
sensors

Article

Yield Estimation and Visualization Solution for
Precision Agriculture

Youssef Osman *, Reed Dennis * and Khalid Elgazzar *

����������
�������

Citation: Osman, Y.; Dennis, R.;

Elgazzar, K. Yield Estimation and

Visualization Solution for Precision

Agriculture. Sensors 2021, 21, 6657.

https://doi.org/10.3390/s21196657

Academic Editors: Yoshiyasu Takefuji,

Subhas Mukhopadhyay and

Enrico Vezzetti

Received: 2 September 2021

Accepted: 28 September 2021

Published: 7 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Faculty of Engineering and Applied Science, Ontario Tech University, Oshawa, ON L1H 7K4, Canada
* Correspondence: youssef.osman@ontariotechu.ca (Y.O.); reed.dennis@ontariotechu.ca (R.D.);

khalid.elgazzar@ontariotechu.ca (K.E.)

Abstract: We present an end-to-end smart harvesting solution for precision agriculture. Our proposed
pipeline begins with yield estimation that is done through the use of object detection and tracking to
count fruit within a video. We use and train You Only Look Once model (YOLO) on video clips of
apples, oranges and pumpkins. The bounding boxes obtained through objection detection are used
as an input to our selected tracking model, DeepSORT. The original version of DeepSORT is unusable
with fruit data, as the appearance feature extractor only works with people. We implement ResNet as
DeepSORT’s new feature extractor, which is lightweight, accurate and generically works on different
fruits. Our yield estimation module shows accuracy between 91–95% on real footage of apple trees.
Our modification successfully works for counting oranges and pumpkins, with an accuracy of 79%
and 93.9% with no need for training. Our framework additionally includes a visualization of the
yield. This is done through the incorporation of geospatial data. We also propose a mechanism to
annotate a set of frames with a respective GPS coordinate. During counting, the count within the set
of frames and the matching GPS coordinate are recorded, which we then visualize on a map. We
leverage this information to propose an optimal container placement solution. Our proposed solution
involves minimizing the number of containers to place across the field before harvest, based on a
set of constraints. This acts as a decision support system for the farmer to make efficient plans for
logistics, such as labor, equipment and gathering paths before harvest. Our work serves as a blueprint
for future agriculture decision support systems that can aid in many other aspects of farming.

Keywords: precision agriculture; computer vision; deep learning; data analysis; geospatial mapping

1. Introduction

Precision agriculture is defined as the integration of technology in different facets
of agriculture. Many aspects of agriculture benefit significantly from automation; from
monitoring soil and crop conditions, to assisting in irrigation, plant treatment and harvest.
One of the earliest successful works in precision agriculture is the use of wireless sensing to
monitor soil conditions. For example, Corwin et al. [1] found that the electrical conductivity
of the soil highly affects its productivity through measuring it via soil sensors. There are
other works that utilize sensing for detecting abnormalities within the crop. Tian et al. [2]
aimed to focus on weed detection as it is a common problem with any field of crops. They
introduce a sensor capable of detecting weed fields, so that once a farmer sees areas that are
affected by weed infestations, they can more swiftly and precisely treat it before it spreads
to other patches. In general, understanding conditions of the crop and soil aids the farmer
in making informed decisions, directly affecting farming efficiency and profitability. In this
paper, we specifically target crop yield estimation, and the use of spatial data to visualize
the acquired yield.

Crop yield estimation, which we also refer to as fruit counting in our work, is the
process of producing an estimated count of fruit or vegetables within their respective field.
The farmer can then use the count to decide on what to do for harvest. Specifically, resources

Sensors 2021, 21, 6657. https://doi.org/10.3390/s21196657 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5892-632X
https://doi.org/10.3390/s21196657
https://doi.org/10.3390/s21196657
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21196657
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21196657?type=check_update&version=2


Sensors 2021, 21, 6657 2 of 25

such as man power, trucks and other vehicles, storage and packaging. For our paper, we
develop a fully DL-based framework to perform yield estimation and support harvest
decision making. We divide our framework into two main components: yield estimation
and yield mapping. We perform yield estimation by counting fruit yield through videos.
That way, our solution is robust enough to work on any type of fruit from video feeds as
opposed to limited static images. This is quite efficient and scalable with the integration
of mobile sensors (e.g., robots and drones) that would autonomously navigate through
crop fields and capture video footage. We then incorporate spatial information about the
yield to recommend optimal placement of harvest containers to reduce the number of
required bushels and save their collection efforts, enabling farmers to make better use of
their resources while optimizing the harvesting process.

2. Related Works

Crop yield estimation relies on using image processing algorithms detect the crop
from imagery and count the number of detections to give the estimate. In earlier works,
detections are made by distinguishing between the crop’s textures and background tex-
tures. Wang et al. [3] use visual cues to segment apples from images, specifically the
hue, saturation and intensity to detect both red and green apples under specific lighting.
Pothen et al. [4] present a keypoint detection algorithm that detects potential fruit regions
based on intensity profile then uses high-dimensional features in those detected regions
to classify them as fruit or not fruit. Roy et al. [5] estimate apple count from images as
well as their diameters by segmenting apple clusters in an input image using a nonlinear
optimization method. Then feed the segmented images into a Structure from Motion
(SfM) pipeline to reconstruct them up to scale. The aforementioned techniques do not
produce state-of-the-art results, are very specific to the selected crop (e.g., apples), and
cannot be easily translated into yield estimation for other types of crop without a drastic
change in the algorithm. Additionally, these algorithms can perform poorly outside of
controlled environments, such as light intensity. In our work, the proposed models can
be used with any fruit, given the appropriate dataset is provided to train the model in
different circumstances, such as poor lighting conditions and occlusion behind another
fruit or leaves.

Deep learning is on the rise in computer vision, with numerous state-of-the-art object
detection and image segmentation algorithms utilizing deep learning models showing
promising accuracy. Furthermore, one of the main advantages of deep learning is gener-
alization, if the model works on one type of object, then it’s quite likely to work on other
objects. It only needs to be retrained with a suitable dataset relevant to the domain of
application. Rahnemoonfar et al. [6] prove this by performing fruit detection on seven
different fruits using the Faster R-CNN object detector which is trained on the respective
fruit. Bargoti et al. [7] use Multi-Layered Perceptrons and Convolutional Neural Networks
(CNNs) to perform image segmentation to detect and count fruits from images. Sa et al. [8]
perform tomato counting using a CNN model that’s a modification of Inception-ResNet [9].
Notably, the data they used for training is simulated by generating synthetic images of
tomatoes, producing favorable test accuracy on real images of tomatoes. Chen et al. [10]
present a deep learning pipeline for counting apples and oranges. An image of the crop
is input into a blob detection neural network that is a fully convolutional network [11]
which outputs a segmented image to distinguish fruit pixels from non-fruit pixels, noting
that there could be a cluster of fruits that’s referred to as a blob. They then use a count
neural network, which is another CNN that takes bounding boxes around each detection,
and estimates the count of fruit in that box. These works produce great accuracy with
good performance and potential for generalization, showing that deep learning is a viable
methodology for yield estimation. However, they all work on images, not videos, of crops.
This is an important issue to discuss because, as footage of the crop is typically taken in
video form. In our work, we use the detection model within a tracking pipeline, which



Sensors 2021, 21, 6657 3 of 25

allows the system to keep track of detections across video frames and count new detections
only once.

Liu et al. [12] address counting through videos by using a fully convolutional neural
network (FCN) for object detection, and optical flow using Kanade-Lucas-Tomasi (KLT)
tracker. However, their tests on apples were run under controlled illumination. Moreover,
KLT-based optical flow tracking has shortcomings: it relies on the brightness of different
regions in the frames remaining consistent, and that the object motion in that region has to
be consistent. Any change of lighting or sudden change of motion will cause the tracker
to suffer. Their work also included the use of SfM to avoid counting apples in different
tree rows, which works well but the algorithm itself is very computational intensive. In
our approach, we use a single-shot-detector (SSD) which is considered the state of the
art solution to object detection problems. Additionally, we developed a custom tracking
pipeline that leverages deep learning and intersection over union (IoU) matching in order
to properly track objects through sudden motions, and changes in appearances. We also
design a light-weight solution to resolve apples in back rows being unintentionally detected.
Our dataset and tests are run on apple trees in natural illumination during daytime.

