simulation (HPCS), Madrid, Spain, 2–6 July
2012; pp. 444–447. [CrossRef]

https://rfc-editor.org/rfc/rfc8446.txt
https://www.business.att.com/products/lpwa.html
https://thingspace.verizon.com/services/connectivity.html
https://hologram.io/pricing/
http://doi.org/10.1007/978-3-030-61078-4_14
https://www.openssl.org
http://dx.doi.org/10.1007/s10207-004-0055-7
https://www.signal.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://www.signal.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://rfc-editor.org/rfc/rfc5246.txt
https://rfc-editor.org/rfc/rfc5246.txt
https://rfc-editor.org/rfc/rfc4507.txt
https://www.wolfssl.com/
https://www.signal.org
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
http://dx.doi.org/10.1109/EuroSP.2017.27
http://www.avispa-project.org/main.html
http://dx.doi.org/10.1109/HPCSim.2012.6266956

Sensors 2021, 21, 6524 21 of 21

19. Lalos, A. A Formal Library of IoT Protocols. 2021. Available online: http://findit.dtu.dk (accessed on 9 August 2021).
20. Lowe, G. An attack on the Needham-Schroeder public-key authentication protocol. Inf. Process. Lett. 1995, 56, 131–133. [CrossRef]
21. Lowe, G. A hierarchy of authentication specifications. In Proceedings of the 10th Computer Security Foundations Workshop,

Rockport, MA, USA, 10–12 June 1997; pp. 31–43.
22. Lowe, G. Selfie: reflections on TLS 1.3 with PSK. J. Cryptol. 2021, 34, 27. [CrossRef]
23. Ferrag, M.A.; Maglaras, L.A.; Janicke, H.; Jiang, J.; Shu, L. Authentication Protocols for Internet of Things: A Comprehensive

Survey. Secur. Commun. Netw. 2017, 2017, 6562953. [CrossRef]
24. Bormann, C.; Ersue, M.; Keränen, A. Terminology for Constrained-Node Networks. Available online: https://rfc-editor.org/rfc/

rfc7228.txt (accessed on 9 August 2021).
25. Gupta, V.; Wurm, M.; Zhu, Y.; Millard, M.; Fung, S.; Gura, N.; Eberle, H.; Shantz, S.C. Sizzle: A Standards-Based End-to-End

Security Architecture for the Embedded Internet. Pervasive Mob. Comput. 2005, 1, 425–445. [CrossRef]
26. Rescorla, E.; Modadugu, N. Datagram Transport Layer Security. Available online: https://rfc-editor.org/rfc/rfc4347.txt

(accessed on 9 August 2021).
27. Rescorla, E.; Tschofenig, H.; Modadugu, N. The Datagram Transport Layer Security (DTLS) Protocol Version 1.3. Available

online: https://www.ietf.org/archive/id/draft-ietf-tls-dtls13-41.txt (accessed on 9 August 2021).
28. WolfSSL. TLS 1.3 Protocol Support. Available online: https://www.wolfssl.com/docs/tls13/ (accessed on 9 August 2021).
29. Bergmann, O.; Gerdes, S.; Bormann, C. Simple keys for simple smart objects. In Proceedings of the Workshop on Smart Object

Security, Paris, France, 23 March 2012.
30. Kothmayr, T.; Schmitt, C.; Hu, W.; Brünig, M.; Carle, G. A DTLS based end-to-end security architecture for the Internet of Things

with two-way authentication. In Proceedings of the 37th Annual IEEE Conference on Local Computer Networks—Workshops,
Clearwater, FL, USA, 22–25 October 2012; pp. 956–963. [CrossRef]

31. Raza, S.; Trabalza, D.; Voigt, T. 6LoWPAN Compressed DTLS for CoAP. In Proceedings of the 2012 IEEE 8th International
Conference on Distributed Computing in Sensor Systems, Hangzhou, China, 16–18 May 2012; pp. 287–289. [CrossRef]

32. Restuccia, G.; Tschofenig, H.; Baccelli, E. Low-Power IoT Communication Security: On the Performance of DTLS and TLS 1.3.
In Proceedings of the 2020 9th IFIP International Conference on Performance Evaluation and Modeling in Wireless Networks
(PEMWN), Berlin, Germany, 1–3 December 2020; pp. 1–6. [CrossRef]

