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Abstract: Many GNSS applications have been experiencing some constantly growing needs in terms
of security and reliability. To address some of them, both GPS and Galileo are proposing evolutions
of their legacy civil signals, embedding features of authentication. This paper focuses on the Galileo
Open Signal Navigation Message Authentication (OSNMA) and describes its implementation within
a real-time software receiver for ARM-based embedded platforms. The innovative contributions
of the paper include the software profiling analysis for the OSNMA add on, along with the com-
parison among performances obtained with different platforms. In addition, specific evaluations
on the computational load of the whole receiver complete the analysis. The receiver used for the
implementation belongs to the NGene receivers family—real-time fully-software GPS and Galileo
receivers, tailored for different platforms and sharing the same core processing. In detail, the paper
deals with the introduction of the OSNMA support inside the eNGene, the version of the receiver
executable by ARM-based embedded platforms.

Keywords: Galileo OSNMA; software receiver; embedded platform; ARM; spoofing; authentication;
Galileo open service

1. Introduction

As widely demonstrated, Global Navigation Satellite System (GNSS) signals are
relatively susceptible to interference [1–4], whether from natural sources, reflections from
obstacles, or attacks of intentional nature. It is not surprising, in fact, that many applications
have strict requirements in terms of resilient navigation. Such a need is particularly strong
for all those applications defined as critical [5], either safety-critical or liability-critical, in
which the user position or velocity information might be used to take actions, relevant for
people safety or for legal and economic decisions [6,7].

Within this context, the research community has been spending significant effort
in studying the possible consequences of structured interference, such as spoofing, and
to develop efficient methods to protect against those kinds of attack [2,8–11]. A first
macro-classification of spoofing countermeasures divides them in cryptographic and non-
cryptographic defenses [1]. Cryptographic defenses are based on specific features added to
the GNSS signals themselves [6,12,13], and non-cryptographic methods include traditional
common anti-spoofing techniques suitable to standalone receivers [1,2]. In this sense, cryp-
tographic defenses can be seen as the contributions of the system against spoofing attacks.
This kind of protection, definitely mandatory for military or governmental authorized
users, can be also extended to open civil signals.
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As examples, both GPS and Galileo are proposing evolutions of their legacy signals,
embedding features of authentication, intended as the ability of the system to guarantee the
user that non-counterfeit navigation data from one of the constellation satellites is used [6].

In particular, GPS is disclosing the Chips-Message Robust Authentication (CHIMERA)
solution, suitable for the GPS L1C signal [14]. On the other hand, in 2017 the Galileo
program officially announced its intention to offer a free Open Signal Navigation Message
Authentication (OSNMA) service [15], designed to be disseminated on the E1 Galileo band.
According to [15], the OSNMA signal-in-space transmission is expected to begin in 2020.
The new signal will be fully backward compatible: in fact, the performance for users who
are not able or not interested in processing the authentication bits will not be affected. On
the contrary, users who want to take advantage of the authentication service must update
the current Galileo receivers to process the OSNMA bits and verify the authenticity of the
transmitted source.

Focusing on the OSNMA, this paper describes the implementation of the Galileo
authentication scheme in a real-time software receiver for ARM-based embedded platforms,
including the comparison among the performance of different platforms. This paper is
an extension of the article titled “Galileo OSNMA: an implementation for ARM-based
embedded platforms,” presented by the same authors at the 2020 International Conference
on Localization and GNSS (ICL-GNSS) [16], thereby providing a wider analysis on the
compared platforms, along with a dedicated study on the complete OSNMA-ready receiver.

Both papers are based in turn on [17], which described the implementation of the
software routines able to make a real-time GPS/Galileo software receiver ready for the
reception and elaboration of the OSNMA service. In fact, although OSNMA-ready commer-
cial receivers start appearing on the marketplace, e.g., [18], an independent fully-software
OSNMA solution allows one to add new features and strategies, as every part of the
algorithm can be easily accessed and modified, thereby speeding up the prototyping pro-
cess. Furthermore, the results achieved with a research tool, such as the one proposed in
this paper, provide useful guidelines that might be exploited also for the development of
commercial receivers.

The receiver used for the implementation in [17] belongs to the NGene receivers
family [19], a set of software tools tailored for different platforms and sharing the same core
processing. Such tools have been specifically developed for research purposes. While [17]
focused on the version of NGene executable by standard PCs running a Linux operating
system, both [16] and this paper deal with the introduction of the OSNMA scheme inside
eNGene [20], the version of the receiver executable by ARM-based embedded platforms.

More in detail, with respect to [16], two new contributions justify this extended
version: First of all, two further ARM-based platforms have been included in the platforms
comparison, thereby allowing for a more widely assessment of the performance. Secondly,
a specific analysis on the computational load of the complete OSNMA-ready receiver is
discussed hereafter.