3. Materials and Methods

We provide a high-level view of our pipeline in Figure 1. We begin by inserting video
frames into our system. Object detection is run on each frame in order to detect the fruits
within the frame, however, as discussed earlier, detecting the fruits is not enough to count
the fruits in a video. The detections are passed onto our modified tracking model. The
tracker is responsible for creating associations between the frames. For example, if fruit
“a” is present in the first and second frames, then the tracker associates between them
and gives them an ID of 1. Once an individual fruit is identified and tracked across the
frames, it is counted, and a total yield estimate is provided at the end, however during
the counting process we also perform GPS annotation. Following the GPS frequency, the
count within a time period and its respective set of frames (e.g.,: every one second), is
recorded alongside the current GPS point. We create a file with GPS points and counts
at those points which we then use to visualize on a map, so the yield and its location are
presented in a user-friendly manner to the farmer. We then add the function to optimally
place containers used for harvest, such as apple bushels, on the map to complete our smart
agriculture solution. In this section, we explain each step in our fully automated approach
to yield estimation and visualization.

Figure 1. An end-to-end overview of the proposed smart harvesting pipeline.

3.1. Fruit Detection

We start our pipeline by detecting fruits frame-by-frame. This is primarily an object
detection task, where the desired objects (in our case, the fruits we are counting) are
detected using bounding boxes. The expected output is the pixel-wise coordinates of a
bounding box that surrounds each fruit, completed with a classification of what is inside the



Sensors 2021, 21, 6657 4 of 25

box and the confidence score of the detection. Due to the prevalence of existing powerful
general use object detection models, we explore the possible options and make a decision
based on accuracy, performance, robustness and ease of integration with our tracker.

3.1.1. Model Selection

Convolutional neural network (CNN)-based object detectors have been able to achieve
state-of-the-art performance on various benchmark datasets. As discussed in Section 2,
the basic structure of a CNN object detector contains two parts: the backbone [13–18]
which is responsible for extracting features from the image(s), and the head [19–22] which
is responsible to predict bounding box locations and class values. Recently, CNNs have
been fit with intermediate blocks between the backbone and the head; commonly called
the neck [23–28] which is responsible for collecting feature maps from multiple stages
of feature extraction or feature refinement for feature layers. Commonly, the goal of the
intermediate neck layer/blocks is to improve accuracy whilst minimizing the incurred
overhead. In Section 2, we explored various object detectors, each with its own unique
architecture and set of advantages and disadvantages. With single stage detection (SSD)
models showing high accuracy without processing speed trade-offs, we discard multi-stage
detection models as they show significantly slower performances in comparison. We
compile reported performance of the best object detector candidates in Table 1 and analyze
their performance in terms of Average Precision (AP) and Framerate Per Second (FPS).

We chose to use You Only Look Once version 3 (YOLOv3) with spatial pyramid pooling
(YOLOv3-SPP) [19,29] as the back-end object detector for our pipeline. Table 1 shows that
YOLOv3-SPP has the best trade-off for accuracy and speed compared to other current state-
of-the-art object detectors. For example, EfficientDet-D3 shows the highest AP of 47.2%,
however the FPS performance is notably lower than both YOLOv3 models. We observe
that RetinaNet boasts the highest FPS with AP that rivals YOLOv3, however the results
are somewhat skewed by the use of NVIDIA TensorRT (TRT). With the use of TensorRTthe
network’s inference time could potentially decrease without affecting the accuracy. However,
we do not use TensorRT in our work because it is still highly experimental. The framework is
very hardware demanding as it only works on certain NVIDIA GPUs and is only compatible
with limited CUDA versions. More importantly, YOLOv3 is a heavily studied object detector
that is used in many research and industry applications- many bugs and potential issues
are ironed out in comparison to fresher models.

Table 1. Comparison between different SSD models.

Method Backbone AP FPS (Batch Size of 1) GPU

YOLOv3-512 [19] Darknet-53 [19,30] 42.4% 48.7 Telsa P100 (10 TFLOPS)
YOLOv3-608 [19] Darknet-53 [19,30] 43% 43.1 Telsa P100 (10 TFLOPS)

EfficientDet-D3 [20] EfficientNet-B3 [14] 47.2% 34.4 Tesla V100 (15.7 TFLOPS)
RetinaNet [21] (w/TRT) SpineNet-49S-640 [13] 39.9% 85.4 Tesla V100 (∼30 TFLOPS)
RetinaNet [21] (w/TRT) SpineNet-49-640 [13] 42.8% 65.3 Tesla V100 (∼30 TFLOPS)

CenterNet-HG [22] Hourglass-104 [17] 45.1% 7.8 Titan XP (12 TFLOPS)
CenterNet-DLA [22] DLA-34 [18] 41.6% 28 Titan XP (12 TFLOPS)

3.1.2. YOLO3 Model Architecture

The YOLO object detector is divided into two components: feature extractor (the
backbone) and detector (the head). The feature extractor is responsible for getting a feature
map of the image. YOLO uses a CNN model called DarkNet53 that uses 53 layers as shown
in Figure 2. The architecture is fairly straightforward with multiple convolutional layers to
process the input, and residual layers, which are also known as skip layers, in-between.
Firstly, convolutional layers use filters to analyze blocks of an input matrix, starting with
the initial input image. Filters are considered the weights within the context of CNNs. They
are small two-dimension matrices that are multiplied with each block of the input matrix.
After all blocks of the input are used in the computations, the output is a new matrix that



Sensors 2021, 21, 6657 5 of 25

contains feature information. This process can be repeated multiple times by stacking
subsequent convolutional layers. The output of the convolutional layer can be considered
a mathematical representation of the image that’s used to classify the object within the
image. Theoretically, the deeper the network is, the more accurate the classification will be.
However, that’s not always the case, hence the introduction of residual layers [31] which
are also used in Darknet53. In traditional neural networks, where each layer feeds directly
into the next layer, residual networks allow for some layers to be skipped. This combats
the vanishing gradients problem, where changes in the weight parameter (gradients)
become so small that they disappear and that information becomes lost. Thus, during back-
propagation no useful information will be sent back, crippling the training process. With
skip connections, these small gradients can back-propagate through shorter paths, allowing
for less changes and that information becomes preserved. The outputs of convolutional
layers are considered the feature maps, which are used in the next stage.

Figure 2. Darknet53 architecture that is used as YOLOv3’s backbone [19].

Detectors in the YOLOv3 leverage the output of each of the last 3 convolution stages.
Three stages are selected to allow for multi-scale detection, where smaller objects are easier
to detect in earlier stages, and bigger objects are easier to detect in later stages. In the
YOLO model we have integrated, the spatial pyramid pooling (SPP) approach is used.
SPP is based on the SPM model [32]. It focuses on improving classification and detection
on a multi-scale level. SPP utilizes the output feature maps of different stages within the
DarkNet CNN (specifically, the outputs sized 32 × 32, 16 × 16 and 8 × 8). After the feature
maps are extracted, max pool operation is performed. The outputs are then concatenated
together to form a long single vector similar to Figure 3. By using multi-scale features, the
model is able to gather spatial information that significantly improves scene interpretation
and detection of objects in various aspect ratios and scales. In practical settings, different
fruits have different sizes (e.g., apples are smaller than pumpkins), plus the perspective of
the footage can affect the fruit size as well (e.g., aerial views of pumpkins lead to pumpkins
appearing smaller in size). As such, it is vital that our detector has the versatility to function



Sensors 2021, 21, 6657 6 of 25

accurately with any object size. Additionally, the size of the vector is fixed length, combined
with the fixed scales of the design, it allows the model to work on images of any size.

Figure 3. Visualization of SPP, reproduced from [23].

In YOLO, the input image is divided into a 2-dimensional grid containing N × N
cells (N being the grid size). Each cell within the grid is analyzed simultaneously through
the feature extraction and detection explained above. Following the anchor box detection
method, anchor boxes are assigned to each cell in the output matrix of the convolution
stages. These anchor boxes have different aspect ratios and sizes. During the learning
phase, the anchor box with the best intersection with the ground truth bounding box
is considered the correct prediction. Thus the information predicted for each box is the
location of the box (pixel wise center coordinates of the box denoted by x and y), whether
the box contains an object or not, and what class this object belongs to.