33. Caminati, G.; Kiade, S.; D’Angelo, G.; Ferretti, S.; Ghini, V. Fast Session Resumption in DTLS for Mobile Communications. In
Proceedings of the 2020 IEEE 17th Annual Consumer Communications Networking Conference (CCNC), Las Vegas, NV, USA,
10–13 January 2020; pp. 1–6. [CrossRef]

34. Gunnarsson, M.; Brorsson, J.; Palombini, F.; Seitz, L.; Tiloca, M. Evaluating the performance of the OSCORE security protocol in
constrained IoT environments. Internet Things 2021, 13, 100333. [CrossRef]

35. Santesson, S.; Tschofenig, H. Transport Layer Security (TLS) Cached Information Extension. Available online: https://rfc-editor.
org/rfc/rfc7924.txt (accessed on 9 August 2021).

36. Wouters, P.; Tschofenig, H.; Gilmore, J.; Weiler, S.; Kivinen, T. Using Raw Public Keys in Transport Layer Security (TLS) and
Datagram Transport Layer Security (DTLS). Available online: https://rfc-editor.org/rfc/rfc7250.txt (accessed on 9 August 2021).

37. Rescorla, E.; Barnes, H.T. Compact TLS 1.3 (IETF Draft). Available online: https://datatracker.ietf.org/doc/draft-rescorla-tls-ctls/
(accessed on 9 August 2021).

38. NIST. Lightweight Cryptography. Available online: https://csrc.nist.gov/projects/lightweight-cryptography (accessed on
9 August 2021).

39. Hall-Andersen, M.; Wong, D.; Sullivan, N.; Chator, A. NQUIC: Noise-Based QUIC Packet Protection. In Proceedings of
the Workshop on the Evolution, Performance, and Interoperability of QUIC—EPIQ’18, Heraklion, Greece, 4 December 2018;
Association for Computing Machinery: New York, NY, USA, 2018; pp. 22–28. [CrossRef]

http://findit.dtu.dk
http://dx.doi.org/10.1016/0020-0190(95)00144-2
http://dx.doi.org/10.1007/s00145-021-09387-y
http://dx.doi.org/10.1155/2017/6562953
https://rfc-editor.org/rfc/rfc7228.txt
https://rfc-editor.org/rfc/rfc7228.txt
http://dx.doi.org/10.1016/j.pmcj.2005.08.005
https://rfc-editor.org/rfc/rfc4347.txt
https://www.ietf.org/archive/id/draft-ietf-tls-dtls13-41.txt
https://www.wolfssl.com/docs/tls13/
http://dx.doi.org/10.1109/LCNW.2012.6424088
http://dx.doi.org/10.1109/DCOSS.2012.55
http://dx.doi.org/10.23919/PEMWN50727.2020.9293085
http://dx.doi.org/10.1109/CCNC46108.2020.9045119
http://dx.doi.org/10.1016/j.iot.2020.100333
https://rfc-editor.org/rfc/rfc7924.txt
https://rfc-editor.org/rfc/rfc7924.txt
https://rfc-editor.org/rfc/rfc7250.txt
https://datatracker.ietf.org/doc/draft-rescorla-tls-ctls/
https://csrc.nist.gov/projects/lightweight-cryptography
http://dx.doi.org/10.1145/3284850.3284854

	Introduction
	Preliminaries
	TLS 1.3
	Double Ratchet Algorithm

	Ratchet TLS (rTLS)
	Initial Handshake
	Session Resumption
	Double Ratchet Setup and Operation
	Initial Handshake
	Resumption

	Ratchet State Variables

	Security Evaluation
	Formal Verification
	Intruder Model
	Resumption Handshake Model
	Step 1: ClientHello
	Step 2: ServerHello
	Step 3: Finished
	Verification

	Performance Evaluation
	Traffic Overhead Estimation
	Initial Handshake
	Resumption Handshake

	Storage Overhead Estimation
	Overhead Comparison with TLS 1.3

	Related Work
	Conclusions
	References