More in detail, after this introduction, Section 2 recalls the main characteristics of the
OSNMA authentication scheme, while Section 3 describes the eNGene software receiver,
along with the update to the OSNMA-ready version. The results of the software profiling
analysis of the OSNMA functions are summarized in Section 4, focusing on the comparison
among platforms and considering different configurations of the OSNMA parameters. Such
analysis is then extended to the main functions of the complete OSNMA-ready receiver in
Section 5, where the processor’s computational load is also evaluated. Section 6 draws the
conclusions, sketching some ideas for future activities.
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2. The OSNMA in Brief

To ease the reading of the paper, this section briefly recalls the main concepts behind
the OSNMA scheme; refer to [21–24] for more complete and detailed descriptions.

The OSNMA, as sketched in Figure 1, is based on the Timed Efficient Stream Loss-
tolerant Authentication (TESLA) protocol [25], which is structured into two elements:
(i) the transmission of a message authentication code (MAC), used to authenticate the
plaintext navigation message, and (ii) the delayed transmission of the key used to compute
the MAC.

The delayed release mechanism ensures that the key is not known until after the
message and the MAC are received. The protocol also prevents the spoofer from generating
messages, keys and MACs, and broadcasting them compliant to the specifications. For this,
the key belongs to a chain of keys, referred to as TESLA key chain, in which each key is
generated from the previous one with a one-way function. The generation of a chain of
length N starts with a random secret key kN , and ends with a public root key k0, certified
as authentic. The disclosure of the chain occurs in the opposite order. The root key k0 is
transmitted along with a digital signature generated using a standard asymmetric scheme,
based on a pair of private and public keys: the receiver can use the digital signature and
the public key to check the authenticity of the received k0.

The receiver, once certified the root key as authentic, can start the authentication
verification process, which is basically performed by two steps:

1. The current received TESLA key is authenticated with the root key, by performing
the one-way function the required number of times. Alternatively, if one or more
authentication verifications have been already successfully occurred, the current key
can also be authenticated with a previous key from the chain, closer than the root key.

2. The MAC is then regenerated using the current key and the navigation data. If it
coincides with the previously received MAC, the navigation data are authenticated.

1 

 

 

Figure 1. Schematic of the TESLA key chain and its use in the OSNMA scheme.

The OSNMA information will be transmitted in the E1B Galileo I/NAV message [26],
using the 40 bits marked as “Reserved 1” in the odd page part, thereby providing an
equivalent bandwidth of 20 bps, for a total of 600 bits every I/NAV subframe.

The authentication information is sent in two sections transmitted in parallel:
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• The HKROOT section that contains the global headers and the digital signature
message (DSM), usually signing a root key (8 bits per page);

• The MACK section containing the MACs and the associated delayed keys (32 bits
per page).

The OSNMA will be transmitted only from a subset of satellites, able to cross-
authenticate also those satellites whose signals do not carry the OSNMA information.

3. Development Work

The NGene receivers represent a good set of choices for the implementation and
testing of the OSNMA functionality on different platforms, including standard PCs [17,19],
ARM-based embedded platforms [20], and Android smartphones [27]. Apart from the
adaptations needed by the different platforms, all the receivers belonging to the NGene
portfolio share the same core processing and features:

• The real-time capability of processing the GPS, Galileo and EGNOS signals broad-
casted on the L1/E1 band;

• The implementation of the whole GNSS signal elaboration chain, from the acquisition
to the position velocity and time (PVT) computation;

• The Software-Defined-Radio (SDR) approach, which offers the highest level of main-
tainability, flexibility and portability of a fully software implementation;

• The support for several L1/E1 radio frequency (RF) USB front ends (FEs) [28–31],
allowing the user to also specify a custom FE.

In particular, most of the functionalities are coded in ANSI-C, allowing for a high
level of portability among different operating systems (OSs) and platforms, and only
the modules that have to process high data rates, such as the samples coming from the
FE at tens of megahertz (e.g., 1–16 MHz), are coded in assembly language, exploiting
processor-specific optimizations.

Both the receivers considered in this paper, i.e., NGene [17] and eNGene [20], require
a Linux operating system, but while the former can be executed by standard PCs, the latter
is tailored to ARM-based embedded platforms, as better described in the next subsection.
Figure 2 shows an illustrative picture of all NGene family’s receivers developed along more
than one decade.
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3.1. eNGene

eNGene has been obtained porting the original code of NGene to an ARM-based
embedded platform. During the porting operation, special care has been devoted to the
translation of the functionalities coded in assembly language from the Intel processor’s
instruction set to the ARM one. In addition to this translation, one of the main noteworthy
differences of eNGene with respect to NGene is the multiple-threads architecture. Indeed,
eNGene explicitly splits functions into different threads, thereby fully exploiting all the
cores available in the ARM processor, optimizing the load to enhance the real-time capa-
bility. The eNGene architecture is compatible with almost every ARM-based embedded
platform, without the need for any adaptations, since it does not exploit any specific
characteristic of the embedded board (e.g., FPGA based hardware accelerators).

3.2. The OSNMA Add-On

The OSNMA functions, already implemented in NGene, as reported in [17], have
been included also in eNGene. Being low data rate functions that elaborate the naviga-
tion message decoding output, they have been coded in ANSI-C and exploit the C-based
open-source OpenSSL 1.1.1 library [32] for the cryptographic operations, thereby consider-
ably easing the porting procedure. The OpenSSL 1.1.1 library is available with both the
binary files and the source code, easing the installation on different operating systems
and platforms.