3.1.3. Correcting Detections

In our implementation with apple data, we noticed that apples from other tree rows
are being detected which can be seen in Figure 4. This is not intended as apple orchards
are divided into rows of trees, and we perform the counting task on one row at a time. To
solve this problem, we developed a lightweight thresholding mechanism to correct the
detections returned by YOLO. We tested the detection model standalone and analyzed the
average bounding box sizes of the distant apples specifically, and set bounding box height
and width thresholds accordingly. Any bounding box that has a height and width below
the threshold (30 pixels) is discarded before moving onto the next step.



Sensors 2021, 21, 6657 7 of 25

Figure 4. From the apple orchard video used, some apples from a back row tree are being detected
and tracked.

For our work, we use YOLOv3 to detect apples, oranges and pumpkins. We obtain
the x, y coordinates of the center of the box; the width and height of the box; the class it
belongs to; and the class confidence score. All this information is then used for tracking.
We opted not to change the architecture of the backbone as the use of default configurations
allow us to improve the accuracy of detection directly through the use of transfer learning,
where we can simply finetune the original weights pretrained on the MSCOCO dataset,
which already contains plentiful fruit data, using much smaller datasets.

3.2. Fruit Tracking
3.2.1. Tracker Selection

Because of the speed-accuracy trade-offs of tracking-by-detection methods, we decided
to choose a two-stage tracking method opposed to a single, or unified detection and tracking
method. However, the specific tracking method is not an integral component of this research,
any robust tracking method could be interchanged with our chosen tracking method.

Tracking-by-detection, or two-stage tracking methods (Sometimes also called Multi-
Hypothesis-Tracking (MHT) [33]) integrate a tracking framework with a detection frame-
work. The detection framework produces bounding boxes, class scores, and confidence
scores which are then fed into the tracking framework to make associations between objects
detected in the current frame and objects detected in previous frames, in order to update
tracklets and apply re-identification.

This is often done by modelling the problem as a data association problem between
tracklets and detection’s. SORT [34], DeepSORT [35], IOU/V-IOU [36,37] are three popular
online methods that are commonly used for two-stage tracking frameworks. Of course, two-
stage methods rely quite heavily on the quality and consistency of their inputs. Low quality
detectors can cause fragmentation of the tracks and inconsistent detection’s can result in
ID switches or lost tracklets. A stable frame rate is also important, where smaller steps (or
higher frame rate) allows for more accurate associations between well defined tracks.

Simple online and realtime tracking (SORT) [34] was a pivotal breakthrough for
research into tracking-by-detection approaches. This “simple” approach first detected
objects using a generic object detection pipeline, namely Faster R-CNN [38]. Then, in order



Sensors 2021, 21, 6657 8 of 25

to generate the associations between detection’s and tracklets, SORT used the detected
bounding boxes geometry by predicting the bounding boxes future locations using a
Kalman Filter [34,39], which iteratively refined said predictions throughout successive
frames. The cost matrix, used to assign detected bounding boxes with pre-existing tracklets,
was computed using the IoU between each detection and all predicted bounding boxes,
where a minimum IoU threshold was imposed to reject poorly defined assignments. The
assignment was then solved using the Hungarian Algorithm [34].

The IOU tracker [36] is another popular online tracking-by-detection method. Under
the assumption of a robust detector that successively produces “high overlap” detection’s,
the IOU tracker then tracks these detection’s in a similar fashion to SORT [34] by associating
detection’s with the highest IoU to existing tracklets. As was the approach in SORT, the
Hungarian algorithm was used to solve said assignments. Note that no image information
is used by the IOU tracker, nor does the IOU tracker attempt to predict the future locations
of past detection’s as is done in SORT.

In a similar fashion to SORT, one of the biggest drawbacks of the IOU tracker was miss-
ing detection’s, which would lead to significant fragmentation and high ID switches. The
V-IOU tracker extended the IOU tracker by incorporating a visual single-object tracker [37]
in an attempt to mitigate these issues. The philosophy is relatively straight-forward. If no
detection is available for association with an existing tracklet, then continue said tracklet
using a visual tracker, rather than relying on the [object] detectors inputs.

The IOU/V-IOU trackers are able to generate association’s and track objects at incredi-
ble speeds, limited only by the computational requirements of the detector. However, they
do not work well within domains where high-occlusions are commonplace. Moreover,
because of the assumption that both IOU/V-IOU trackers make with respect to the “high
overlap” of objects, they are not well suited for applications where large camera movements
are frequent.

As such, in this work we extract the bounding boxes from the detector and perform a
tracking function to assign unique id’s to the objects across various frames. The algorithm we
use for MHT is a modified version of DeepSORT [35], as DeepSORT provides a great trade-off
between accuracy and real-time tracking speeds whilst also dealing well with occlusions.

3.2.2. DeepSORT

DeepSORT is an extension of the Simple Online Realtime Tracking (SORT) [34] al-
gorithm. It relies on creating ’tracks’ which represent the tracked objects and applying
Kalman Filter to predict the next states of objects. DeepSORT then associates between the
same objects in different frames by using distance metrics, one is based on the motion of
the object and the other is based on the appearance of the object. The model gives favorable
performance only using the appearance as a metric [35], so for our work, we only use the
features produced by the CNN which represent the appearance of the object.

Following the original SORT, DeepSORT performs Kalman Filtering and defines the
tracking scenario on an 8-dimensional state space (x, y, a, h, ẍ, ÿ, ä, ḧ), which respectively
denote the center x and y coordinates of the bounding box, the aspect ratio and height,
and their velocities. A linear Kalman Filter following a constant velocity model is used,
which is a standard for object tracking [40]. The bounding box coordinates (x, y, a, h)
which are received from YOLO are used without modification. DeepSORT then uses deep
learning and CNN features to create associations between new detections and the current
tracked objects by using a minimum cost algorithm to obtain the objects with the minimum
distance with their associated tracks. In the following sections, we describe the components
of the tracker in detail.

3.2.3. Track Initialization

After we obtain the first bounding boxes from YOLO, the first step in the DeepSORT
pipeline is initializing the tracked object for the detections. The track is given a number of
attributes including:



Sensors 2021, 21, 6657 9 of 25

• Track ID as an identifier;
• Age which denotes how many frames this track existed in, initialized as 1;
• Number of hits which is incremented every time this track is successfully associated,

initialized as 1;
• Feature matrix which is the output of the CNN and represents the object is appearance;
• Track state which represents the current state of the track so it can be confirmed or

deleted, initialized as tentative;
• Mean and covariance matrices which are used for the Kalman Filter that are updated

with every prediction.

3.2.4. Convolutional Neural Network

DeepSORT’s main feature is the use of deep convolutional features. When an image is
input into a CNN, the features of the image are analyzed within each layer and then an
activation function such as Softmax is applied to the output vector to classify the object once
all the convolutional layers have been completed. Intuitively, this means that the vector
output after convolutional layers describes the appearance of whatever is in the image.
This was leveraged in YOLO in order to detect objects and it is also used in DeepSORT’s
pipeline as the appearance metric for tracking. The use of appearance allows for better
tracking in case of a random object motion and occlusion, which are both very common
challenges in tracking applications.

The original model used is a wide residual network that is been trained on a person
re-identification dataset [41] which is limited to people tracking (specifically, pedestrians)
making it unsuitable for any fruit data. Thus, in this work we insert a different CNN model
that shows a state-of-the-art performance called ResNet18 [31]. We chose to use ResNet
rather than creating a CNN model from scratch for several reasons. First, ResNet has
been utilized in a wide range of applications for years and its performance and limitations
have been well investigated. Second, ResNet comes with a variety of setups, primarily
varying depths. This allows us to choose a depth based on our requirements. We chose
ResNet18 for our system because it has the best performance and fruit characteristics aren’t
complicated enough to justify more layers. We also performed some initial tests and found
no difference in counting accuracy between ResNet18 and ResNet101. Fourth and most
importantly, ResNet provides weights that are pretrained on the ImageNet classification
dataset [42], a massive dataset with 1000 classes, including fruits such as apples for our
application. This eliminates the requirement to train the DeepSORT feature extractor and
allows the DeepSORT pipeline to be used for practically any fruit without modifying the
tracking model and saving time and resources that would otherwise be spent on training.

Table 2 shows the architecture of ResNet18. There are 5 convolutional layers, and a
skip connection is in between every layer. After the final convolutional layer, there is an
average pooling layer which leads to an output vector of size [1, 1, 512] that is input into a
fully connected layer for classification. Since we do not perform classification and we need
the appearance descriptor of the object, we take the output of the average pooling layer as
our final output to be treated as the feature map of the object.



Sensors 2021, 21, 6657 10 of 25

Table 2. The ResNet18 [31] architecture is used for DeepSORT’s feature extraction. The fully
connected and Softmax layers are discarded.

Layer Name Output Size ResNet-18

conv1 112× 112× 64 7× 7, 64, stride 2

conv2_x 56× 56× 64 3×3 max pool , stride 2[
3× 3, 64
3× 3, 64

]
×2

conv3_x 28× 28× 128
[

3× 3, 128
3× 3, 128

]
× 2

conv4_x 14× 14× 256
[

3× 3, 256
3× 3, 256

]
× 2

conv5_x 7× 7× 512
[

3× 3, 512
3× 3, 512

]
× 2

average pool 1× 1× 512 7× 7 average pool

fully connected 1000 512× 1000 full connections

softmax 1000

3.2.5. Association and Counting

The model associates between tracks and detections in a frame using their respective
feature maps. This is an assignment problem to be solved using the Hungarian algorithm,
which is a standard minimum cost algorithm. It is vital to use an efficient algorithm as the
number of tracks and detections can increase substantially, where every track needs to be
compared against every detection. The problem shown in Equation (1) is formulated as
follows: given an array of tracks (T) of size t, and an array of detections (D) of size d, we
compute a new cost matrix (C) where index [i, j] is the cosine similarity between the feature
map of T(i) and the feature map of D(j). After the matrix is complete, we simply find the
minimum cost for each track in T out of all the detections and that forms the association.

C(i, j) = min(1− cos_similarity(D(j), T(i))) (1)

The Hungarian algorithm can be divided into 4 main steps. We start off by providing
our input, which is a 2-dimensional matrix sized n × n, each cell representing the cost
between the track and the detection. The first step is to obtain the minimum value in each
row and subtract it from each cell in its respective row. The second step is to do the same
for each column, i.e., subtracting the minimum value in each column from all elements in
that column. The third step is to mask rows and columns to cover all the zeros that were
computed due to the previous two steps. Then there are two scenarios: (1) the number of
lines required to cover zeroes is n, and in this case the optimal assignment is done and the
algorithm ends, (2) otherwise, we search for the smallest uncovered index and subtract
it from all uncovered indices. If the entire matrix is covered, then the algorithm ends,
otherwise repeat this step until completion. The final optimal assignments are the cells
with the value ’0’. Meaning, if C(1, 3) = 0, where 1 is the index of Track 1, and 3 is the index
of Detection 3, then Detection 3 will be associated with Track 1.

The cost value in our context is the cosine distance between CNN features. After a
feature map is extracted from the ResNet18 model we implemented, we obtain the cosine
distance using Equation (2). The cosine distance, also known as cosine similarity, is a
method to compute how similar two vectors are in an inner product space. Essentially, the
cosine similarity measures the angle between two vectors and applies the cosine function
to it. This determines where both vectors are pointing and whether they’re pointing in the
same direction. This is applicable with CNNs as we can obtain feature maps in the form of
a two-dimensional matrix from the convolution and pooling operations that we can then



Sensors 2021, 21, 6657 11 of 25

flatten into vectors and compare between them. For example, Figure 5 shows the saved
image which we can assume as track 1. If there are two new detections added to our tracker,
shown in Figures 6 and 7, we now compute the cosine similarity according to Equaton (2).
The result will look something like: Similarity(i, j) = [0.64, 0.99]. That means the similarity
between Track 1, Detection 1 is 0.64, and the similarity between Track 1, Detection 2 is 0.99.
Then, once a minimum cost algorithm is performed based on Equation (1), Track 1 will be
associated with Detection 2, which is the correct assignment as they are quite clearly the
same apple with only a slight shift in motion. This operation can be extended to any tracks
and detections that will be added.

cos(t, e) =
te

‖t‖‖e‖ =
∑n

i=1 tiei√
∑n

i=1 (ti)2
√

∑n
i=1 (ei)2

(2)

Figure 5. First apple detected in first frame and is inserted into the tracker which identifies it as
track 1.

Figure 6. Apple identified in second the frame, noted as detection 1 is tested for association.

Figure 7. Second apple identified in the second frame, noted as detection 2 is tested for association.

As the objects get analyzed and tracked throughout the frames, there are three states
that could be assigned to each track in every frame:

1. Tentative: this is a temporary state. It means that a new detection is potentially a new
object to be tracked. New detections remain tentative until they are either matched
with an existing track or are turned into their own new track.

2. Confirmed: this means that the track is created and is confirmed as a new object to
have entered the scene. The detection changes its state from Tentative to Confirmed and
is ready to have new detections associated with it.

3. Deleted: this means that the track has left the scene and is no longer tracked. It is
considered deleted and will no longer be considered during the matching stage.

Therefore, a track is not immediately confirmed upon association. The track needs
to have a number of hits greater than 2 to change its state to “Confirmed”. This helps to
avoid brief false detections. Secondly, not all tracks will be associated. The distance (where
0.0 denotes an exact match, and 1.0 denotes completely different features) needs to meet a
certain threshold to be considered as a match. Following the original implementation, the
maximum distance is 0.15, meaning that for anything higher, the match will be discarded. If



Sensors 2021, 21, 6657 12 of 25

a track is not associated, it will remain saved for a number of frames until its age surpasses
the preset maximum age, which we set as 30. In a 30 FPS video, if an object is not associated
for 1 s, it is discarded as it is considered to have left the scene. Before unmatched detections
are initialized as new tracks, they undergo IoU matching first. Specifically, the IoU between
two tracks bounding boxes is computed, and if the IoU is 0.3 or greater (meaning that there
is some intersection), the tracks are associated with each other. This improves the tracking
robustness because sometimes a fruit can be clear in one frame, obscured in another (thus,
having different appearance features), then clear again in the following frame. The IoU
tracking helps keeping track of that apple when an appearance association can briefly fail.
Another important parameter in DeepSORT includes a minimum confidence, which is
the minimum accepted confidence from the detector. Anything lower than the minimum
confidence causes the detection not to be inserted into the tracking pipeline. We selected a
score of 0.4, as fruits that were partially hidden by leaves or branches, or fruits that were
blurred due to camera motion were indeed detected, but with notably lower confidence.
Thus, a lower threshold allows for such apples to be considered. It was also observed that
lower thresholds than 0.4 include wrong detections, mostly leaves that were mistakenly
detected as another fruit and have very low confidence scores.

It is important to note that, while every new track has its own ID, we can’t use it as
a count reference because some tracks are still tentative and will be deleted if they aren’t
properly associated. As a result, apples are counted only when the track is confirmed.

3.3. Geospatial Mapping of Fruit Count

The combination of geospatial information with crop analysis is critical to smart
harvesting as it provides farmers with rich information to optimize their resources and
make informed decisions on how to plan for pre- and post-harvesting. GPS technology
can enable feature maps in the field such as visualization of soil happiness, tree density,
targeted treatment and fertilization, container placement and many more. In this work,
we record GPS points while recording videos of the apple rows to support these features.
GPS capturing is synchronized with video capturing so we are able to match the GPS
coordinates with the video during the counting process.