The main OSNMA functionalities implemented in the receiver are depicted in Figure 3,
while a short description is reported in Table 1, together with the list of cryptographic
functions, main required inputs and outputs produced by each function.
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Table 1. OSNMA functions’ descriptions. For each one the list of cryptographic functions, main inputs and outputs are also shown. © [2020] IEEE. Reprinted, with permission, from [16].

Function Description Crypto Functions Main Inputs Validated Outputs

Digital Signature verification

verification of the root key received in the
DSM-KROOT message, by means of the

Elliptic Curve Digital Signature Algorithm
(ECDSA) with several EC and hash

functions options

• ECDSA-P224/SHA-224
• ECDSA-P256/SHA-256
• ECDSA-P384/SHA-384
• ECDSA-P521/SHA-512

• DSM-KROOT message
• public key • TESLA root key

TESLA key verification

verification of a key received in a MACK
block, applying a hash function for a

number of times equal to the distance in the
TESLA chain between the key to be verified

and the last verified key or the root key

• SHA-256
• SHA3-224
• SHA3-256

• TESLA key
• Galileo System Time (GST)
• last verified TESLA key (or

root key)

• TESLA key

MAC verification verification of the MAC/MAC0 field
received in the MACK block

• HMAC-SHA-256
• CMAC-AES

• I/NAV navigation message
• Galileo System Time (GST)
• MAC and MAC-Info fields
• a verified TESLA key

(PRN1 or PRN19)

• specific portions of the
navigation data, depending on
the Authentication Data and
Key Delay (ADKD) field

MACSEQ verification
verification of the MACSEQ field in the

MACK block, similar to the
MAC verification

• MAC lookup table
• Galileo System Time (GST)
• MACSEQ and

MAC-Info fields
• a verified TESLA key

(PRN1 or PRN19)

• MAC-Info

Public key verification
verification of a new public key received in

a DSM-PKR message, through the
Merkle Tree

• SHA-256 • DSM-PKR message
• Merkle Tree Root

• public key
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3.3. The Platforms Used for the Performance Analysis

In this paper, the profiling analysis of the OSNMA ready receiver is described for
three ARM-based boards, and for reference, a standard Intel-based desktop PC.

The platform originally used for the implementation of eNGene was an ODROID-
X2 [33], which entered the market in 2012 and was discontinued in 2015. The ODROID-X2
was a powerful, low cost and pocket-sized board, featuring a 1.7 GHz Quad Core ARM
Cortex-A9, 2 GB RAM memory and a number of peripherals, such as a high-definition
multimedia interface (HDMI) monitor connector and six USB ports, which can be used for
keyboard, mouse and FE. The board hosts an Ubuntu Linaro OS distribution, booting from
an embedded Multi Media Card (eMMC), so that the developer can work directly on the
target platform using Eclipse IDE and GNU Compiler Collection (GCC) compiler.

The performance obtained with ODROID-X2 has been compared with those gotten
from two more recent boards, namely, the Raspberry Pi 4 [34] and ODROID-C4 [35]:
while their general architecture is similar to that of ODROID-X2, they exhibit newer ARM
processors: indeed, Raspberry Pi 4 uses an ARM Cortex A72 and ODROID-C4 uses an
ARM-Cortex A55. Both processors implement the ARMv8 64-bit instruction set, whereas
the ARM Cortex A9 on ODROID-X2 supports the ARMVv7 32-bit instruction set. The
factory configuration of the Raspberry Pi 4 uses the ARM processor as a 32-bit processor,
so the eNGene developed for ODROID-X2 is fully compatible with the new board. On the
contrary, ODROID-C4 required a rewriting of the assembly parts to allow the execution on
the 64-bit processor, due to the different assembly syntax of the 64-bit instruction set with
respect to the 32-bit one.

Figure 4 reports a picture of the used platforms, and Table 2 summarizes their main
hardware features. In particular, the first column reports the reference desktop PC character-
istics, whereas the other three columns show the features of the three ARM-based platforms.
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Table 2. Platforms used for the software profiling analysis. © [2020] IEEE. Extended, with permission, from [16].

Platform Platform 1 [16,17] Platform 2 [16] Platform 3 Platform 4

Board Dell Precision T1700
Desktop PC ODROID-X2 Raspberry Pi 4 ODROID-C4

Processor Intel Xeon E3-1270 v3 Samsung Exynos4412
ARM Cortex-A9

Broadcom BCM2711
ARM Cortex-A72

Amlogic S905 × 3
ARM Cortex-A55

Base frequency of
the processor 3.50 GHz 1.7 GHz 1.5 GHz 2 GHz

Cores 8 4 4 4
Memory 16 GB DDR3 2 GB DDR2 4 GB LPDDR4 4 GB DDR4
Storage 1 TB HDD 64 GB eMMC 32 GB MicroSD 64 GB eMMC

Operative System Ubuntu 18.04.3 LTS (64 bit) Ubuntu Linaro (32 bits) Raspbian (32 bits) Ubuntu Mate (64 bits)

4. Software Profiling Analysis of the OSNMA Functions

The software profiling, already performed to evaluate the OSNMA additional compu-
tational cost for the NGene receiver in [17] and eNGene on ODROID-X2 in [16], has been
extended to the two additional embedded boards, i.e., Raspberry Pi4 and ODROID-C4.