During data gathering, the GPS device consistently records its current coordinate.
After data capturing and analysis are complete, we annotate the counts from the video
frames with their respective location on a map. To accomplish this, we record the frequency
at which the GPS points are captured and assign a GPS point to a set of frames. In this
research, we record 1 GPS point every 3 s (GPS period). Our video is recorded at 30 frames
per second, which means 1 GPS point is assigned to every 90 frames (3 ∗ 30). We formulate
an equation for the frames per GPS point in Equation (3). We then implement a counter
alongside our fruit counting pipeline that increments until it reaches the maximum frames
per GPS point. As such, the count is precisely recorded with the exact geolocation. The
counter is reinitialized after each GPS annotation and the following GPS point is ready to
be assigned.

frames_per_GPS_point = GPS_period ∗ frames_per_second (3)

The GPS coordinates and their recorded count (shown in Table 3) are used to provide
better visualization of the data. Our aim is to create a map containing the yield information
at a point-by-point basis on a map. To do so, we use the Folium package in Python and
create a map containing GPS points with a tooltip containing the count in an OpenStreetMap
template. A runtime visualization is shown in Figure 8.



Sensors 2021, 21, 6657 13 of 25

Table 3. A sample from the GPS data in an excel sheet after counting.

Lat Lng Count

43.91709 −78.6277 37

43.91709 −78.6277 61

43.91709 −78.6277 43

43.91709 −78.6277 43

43.91771 −78.6277 44

43.917711 −78.6277 66

43.917712 −78.6277 48

43.917714 −78.6277 55

43.917716 −78.6277 71

Figure 8. Mapping the GPS data after counting.

3.4. Container Placement Optimization

We utilize the geospatial information and yield estimation to provide farmers with a
smart harvesting system that will assist them with harvesting logistics. To demonstrate
this feature in this work, we perform container placement optimization where we provide
a strategy to place a minimum amount of containers in optimal and fixed locations across
the field when preparing for harvesting.

To formulate the objective function for this task, we use the sum of the vector repre-
senting the number of possible containers we can use Equation (4). To clarify, we have
yk ∈ [0, 1] for k = 1, 2, ..., K, where K is the upper-bound, or maximum number of contain-
ers to place. This means that if there’s 1 container assigned, it would be a summation of 1 +
0 + 0 +. . . , leading to a total of 1. If there are 2 containers assigned, then the summation
would look like 1 + 1 + 0 +..., leading to a total of 2 and so on.

min
K

∑
i=1

yk (4)

Our constraints following this are as follows: we have i = 1, ..., n apples, we introduce
a variable xik that is used to determine whether or not apple i is assigned to container k.
Note that an apple must be assigned to only one container. To ensure that every apple is
assigned to a container only once, we introduce the following constraints:

K

∑
i=1

xik = 1 (5)



Sensors 2021, 21, 6657 14 of 25

What this constraint implies is that every apple “k” is assigned to its respective
container “i”. Moreover, “x” is a matrix that contains information about each apple and
gives apple “k” the value of 1 at its respective container i, and zero in the rest of the column.
For example, in the below matrix, with 3 apples and 3 containers, apple 1 is assigned to
container 1, apple 2 is assigned to container 3, and apple 3 is assigned to container 2.1 0 0

0 0 1
0 1 0


The last constraint that is needed is the distribution of weight. We check to see

that the weight of the apples assigned in every container does not exceed the maximum
weight a container can carry. This is done by taking the sum of the product of the total
number of apples in a given container “x” with respect to the weight of each apple “w”
and determining if it is less than or equal to the maximum weight “m” of a given container
“y”. This is represented as follows:

n

∑
i=1

w · xik ≤ m · yk (6)

Finally, in our implementation, we monitor the distance between each two containers
to ensure they don’t exceed a set maximum distance. Once the second container reaches the
distance threshold, it is immediately placed even if it is not full. This is to ensure that large
containers are not too spread from each other, leading to inconvenience for the pickers
during harvesting.

The final output is the optimal number of required containers and their GPS coordi-
nates on a map. The visualization is implemented using the Folium package in Python. By
offering this service to farmers, they will be able to plan harvest routes, equipment and
container expenses, and labor requirements more efficiently, thus transforming the future
of precision agriculture with advanced technologies.

3.5. Dataset Preparation

The massive success of deep learning is generally attributed to its abilities to learn
a wide variety of features from data. As such, preparing a thorough dataset is the most
important step within a deep learning-based pipeline. In our work, we train the object
detector model first on separate small fruit datasets without training the feature extractor
in the tracking module. The reason for using small domain-specific custom datasets is
that modern CNNs are generally pretrained heavily on massive image datasets, namely
ImageNet for feature extraction [42] and COCO for object detection [40]. ImageNet is a
massive dataset that consists of millions of annotated images and around 20,000 categories,
from humans to various types of fruit. ResNet (our CNN feature extractor) is one of the
models that has already been trained on ImageNet, and functions efficiently for fruits. This
allows us to save time and effort needed to prepare a fruit dataset just for tracking and
allows our tracking module to be used immediately for most fruits. On the other hand,
the COCO dataset is geared towards object detection and segmentation tasks, containing
hundreds of thousands of images with annotated objects and around 81 classes. Modern
object detectors are pretrained on the COCO dataset, however, as it is relatively on a smaller
scale, it is generally required to fine-tune the weights of object detection models to work
on the desired objects. While we investigate the accuracy of using pretrained weights in a
couple of cases (apples and oranges) that will be shown in the following section, we also
prepare three small fruit datasets (2 apple and 1 pumpkin) to train our YOLO model with.

To begin with, we prepare two separate apple datasets using footage taken from
an apple orchard containing around 150 & 100 images, respectively. The first was used
for early experiments and was taken at a time when the apples were not fully ripe, and
the second one was used for yield estimation of full rows of apples completely ripe. To
annotate our images, we use a label software called YOLOLabel. To annotate images for



Sensors 2021, 21, 6657 15 of 25

model training, we draw boxes around the desired objects provide a label to it (i.e., the
desired class). Each image has a respective text file that contains the annotation details.
Specifically, the text file contains the center x and y coordinates of the box, the width and
height dimensions, and the class ID. In our work, we load the apple images and specifically
annotate the apples. Given that we run our work on apple videos, we configured the model
so that we only have 1 class: “apple”, so all our objects have a class ID of 0. If we use the
YOLO model with pretrained COCO weights, then “apple” ID is 48.

It is crucial to properly annotate images as such annotations determine what the
network learns. The network is efficiently capable of learning simple features, where
apples are obvious and not obscured. However, different image quality and context
conditions in which apples might not be very clear to the object detector must be considered
for efficient training. In apple orchards, it is quite common to find apples in contexts
that affect their visual appearance. For traditional methods, poor lighting or occlusion
would pose significant challenges for appearance-based detections, however, with deep
learning we can train our network to learn such features. As such, we need to consider
the following conditions while annotating the custom dataset: apples that are hidden by
leaves, apples that overlap with each-other, apples under different lighting conditions, and
other conditions that could potentially affect their visual appearance. Table 4 highlights the
main different conditions that we’ve addressed during annotation. By labeling the apples
within these different contexts, we significantly improve the model’s robustness whilst
addressing key challenges (mainly occlusion and brightness) with fruit detection.

Table 4. Different cases that affect the appearance of an apple that we include in our training dataset.

Case Image Description

1 Apple is partly occluded by a leaf; we include the leaf in the image so
the model can learn apples with some leaf features

2
Half of the apple is occluded by a leaf; we include half the apple so the
model can recognize what half an apple looks like and avoid
over-training the model to start mistaking leaves for apples

3
Apple is heavily occluded by leaves, we only include the visible part of
the apple, improving the models ability to recognize partial apple
features

4

Apple is overlapping another apple; though this problem is normally
mended as the video progresses and the angle changes, we still aim to
ensure that the model is able to identify different apples detections that
intersect with each other

5
Apples under different lighting: we address the variance in natural
lighting where some spots are bright, and others are very dim by
including apples under different lighting conditions



Sensors 2021, 21, 6657 16 of 25

Since we aim to develop a general fruit detection approach, we also prepared a small
pumpkin dataset that consists of 30 images of pumpkins. The images mostly consist
of aerial views of pumpkin patches. Unfortunately, we couldn’t acquire more data as
pumpkin data is severely limited. We use the same software package for annotation and
follow the same labeling philosophy discussed above.

4. Results
4.1. Experiments on Apple Tree Segments

For evaluation, we compute the accuracy by comparing between the yield predicted
by the model, and ground truth count which is performed manually by a human.

Table 5 shows the result of running our pipeline on apple videos containing smaller
segments of the trees. We ran the experiments over 3 different model configurations:
finetuned weights, pretrained weights, and pretrained weights corrected by our mechanism.
We compute the L1 Loss between the predicted and ground truth, and compute the accuracy
using the following equation where GT is the ground truth, and L is the computed loss.

Accuracy =
GT− L

GT
∗ 100

As expected, using just YOLO’s pretrained weights lead to a significant over count of
181 apples. This is due to how YOLO was trained on a massive dataset (MSCOCO) that
featured apples of various sizes. Figure 4 shows a video frame where a distant apple tree
has 3 apples that were detected and tracked. At first, we aimed to solve the problem by
increasing the minimum confidence needed for the detection to be tracked. However, that
didn’t help as there were other cases where the apple detection had lower confidence due
to being occluded by other objects or, more commonly, blurred due to camera motion. Thus,
the solution needed to tackle distant apples specifically. We ran the detection model on the
same video and output all of the detections into the file, and we analyzed the detections
against their respective apples to see the average size of a distant apple. Once we got an
estimated size (30 pixels width and height) for the apple, we used that threshold in our
correction mechanism.

Table 5. Results of the proposed pipeline running on a video clip of apples. We show the predicted
count versus the actual count and compute the L1 Loss and Accuracy. The accuracy was low with the
pretrained weights due to a significant overcount. Our correction mechanism substantially improved
the accuracy, however fine tuning the weights led to the best performance.

Metrics Pretrained Pretrained and Corrected Finetuned

Predicted/Ground Truth 523/342 299/342 313/342
L1 Loss 181 43 29

Accuracy 47.06% 87.43% 91.5%

Using YOLO’s pretrained weights with the correction mechanism yielded a substan-
tially better result, where the model under-counted by 43 apples, giving an accuracy of
87.43%. We looked at how the detection was behaving, and we observed that while distant
apples were no longer being detected, the detection model would sometimes struggle
with occluded apples. The detector itself also yielded average confidence levels, which
did not cause an issue in our experiment due to our minimum confidence being fairly
low, but would perform worse if the minimum confidence is increased. To address these
issues, we use transfer learning and fine tune YOLO’s weights using the dataset discussed
previously. We make sure to include occluded apples and apples with different shading.
We also changed the configuration of YOLO to only include the apple class instead of
MSCOCO’s 80 classes. Our fine tuned weights showed an improvement, with the model
under-counting by only 29 apples, with our accuracy being 91.5%.



Sensors 2021, 21, 6657 17 of 25

4.2. Experiments on Full Rows of Apple Trees

In our initial experiments on apple trees, we focus on small segments of the trees
(with roughly 300 apples) to try and catch as many different cases of apple visibility as
possible. We then expand the use of the framework with much larger and more realistic
segments of apple trees (with roughly 3–4 k apples) to test the scalability and practicality of
the framework. In this experiment, we perform counting on 3 separate full-length rows of
apples, catching the whole trees. As our primary goal is to test for scalability, we train our
model first with imagery of full apple trees and run our experiments using exclusively the
fine tuned weights. Our findings are presented in Table 6. Despite each row has different
lightnings due to the direction of sunlight and the fact that trees themselves have subtle
differences in their shape and density, the result has a little variance ranging between 90.6%
to 95.8% and the accuracy closely resembles our initial experimentation that yielded a
91.5% accuracy with fine tuned weights. We inspected each video analysis to understand
the reason behind the difference in accuracies. We found that in apple row 1, there are a
few trees that are extremely dense on leaves and their apples can barely be noticed, thus
a large number of apples are completely undetected in comparison to other rows. For
apple row 2, the sunlight was striking the camera directly, which makes all the apples
appear darker than they are which presents a visual problem that affects the detector’s
performance. For this row, we observed that our annotating approach and diversifying the
dataset with different conditions as discussed in the previous section have improved the
accuracy to 93%, otherwise it could have been much lower. Finally, apple row 3 had good
lighting and most of the apples are clearly viewed within the trees, thus the framework
achieved an accuracy of 95.8%. This shows that, despite the significantly larger amount of
apples per frame, such as in Figure 9, the framework remains robust and efficient. Similarly,
visual challenges, such as apples being occluded by leaves, can be observed in Figure 10.
As the camera moves and more of the apple pixels get revealed, the apple is detected
and appropriately tracked as seen in Figure 11. However, like our previous experiments,
largely obscured apples pose a challenge to our framework due to our reliance on detectors
to accurately pick up all visible apples. Depending on the density of the tree, as well as
farming practice (i.e., whether the tree is pruned or not), this challenge can either lead to
insignificant accuracy loss, or more noticeable under-counts. From this point on, more
training and a larger dataset would lead to small increases in accuracy. However, we need
to avoid overfitting and ensure that detectors can still pick up subtle differences between
each different row in the orchard. Further, our modified DeepSORT algorithm enabled us
to only retrain the selected object tracker (in our case, YOLOv3) and avoid retraining or
modifying the tracker.

Table 6. Results of the proposed pipeline running on a video clip of three neighboring rows of
apples. We observed consistent performance across the three rows, with accuracy varying between
90–95%. This is consistent with the performance shown on the smaller scale apple detection in the
earlier experiment.

Metrics Apple Row 1 Apple Row 2 Apple Row 3

Predicted/Ground Truth 4375/4827 3647/3921 3530/3683
L1 Loss 452 276 153

Accuracy 90.6% 93.0% 95.8%



Sensors 2021, 21, 6657 18 of 25

Figure 9. A frame taken from the video of the apple tree during runtime, just in this frame there
are approximately 30 apples being tracked, in addition to the saved tracks that are not currently
detected. There are several apples that are largely occluded for which one of the following scenarios
could be true: (1) previously detected and counted before becoming obscured; (2) will be detected
next with the camera motion or with a clearer angle; (3) will fail to be detected leading to a loss in
counting accuracy.

Figure 10. The leaf covers the apple and is predominantly visible. We avoid annotating such apples
to avoid mistakenly detecting leaves as apples and will instead rely on the angle eventually making
the apple clearer.

Figure 11. The apple does indeed become clearer in the following frame, allowing for detection to
occur and the tracker to save and count the apple.

4.3. Other Fruit Counting: Oranges and Pumpkins

This section reports the experimental results and performance analysis of the pro-
posed framework applied to other fruits (orange and pumpkin specifically) to prove its
generalization and feasibility in precision agriculture. Table 7 presents the results of our
experiments on videos of oranges and pumpkins. Pumpkin footage is captured by a drone,
which provides another interesting perspective of applying the framework on far aerial



Sensors 2021, 21, 6657 19 of 25

views. Figure 12 shows a frame from the footage that displays the aerial view and cur-
rent detections and tracks. It can be noticed that very few pumpkins are not yet tagged.
There are two common scenarios that might occur in this use case: (1) pumpkins that
are not visible in one frame will eventually become more visible in future frames and
are appropriately detected and tagged. This is a very common scenario and is shown
in Figures 13 and 14. (2) There are few pumpkins that can hardly be seen and are never
detected, thus are never tagged by the tracker, such as in Figure 15. This is similar to
the cases in apple counting. During our pumpkin experiments we faced major issues in
finding video data with pumpkins and used a relatively limited number of short videos
and images to train our model. Despite this limitation, our modified DeepSORT tracker
functions near-perfectly with the detections provided and achieves a high accuracy of
94.9%. Due to the formation of the pumpkin patch, it is a straightforward task to detect
each individual pumpkin from the top-down view that the drone provides. Additionally,
pumpkins have a distinct and relatively large shape and its bright orange color stands
out from the surrounding background (grass and leaves). On the other hand, the base
YOLO model already has an oranges class and the default pretrained weights are trained
to recognize oranges. As such, we use the pretrained weights for the detector to show
that the modified DeepSORT tracker can efficiently run on any object without further
training or modification. However, the tracker works with oranges and produces a count,
as seen in Figure 16, the accuracy is lagging a little bit, showing an accuracy of 79.3%. An
analysis of the footage during runtime quickly shows oranges that are heavily occluded
by other oranges or branches, as seen in Figure 17, failed to be detected even throughout
the movement of the camera. This problem existed in our earlier analysis on apples using
pretrained weights, however, our data augmentation and annotation approach explained
in Section 4.2 tackle this challenge very well and lead to higher accuracy. Unfortunately,
collection of real orange footage is challenging due to the limitations of orange orchards in
our area and lack of such footage or available data online.