4.1. Simulation Set-Up

The analysis is mainly focused on the cryptographic functions call rate and execution
times. The memory occupation has already been evaluated in [17], resulting in a negligible
additional memory occupation due to the OSNMA functionality, with respect to the
classical data processing.

The same testbed as in [16,17] has been used: it only includes the data decoding
and the OSNMA functions, and all the related data structures, thereby speeding up the
profiling analysis. The Galileo OS navigation message including the OSNMA bits has been
generated by a MATLAB®-based script and provided as input to the testbed.

Table 3 summarizes the navigation message generation setup, where four sets of
values have been considered, corresponding to all the four Elliptic Curve Digital Signature
Algorithm (ECDSA) EC options, as indicated for the NPKT field. The digital signature
verification is indeed the heaviest function from a computational point of view [17]. The
four different configurations imply that the reception of complete DSM-KROOT and the re-
ception of DSM-PKR requires different numbers of subframes, as specified by NB_KROOT
and NB_PKR fields. All other parameters have been kept fixed, including the number of
MACK blocks per subframe (see NMACK field), and key (KS field) and MAC (MS field)
sizes. In the chosen configuration, OSNMA transmits two MACK blocks per subframe,
including five 10-bit MAC fields and one 96-bit key per block. Finally, a short TESLA chain
length has been considered, as indicated by the D_KROOT parameter.

The software testbed has been executed on the Raspberry Pi4 and ODROID-C4 plat-
forms for a total of about 6 h of running time for each set of values reported in Table 3.
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Table 3. Navigation message generation setup. © [2020] IEEE. Reprinted, with permission, from [16].

Parameter Description
Sets of Values

S1 [17] S2 S3 S4

O
SN

M
A

pa
ra

m
et

er
s

NS Number of Satellites with different keys per
MACK block 36

NB_KROOT Number of 104-bit blocks of the DSM-KROOT 7 10 13

NMACK Number of MACK blocks within a subframe 2

HF Hash Function used for the TESLA chain
generation SHA-256

MF MAC Function used to authenticate the
navigation data HMAC-SHA-256

KS Keys Size 96 bits

MS MACs size 10 bits

MO MACK Offset 0 (No offset)

ADKD
Authentication Data and Key Delay defining the
pieces of information in the navigation message
to be authenticated and the key to be used for it.

{0, 2, 3, 4, 11, 12}

NB_PKR Number of 104-bit blocks of the DSM-PKR 13 14 16

NPKT New Public Key Type ECDSA P224/SHA-224 ECDSA P256/SHA-256 ECDSA P384/SHA-384 ECDSA P521/SHA-512

DSMs Sequence Generation sequence of the DSMs {DSM-KROOT, DSM-PKR, DSM-KROOT}

D_KROOT Key root distance from the simulation start time 32 m 11 s

Number of Galileo Satellites Number of generated Galileo Satellites 7

Galileo PRNs Generated Galileo PRNs {5, 6, 7, 14, 24, 25, 26}

G
en

er
al

pa
ra

m
et

er
s

NavMsg Length Length of the generated nav. message 1 h
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4.2. Analysis Results

Table 4 reports the achieved profiling results in terms of call rate and execution times
for all the four platforms indicated in Table 2 using the set of parameters S1 in Table 3. In
particular, for each listed OSNMA function, Table 4 reports the call rate, along with the
statistical analysis of the execution times on the four target platforms, i.e., the mean value
avr, the standard deviation σ and the estimated accuracy ε, evaluated as the ratio between
the mean value and the standard deviation. In Table 4, the OSNMA functions are presented
in a decreasing order of call rate, thereby showing the MAC and TESLA key verifications
at the top of the list, while the digital signature (DS) and public key verifications are at
the bottom. Concerning the public key verification, it is worth noticing that, although the
DSM-PKR transmission rate has not been specified yet, it is assumed to be very low in
nominal conditions [25,26]. Additionally, to remove the dependence of the TESLA key
verification on the number of steps to be traversed in the chain (from the key to be verified
back to the last verified key), the profiling of one step of TESLA chain has been reported.

Table 4. Software profiling analysis results obtained with the set of parameters S1 in Table 3. © [2020] IEEE. Extended, with
permission, from [16].