Table 7. Results of the proposed pipeline running on a video clip of pumpkins and oranges. The
oranges are counted using pretrained YOLO weights and thus produce a lower accuracy of 79.3%.
Since pumpkins are trained specifically on aerial views of pumpkins, including a sample from the
experiment video, the accuracy was quite high.

Metrics Pumpkin Counting Orange Counting

Predicted/Ground Truth 219/233 96/121
L1 Loss 1 14 25
Accuracy 93.9% 79.3%

Figure 12. A frame taken from the video showing the view of the pumpkins and all of the current
detections, the numbers denote the track ID.



Sensors 2021, 21, 6657 20 of 25

Figure 13. Another pumpkin that is hidden and is not currently detected nor counted.

Figure 14. The change in view as the drone flies forward allows more of the pumpkin to be seen,
thus is successfully detected and given a track ID.

Figure 15. Pumpkin is mostly hidden and is hard to be seen due to little to no lighting, in further
frames the pumpkin only becomes more hidden and is never detected.

Figure 16. A view of detected oranges in the tree, numbers denote track ID.



Sensors 2021, 21, 6657 21 of 25

Figure 17. The majority of uncounted oranges are heavily obscured behind other oranges and leaves,
the YOLO pretrained weights don’t fully accommodate brightness and occlusion challenges.

5. Container Placement Results

We apply our container placement algorithm on apple row 3 from our second ex-
periment. While the feed of apple row 3 undergoes counting, the GPS coordinates are
synchronized and annotated with the counts as discussed in Section 3.4. After the yield
estimation process is complete, we process the geospatial and count information to begin
proposing the number of required containers and their optimal placements. We apply
different sets of constraints when it comes to the maximum weight of the container, and the
maximum distance between each placement. We included containers that can occupy up
to 300 and 1000 apples and set our maximum distance to 40 feet and 100 feet . In addition
to checking the location and number of containers, we also check the utilization of a con-
tainer. For example, if 1000 apples are assigned to a container of size 1000, this means the
container is 100% utilized and we achieve the minimum number of containers by having as
many fully utilized containers as possible. We show the container placement locations and
container utilization in Tables 8–10. Note that the pair (300 apples and 100 feet) yielded the
same result as when the distance was set to 40.

Table 8. All of the assigned containers are fully utilized. Note that while the last container has 77%
utilization, this is because the remaining number of apples was 230 at that point, not 300, so 77% is
the maximum utilization the container can reach.

Latitude Longitude Utilization of Container

43.91716 −78.62771 100%
43.91732 −78.62776 100%
43.9174 −78.62782 100%
43.91757 −78.62788 100%
43.91774 −78.62796 100%
43.91786 −78.628 100%
43.91805 −78.6281 100%
43.91818 −78.62814 100%
43.91833 −78.62821 100%
43.91853 −78.62829 100%
43.91865 −78.62834 100%
43.91872 −78.62838 77%

Table 9. None of the containers have 100% utilization due to the maximum distance restriction,
however they’re still fairly highly utilized, thus no containers are wasted and the farmer may
find this to be a favorable balance between even spacing of containers and properly utilizing the
container capacities.

Latitude Longitude Utilization of Container

43.91743 −78.62783 97.4%
43.91785 −78.628 80%
43.91827 −78.62816 76.7%
43.91872 −78.62838 98.9%



Sensors 2021, 21, 6657 22 of 25

Table 10. The containers are fully utilized, however the last container is only half full and is placed
too close to the 3rd container, and the other three containers have high spacing between them. This is
a less favorable option for the farmer as it adds extra time and effort for the harvesters.

Latitude Longitude Utilization of Container

43.91745 −78.62783 100%
43.91798 −78.62807 100%
43.91853 −78.62829 100%
43.91872 −78.62838 53%

We can observe that in the case where the maximum distance was set to 100 feet, all of
the containers were fully utilized relative to the apples being assigned regardless of the
maximum capacity. However, there are some concerns that with larger sized containers
(possibly even greater than 1000), there will be too much distance between the harvester
and the container in which they collect the apples. When we set the maximum distance to
40 feet instead, we note a more uniform distribution of the apples across the containers
as seen in Table 9. This also reflects on the mapping of the containers seen in Figure 18,
where containers have more even spacing when the distance constraint goes into effect
as opposed to Figure 19. We conducted additional testing with larger size containers of
2000 apple capacity, we found that the container assignment is the exact same as when the
container size is 1000 when the maximum distance is 40 feet. Whereas only two containers
are placed when the distance is set at 100 feet. We conclude that it is up to the farmers
discretion to make the final tradeoff between far spaced and lesser number of containers,
or tightly spaced containers that are easy to reach for the harvester based on our proposed
assignments and visualization.

Figure 18. The container placements visualized using Folium and OpenStreetsMap template. The
distance between the containers is evenly spaced across the row, ensuring harvesters will have a
container near them.

Figure 19. The distance between the containers is uneven, with the last two containers being close to
one another. This means that harvesters between the 2nd and 3rd boxes will walk longer distances.
There might also be a crowd around the 3rd and 4th boxes as they are fairly close to one another.



Sensors 2021, 21, 6657 23 of 25

6. Conclusions

This work on yield estimation and visualization using deep learning develops an
end-to-end framework that receives video footage of fruit trees and produces accurate
yield estimates combined with GPS coordinates that are visually mapped. Using video
footage, due to their efficiency, demands the addition of a tracking functionality in addition
to object detection which is used in past works for yield estimation. In this work, we
use YOLOv3 for object detection and the DeepSORT tracking algorithm for tracking. We
modified DeepSORT to work more robustly on various fruits by implementing ResNet18 in
place of the original proposed CNN. Our modification was successful and the framework
performs well on various fruits from different views, producing high accuracy. While
collecting apple data from the orchard, we recorded the GPS coordinates. We leverage this
data to associate a set of frames with a respective coordinate, allowing us to visualize the
yield information on a map. Using geospatial information, we were able to implement
an efficient container placement algorithm that suggests optimal locations for containers
in preparation for harvesting. Through the inclusion of both visualized yield estimates
and optimal container placements, we are able to present farmers with a smart harvesting
solution that aids them in understanding the states of their fields, and efficiently plan their
logistics before harvest. We found that our work can be limited by the performance of our
detector and some visual challenges such as object occlusion. We developed a strategy
for fruit data annotation to tackle these challenges and diversify the detector training
dataset for better performance. Although this strategy was successful and has significantly
improved the detector performance, the detector remains the bottleneck in the proposed
framework. Overall, the proposed framework is successful in producing accurate yield
estimates and generating a mapping solution to improve the usability of fruit analysis to
farmers, supporting decision making for better and efficient logistics management.

Author Contributions: Conceptualization, Y.O. and K.E.; methodology, Y.O.; software, Y.O. and
R.D.; validation, Y.O.; formal analysis, Y.O.; investigation, Y.O.; resources, Y.O.; data curation, Y.O.;
writing—original draft preparation, Y.O. and R.D.; writing—review and editing, Y.O., R.D. and K.E.;
visualization, Y.O.; supervision, K.E. All authors have read and agreed to the published version of
the manuscript.

Funding: We acknowledge the support of the Natural Sciences and Engineering Research Council of
Canada (NSERC) [funding reference number CRC-2017-00170].

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Corwin, D.; Lesch, S. Application of soil electrical conductivity to precision agriculture: Theory, principles, and guidelines. Agron.