Platform 1 [16,17] Platform 2 [16] Platform 3 Platform 4

Call
Rate
(Hz)

avr (µs) σ (µs) ε (%) avr (µs) σ (µs) ε (%) avr (µs) σ (µs) ε (%) avr (µs) σ (µs) ε (%)

TESLA key verification
(one step) 13.60 0.61 0.02 2.87 2.77 0.50 18.16 2.66 0.09 3.44 2.70 0.07 2.44

MAC verification 2.62 7.85 0.21 2.66 68.36 2.44 3.57 45.69 6.19 13.54 47.34 0.91 1.91
MACSEQ verification 0.27 5.84 0.18 3.11 44.54 5.05 11.35 40.94 0.60 1.48 40.92 0.92 2.24

Digital Signature
verification 0.03 134.82 1.51 1.12 2835.13 6.64 0.23 1857.40 11.63 0.62 1416.60 18.25 1.29

Public key verification 0.01 2.76 0.08 3.08 25.46 0.35 1.38 14.36 0.50 3.52 11.30 1.03 9.09

Looking at the statistical analysis of the execution times, a clear degradation can be
observed for all the Cortex-A processors, due to the reduced computational performance
of the embedded platforms with respect to the PC. As detailed in Table 5 the mean values
of degradation range from a factor of 4.3 to 9.2 for all the functions, except the digital
signature verification, which shows degradations by a factor of 10 to 21, thereby resulting
in the heaviest load. Standard deviation increments are even bigger, varying from 3.5 to
29 times. Those achieved by the Cortex-A9 in particular, are inversely proportional with
respect to the mean execution time, translating into a higher estimation inaccuracy for
functions with a shorter execution time (see the TESLA key verification for platform 2 in
Table 4).

Table 5. Execution time degradation factors in terms of mean value avr and standard deviation σ on
the three embedded boards, i.e., platforms 2, 3 and 4, with respect to the standard PC, i.e., platform 1,
for all the OSNMA functions reported in Table 4.

Platform 2 Platform 3 Platform 4

avr σ avr σ avr σ

TESLA key verification
(one step) 4.54 25.00 4.36 4.50 4.43 3.50

MAC verification 8.71 11.62 5.82 29.48 6.03 4.33
MACSEQ verification 7.63 28.10 7.01 3.33 7.01 5.11

Digital Signature
verification 21.02 4.40 13.78 7.70 10.51 12.09

Public key verification 9.22 4.37 5.20 6.25 4.09 12.87

This behavior is likely due to the ODROID-X2 Ubuntu Linaro task scheduler. Now,
such a trend cannot be observed for Cortex-A72 and Cortex-A55 processors (see platforms 3
and 4 in Table 4), where short execution times do not necessarily imply higher measurement
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inaccuracies. This can be explained considering the different operating systems (OSs), i.e.,
Raspbian and Ubuntu Mate, featured respectively by Raspberry Pi4 and ODROID-C4.
Furthermore, for both platforms better mean execution time performance with respect to
ODROID-X2 can be appreciated, especially for high load functions. The newer platforms
show similar performance for all the functions, excluding the digital signature verification,
which exhibits improvements of 34% and 50% for platforms 3 and 4 respectively.

Being the heaviest function, the digital signature verification deserves some more
investigations, particularly focusing on the embedded platforms, whereas the standard
PC performance does not result to be critical. In this regard, Table 6 reports the detailed
profiling analysis of the main subroutines, including the digital envelope (EVP) application
programming interface (API), the verified context routines provided by the Open SSL
library and an encoding function to make the public key compliant with the input format
required by the EVP functions. In particular, verifying a message requires a three-stage
process: initialize the verification context with a message digest/hash function and public
key (EVP Verify Init), add and hash the message data (EVP Verify Update) and finally, verify
the data against the received signature (EVP Verify Final). As can be observed in Table 6,
the main contribution is given by EVP Verify Final, meaning that the whole computational
complexity resides in the low-level EVP API implementation. This is true not only for
the ODROID-X2 platform, as already shown in [16], but also for both the newer boards,
reported for completeness. Although somehow expected, since all processors belong to
same family, i.e., ARM Cortex-A, such results confirm that the lower level implementation
of EVP library APIs and their behavior in reaction to calls are the same for all the considered
boards. This means that the developer has no chance to further optimize this function,
other than implementing it from scratch. This last approach would be time consuming and
not convenient from a security point of view; the usage of a different cryptographic library
will be probably more affordable.

Table 6. Software profiling analysis results of the digital signature verification and its subroutines obtained on the three
embedded platforms with the set of parameters S1 in Table 3. © [2020] IEEE. Extended, with permission, from [16].

Call Rate (Hz)
Platform 2 [16] Platform 3 Platform 4

avr (µs) σ (µs) ε (%) avr (µs) σ (µs) ε (%) avr (µs) σ (µs) ε (%)

Calling function Digital Signature
verification

0.03

2835.13 6.64 0.23 1857.40 11.63 2.70 1416.60 18.25 1.29

Subroutines

Asn1 encoding 1.24 0.06 4.81 1.41 0.09 6.49 0.85 0.13 15.36
EVP Verify Init 4.05 0.19 4.70 3.97 0.23 5.84 6.74 1.28 19.05

EVP Verify Update 0.86 0.03 3.58 1.19 0.08 7.17 0.67 0.12 17.99
EVP Verify Final 2820.23 6.42 0.23 1841.07 11.43 0.62 1400.28 15.40 1.10

Table 7 completes the profiling analysis of the digital signature verification for all
the four sets of parameters values S1 to S4 indicated in Table 3 and the newer embedded
platforms. Results for the ECDSA-P224/SHA-224, already shown in Tables 4 and 6, are also
reported to ease the comparison. The mean execution time increases for higher EC orders,
except for the P256, which shows the best performance. This could be due to the fact
that the NIST P-256, also known as prime256v1, is the most preferred elliptic curve used
nowadays on the Internet and the default one for OpenSSL, so that it was likely subject to
a specific low-level optimization [36]. Figure 5 summarizes the percentage improvement I

for the newer boards with respect to ODROID-X2. I is defined as I = (avrp2−avrpx)
avrp2

∗ 100,
where subscripts p2 and px indicate platform 2 and platform x = {3, 4} respectively. It
can be noticed how ODROID-C4 exhibits better performance (I ranging from 50% to 61%)
than Raspberry Pi4 (I ranging from 24% to 41%).
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Table 7. Execution time profiling of the digital signature verification obtained on the three embedded platforms with the
sets of values S1 to S4 in Table 3. © [2020] IEEE. Extended, with permission, from [16].

Platform 2 [16] Platform 3 Platform 4
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Sets of
Values avr (µs) σ (µs) ε (%) avr (µs) σ (µs) ε (%) avr (µs) σ (µs) ε (%)

S1 2835.13 6.64 0.23 1857.40 11.63 0.62 1416.60 18.25 1.29

S2 932.90 4.34 0.46 706.54 5.75 0.81 457.51 13.62 2.98

S3 10,189.00 16.97 0.17 5959.01 31.05 0.5 3997.05 31.35 0.78

S4 22,982.28 16.28 0.07 14,074.56 61.98 0.44 9419.61 18.82 0.20
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Figure 5. Execution time percentage improvements I for platforms 3 and 4 with respect to platform 2
for all the four ECDSA options of the digital signature verification in Table 3.

4.3. Some More Considerations about the Real-Time Compatibility

Apart from P256, results for the other elliptic curves pose some concerns about their
compatibility with real-time execution. In particular, as better detailed in [17], the receiver
main loop elaborates 1 ms bunches of samples for each channel, i.e., satellite, meaning that
the cumulated elaboration time of the whole signal processing chain, including acquisition
and tracking for all the channels, OSNMA support and other operations, cannot exceed 1
ms. This means that functions with very high computational burdens might cause the loss
of input samples and compromise the real-time capability. Despite one step of TESLA chain
exhibiting a very low execution time, as shown in Table 4, the total computational load
required to verify a TESLA key depends on the number of steps to be traversed in the chain,
as mentioned before. As soon as the first received TESLA key has been verified, a maximum
of NMACK × NS steps has to be performed in each subframe. At the power on stage,
instead, the receiver has to cross the chain back to the root key, implying a huge burden in
case of a long TESLA chain, e.g., more than six million steps in the current configuration
reported in Table 3 if the root key dates back one month. This aspect has been already
fully addressed in [17], for which the implementation of a strategy based on the workload
spreading over time has been carried out in order to preserve the real-time capability of
the receiver. Such a strategy could be extended also to other OSNMA functions, such as
the digital signature verification. In addition to this, a reduction of the call rate could also
be evaluated, for instance, avoiding repeating the key root authentication unless a chain or
public key renewal occurs. The same approach could be used to limit the number of MAC
verifications, in the case of excessive computational burden.
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5. Computational Burden Analysis of the Complete Receiver

In order to check the compatibility with the real-time implementation, an analysis of
the computational load of the complete OSNMA-ready receiver is presented hereafter.

5.1. Test Setup

The tests of the complete receiver signal processing chain have been carried out by
feeding the navigation message employed in the OSNMA functions profiling to a NAVX-
NCS professional GNSS signal generator [37]. Table 8 summarizes the main parameters
of the test setup. In particular, for the Galileo signals’ generation, the navigation message
with the set of values S4 in Table 3 was used, thereby requiring the heaviest load for the
digital signature, as shown in the previous section. The generated RF signal is then given
as input to a RF FE, whose configuration is reported in Table 8.

Table 8. Test setup.

GNSS Signal Generator Setup

GNSS Signals 10 GPS L1 and 6 Galileo E1
Galileo OSNMA setup set of values S4 in Table 3
GNSS Received Power −110 dBm for all GNSS signals

Simulated User Dynamic Static Position
FE Configuration

FE SiGe v2 [28]
Sampling frequency fs (MHz) 16.367

Intermediate frequency fIF (MHz) 4.1304

Two test campaigns have been carried out: in the former the receiver was launched in
post-processing mode, thereby reading the file of raw samples previously grabbed, and
in the latter it was launched in real-time, thereby elaborating on the fly the RF signal. In
particular, the former configuration was needed to perform the software profiling analysis
of the main receiving functions, whereas the latter one was adopted to measure the real-
time processor load required by the receiver over time. The next two subsections report the
results achieved during the two test campaigns.

5.2. Profiling Analysis of the Complete Receiver Chain

In order to perform the profiling of the complete receiving chain, the receiver has been
fed by a 10 min file of raw samples, configured to elaborate 12 satellites, i.e., six GPS and
six Galileo, and executed iterating six times, for a total of about 1 h of equivalent running
time on all four platforms listed in Table 2.