J. 2003, 95, 455–471. [CrossRef]
2. Tian, L.; Reid, J.F.; Hummel, J.W. Development of a precision sprayer for site-specific weed management. Trans. ASAE 1999,

42, 893. [CrossRef]
3. Wang, Q.; Nuske, S.; Bergerman, M.; Singh, S. Automated crop yield estimation for apple orchards. In Experimental Robotics;

Springer: Berlin/Heidelberg, Germany, 2013; pp. 745–758.
4. Pothen, Z.S.; Nuske, S. Texture-based fruit detection via images using the smooth patterns on the fruit. In Proceedings of the

2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 5171–5176.
5. Roy, P.; Isler, V. Surveying apple orchards with a monocular vision system. In Proceedings of the 2016 IEEE International

Conference on Automation Science and Engineering (CASE), Fort Worth, TX, USA, 21–25 August 2016; pp. 916–921.
6. Rahnemoonfar, M.; Sheppard, C. Deep count: Fruit counting based on deep simulated learning. Sensors 2017, 17, 905. [CrossRef]

[PubMed]
7. Bargoti, S.; Underwood, J.P. Image segmentation for fruit detection and yield estimation in apple orchards. J. Field Robot. 2017,

34, 1039–1060. [CrossRef]

http://doi.org/10.2134/agronj2003.4550
http://dx.doi.org/10.13031/2013.13269
http://dx.doi.org/10.3390/s17040905
http://www.ncbi.nlm.nih.gov/pubmed/28425947
http://dx.doi.org/10.1002/rob.21699


Sensors 2021, 21, 6657 24 of 25

8. Sa, I.; Ge, Z.; Dayoub, F.; Upcroft, B.; Perez, T.; McCool, C. Deepfruits: A fruit detection system using deep neural networks.
Sensors 2016, 16, 1222. [CrossRef] [PubMed]

9. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. Inception-v4, inception-resnet and the impact of residual connections on learning.
arXiv 2016, arXiv:1602.07261.

10. Chen, S.W.; Shivakumar, S.S.; Dcunha, S.; Das, J.; Okon, E.; Qu, C.; Taylor, C.J.; Kumar, V. Counting apples and oranges with deep
learning: A data-driven approach. IEEE Robot. Autom. Lett. 2017, 2, 781–788. [CrossRef]

11. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.

12. Liu, X.; Chen, S.W.; Aditya, S.; Sivakumar, N.; Dcunha, S.; Qu, C.; Taylor, C.J.; Das, J.; Kumar, V. Robust fruit counting: Combining
deep learning, tracking, and structure from motion. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Madrid, Spain, 1–5 Octobr 2018; pp. 1045–1052.

13. Du, X.; Lin, T.Y.; Jin, P.; Ghiasi, G.; Tan, M.; Cui, Y.; Le, Q.V.; Song, X. SpineNet: Learning Scale-Permuted Backbone for
Recognition and Localization. arXiv 2019, arXiv:1912.05027.

14. Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International
Conference on Machine Learning, PMLR, Long Beach, CA, USA, 10–15 June 2019; pp. 6105–6114.

15. Wang, C.Y.; Liao, H.Y.M.; Wu, Y.H.; Chen, P.Y.; Hsieh, J.W.; Yeh, I.H. CSPNet: A new backbone that can enhance learning
capability of CNN. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle,
WA, USA, 14–19 June 2020; pp. 390–391.

16. Chao, P.; Kao, C.Y.; Ruan, Y.S.; Huang, C.H.; Lin, Y.L. Hardnet: A low memory traffic network. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, Seoul, Korea, 27–28 October 2019; pp. 3552–3561.

17. Newell, A.; Yang, K.; Deng, J. Stacked Hourglass Networks for Human Pose Estimation. arXiv 2016, arXiv:1603.06937.
18. Yu, F.; Wang, D.; Shelhamer, E.; Darrell, T. Deep layer aggregation. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 2403–2412.
19. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
20. Tan, M.; Pang, R.; Le, Q.V. Efficientdet: Scalable and efficient object detection. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 10781–10790.
21. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE international

conference on computer vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988.
22. Zhou, X.; Wang, D.; Krähenbühl, P. Objects as points. arXiv 2019, arXiv:1904.07850.
23. He, K.; Zhang, X.; Ren, S.; Sun, J.Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. Lect. Notes

Comput. Sci. 2014, 37, 346–361. [CrossRef]
24. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, Venice, Italy, 22–29 October 2017; pp. 2117–2125.
25. Liu, S.; Huang, D.; Wang, Y. Learning spatial fusion for single-shot object detection. arXiv 2019, arXiv:1911.09516.
26. Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European conference

on computer vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19.
27. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep

Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. arXiv 2016, arXiv:1606.00915.
28. Liu, S.; Huang, D. Receptive field block net for accurate and fast object detection. In Proceedings of the European Conference on

Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 385–400.
29. Jocher, G.; Kwon, Y.; Veitch-Michaelis, J.; Suess, D.; Baltacı, F.; Bianconi, G.; Lee, G.; Kendall, D.; Reveriano, F.; Nataprawira, J.;

et al. Ultralytics YOLOv5 Release Compatibility Update for YOLOv3. 2021. Available online: https://zenodo.org/record/468123
4#.YVUaFH0RXIw (accessed on 15 September 2021).

30. Redmon, J. Darknet: Open source neural networks in c. Available online: https://pjreddie.com/darknet/ (accessed on 15
September 2021).

31. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, Las Vegas, NV, USA, 1–26 July 2016; pp. 770–778.

32. Lazebnik, S.; Schmid, C.; Ponce, J. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories.
In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), New
York, NY, USA, 17–22 June 2006; Volume 2, pp. 2169–2178. [CrossRef]

33. Leibe, B.; Schindler, K.; Van Gool, L. Coupled detection and trajectory estimation for multi-object tracking. In Proceedings of the
2007 IEEE 11th International Conference on Computer Vision, Rio de Janeiro, Brazil, 14–20 October 2007; pp. 1–8.

34. Bewley, A.; Ge, Z.; Ott, L.; Ramos, F.; Upcroft, B. Simple online and realtime tracking. In Proceedings of the 2016 IEEE
International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 3464–3468.

35. Wojke, N.; Bewley, A.; Paulus, D. Simple online and realtime tracking with a deep association metric. In Proceedings of the 2017
IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 3645–3649.

36. Bochinski, E.; Eiselein, V.; Sikora, T. High-speed tracking-by-detection without using image information. In Proceed-
ings of the 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Lecce, Italy,
29 August–1 September 2017; pp. 1–6.

http://dx.doi.org/10.3390/s16081222
http://www.ncbi.nlm.nih.gov/pubmed/27527168
http://dx.doi.org/10.1109/LRA.2017.2651944
http://dx.doi.org/10.1007/978-3-319-10578-9_23
https://zenodo.org/record/4681234#.YVUaFH0RXIw
https://zenodo.org/record/4681234#.YVUaFH0RXIw
https://pjreddie.com/darknet/
http://dx.doi.org/10.1109/CVPR.2006.68


Sensors 2021, 21, 6657 25 of 25

37. Bochinski, E.; Senst, T.; Sikora, T. Extending IOU based multi-object tracking by visual information. In Proceedings of the 2018
15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Auckland, New Zealand, 27–30
November 2018; pp. 1–6.

38. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks (RPN,
Faster R-CNN). IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef] [PubMed]

39. Chan, Y.; Hu, A.; Plant, J. A Kalman filter based tracking scheme with input estimation. IEEE Trans. Aerosp. Electron. Syst. 1979,
AES-15, 237–244.

40. Li, X.; Wang, K.; Wang, W.; Li, Y. A multiple object tracking method using Kalman filter. In Proceedings of the 2010 IEEE
International Conference on Information and Automation, Harbin, China, 20–23 June 2010; pp. 1862–1866.

41. Zheng, L.; Bie, Z.; Sun, Y.; Wang, J.; Su, C.; Wang, S.; Tian, Q. Mars: A video benchmark for large-scale person re-identification. In
Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; pp. 868–884.

42. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of
the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255.

http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650

	Introduction
	Related Works
	Materials and Methods
	Fruit Detection
	Model Selection
	YOLO3 Model Architecture
	Correcting Detections

	Fruit Tracking
	Tracker Selection
	DeepSORT
	Track Initialization
	Convolutional Neural Network
	Association and Counting

	Geospatial Mapping of Fruit Count
	Container Placement Optimization
	Dataset Preparation

	Results
	Experiments on Apple Tree Segments
	Experiments on Full Rows of Apple Trees
	Other Fruit Counting: Oranges and Pumpkins

	Container Placement Results
	Conclusions
	References