Table 9 reports the average execution time required by the main processing steps per-
formed to elaborate one code period of input GNSS samples, i.e., 1 ms for GPS and 4 ms for
Galileo, and compute the PVT. In particular, as better detailed in [17], and recalled hereafter
for the reader’s convenience, the receiver main loop elaborates 1 ms bunches of samples
for each channel, i.e., satellite, through a finite state machine, illustrated in Figure 6. Such
finite state machine includes acquisition, further detailed in coarse acquisition, Doppler
and code refinements and confirmation, and tracking for all the channels. The tracking
includes the calls to the Galileo OSNMA functionalities.
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Table 9. Call rate and average execution time of the main receiver processing steps, configured to elaborate 12 satellites, i.e.,
6 GPS and 6 Galileo.

Call Rate (Hz)
Average Execution Time (µs)

Platform 1 Platform 2 Platform 3 Platform 4

G
PS

Coarse acquisition

1000

45 716 423 607
Doppler Refinement 6 77 37 55

Code Refinement 6 76 37 56
Confirmation 6 77 37 54

Tracking 8 125 74 96

G
al

ile
o

Coarse acquisition

250

90 1178 751 897
Doppler Refinement 27 381 186 280

Code Refinement 27 376 185 282
Confirmation 27 378 185 279

Tracking 36 567 340 432
PVT computation 1 2081 30,529 16,907 16,222
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In a global picture, the PVT computation certainly represents the heaviest processing
step, as expected; besides, its very low call rate makes it less critical than the channel state
machine’s operations, showing call rates of at least three orders of magnitude higher. The
coarse acquisition is the processing step that requires the highest execution time and the
highest call rate, as already pointed out in [20], making it the most demanding one for a
real-time execution. It is worth noticing that the impact of the OSNMA verifications on the
Galileo tracking burden was expected to be negligible on average, due to their much lower
call rate. This was confirmed by the achieved result, which shows it to be comparable to
the Galileo tracking without OSNMA shown in [20] for the standard PC and ODROID-X2.

As expected and already observed in Section 4, the standard PC outperforms all
other platforms: the performance degradations in terms of execution time are reported
in Table 10 and roughly range in the intervals 13–16 times, 6–9 times and 8–13 times for
all the processing steps in the ODROID-X2, Raspberry Pi4 and ODROID-C4 machines,
respectively. Furthermore, differently from what observed in Section 4 where the newer
platforms basically showed similar performances with the advantage of ODROID-C4 being
limited to the digital signature verification, here Raspberry Pi4 (platform 3) overcomes
ODROID-C4 (platform 4), as is clearly visible in Figure 7 with improvements from 16% to
34%, except regarding the PVT computation with a degradation of about 4%. Although
the two boards, namely, platforms 3 and 4, have somewhat similar hardware features, as
reported in Table 2, the different results could be partially explained by the final purposes of
the two different processors: indeed, as declared by the manufacturer, Cortex-A72, released
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in 2015, is a high single-threaded performance CPU, whereas Cortex-A55, released in 2017,
targets more high power-efficiency mid-range applications. Another aspect to be taken into
account is that, as described in Section 3.3, the original 32-bit ARM v7 assembly code has
been rewritten into the equivalent 64-bits ARM v8 assembly to make it compatible with
ODROID-C4, mainly focusing on the direct translation of the assembly instructions, rather
than on the full exploitation of the instruction set features offered by the new architecture.
A specific optimization phase could likely reduce the performance gap.

Table 10. Execution time degradation factors on the three embedded boards, i.e., platforms 2, 3 and 4,
with respect to the standard PC, i.e., platform 1, for all the main processing steps reported in Table 9.

Platform 2 Platform 3 Platform 4

G
PS

Coarse acquisition 15.91 9.4 13.49
Doppler Refinement 12.83 6.17 9.17

Code Refinement 12.67 6.17 9.33
Confirmation 12.83 6.17 9

Tracking 15.62 9.25 12

G
al

ile
o

Coarse acquisition 13.09 8.34 9.97
Doppler Refinement 14.11 6.89 10.37

Code Refinement 13.96 6.85 10.44
Confirmation 14 6.85 10.33

Tracking 15.75 9.44 12
PVT computation 14.67 8.12 7.79
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Figure 7. Execution time percentage improvement I for platforms 3 and 4 with respect to platform 2
for all the main processing steps reported in Table 9.

5.3. Real-Time Processor Load Analysis

The profiling presented in the previous subsection provides an estimation of the com-
putational weight of each software function, allowing to identify any possible bottleneck
that can then be addressed by the developer to improve performance. Anyway, a software
profiling alone cannot show a whole and final picture of the real time performance. Indeed,
the total receiver computational load is directly dependent on the number of satellite sig-
nals to be simultaneously elaborated. Thus, an analysis of the processor load performed on
the application in real-time is required to evaluate the limit each platform is able to reach.

For this test campaign, the receiver was directly fed by the output of the RF FE, thereby
processing on the fly the generated raw digital samples.
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Figure 8 reports the CPU and RAM usage of the software receiver, running in real-time
on all the four platforms for 12 satellites, i.e., six GPS and six Galileo, simultaneously
tracked, across 10 min of total execution time. The results were obtained using the Linux
utility top. It is worth noticing that eNGene features a multi-thread structure, exploiting all
available cores hosted by the embedded platforms, i.e., four, as shown in Table 2, implying a
CPU usage ranging from 0% up to 400% in Figure 8. On the contrary, running on a standard
PC, NGene is a single-core process, with no need to specifically split the processing on all
the eight available cores.

Results in Figure 8a are in line with the profiling results described in the previous
subsection. Indeed, with a usage less than 50% of the total Intel CPU power, the standard
PC (see the light blue plot) exhibits performance far superior than any other platforms.
Among the embedded boards, ODROID-X2 (red plot) shows the worst result, as expected,
and Raspberry Pi4 (yellow plot) overtakes ODROID-C4. The RAM usage, expressed in MiB
unit (1 MiB = 220 bytes), deserves a separate discussion. The presence of two main clusters
can be clearly noticed in Figure 8b: a former around 25 MiB for the standard PC and
ODROID-C4 (both with a 64-bits OS) and a latter around 150 MiB for the remaining boards
(both with a 32-bit OS). Such difference is not negligible and requires further investigations.
In this regard, it is worth noticing that top does not report only the memory statically or
dynamically allocated by the program, which is the same on all the considered boards,
but the so-called resident memory or resident RAM, defined as the non-swapped physical
memory a task is currently using, including all stack and heap memory, and memory and
pages actually in memory from shared libraries. According to this, it is clear how the RAM
usage strictly depends on the OS and is not in the direct control of the developer. Anyway,
as a general observation, and considering the increasing size of available RAM abord the
modern processors, the observed values cannot be considered critical.
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Figure 8. Time evolution of the CPU (a) and RAM (b) usage of eNGene receiver on the four platforms for 12 satellites, i.e.,
6 GPS and 6 Galileo, simultaneously tracked.

Table 11 summarizes the CPU and RAM usage results, showing the average and
maximum CPU load, and the maximum RAM usage. The Raspberry Pi4 is the one getting
the best results among the embedded boards, showing 28% and 26% improvements with
respect to ODROID-C4 in terms of average and peak CPU usages respectively, thus being
perfectly in line with the results shown in Figure 7. On the other hand, ODROID-C4 exhibits
a much more efficient RAM usage, but, as already said, this is not a critical indicator for
the real-time execution.
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Table 11. CPU and RAM usage summary.

Platform
CPU Usage RAM Usage

Average (%) Maximum (%) Maximum (MiB)

1 39.7 44.0 24.3
2 266.9 297.0 148.0
3 173.7 204.3 151.0
4 244.0 276.4 27.5

Now, focusing on the embedded boards only, Figure 9 shows how the CPU usage
reported in Figure 8 distributes over each single core. In this regard, with N being the total
number of configured channels (total GPS and Galileo), the GNSS processing is allocated
on the four cores as follows:

• Core 0 is scheduled for the execution of the main thread, in charge of perform-

ing the main function, the tracking of N0 =
⌊

N
3

⌋
number of channels and the

PVT computation.
• Core 1 is devoted to the FE thread, in charge of managing the FE and USB only.

• Core 2 is allocated to a channel thread, dedicated to tracking N2 =
⌈

N
3

⌉
number

of channels.
• Core 3 is allocated to another channel thread, dedicated to acquiring 1 channel and

tracking N3 = N − N0 − N2 number of channels. It is also in charge of executing the
TESLA key verification thread, created only for the first received TESLA key in case
the distance in the chain from the root key is above 700 steps.
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Figure 9. Time evolution of the cores’ usage of eNGene receiver on ODROID-X2 (a), Raspberry Pi4 (b) and ODROID-C4
(c) platforms for 12 satellites, i.e., 6 GPS and 6 Galileo, simultaneously tracked.

The interested reader can refer to [20] for details about the multi-thread structure of
eNGene. The above-described channels-cores mapping rule is totally empirical, and for the
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considered test setup where N = 12, cores 0, 2 and 3 elaborate N0 = N2 = N3 = 4 channels
each. With the acquisition being the heaviest function from a computational point of view,
as already said, only one channel is acquired at a time and always allocated on a specific
core, i.e., 3.

Looking at Figure 9, as expected the core 0 (green plot with “plus” markers) is the
one showing the highest CPU usage, since it performs PVT computation in addition to
the tracking of four channels, whereas cores 2 (light blue plot with “circle” markers) and 3
(purple plot with “square” markers) have similar loads, being dedicated to the tracking of
the same number of channels. The slight increase of the core 3 load, particularly visible in
the first part of the test in Figure 9a,b, is justified by the acquisition stage. Once all channels
have been successfully acquired and are in the tracking loop, no additional channel is
scheduled for acquisition, unless a tracking lost occurs. Finally, the core 1 load roughly
stands at around 20% for both ODROID-X2 (Figure 9a) and Raspberry Pi4 (Figure 9b),
whereas it is much higher, roughly around 65% for ODROID-C4 (Figure 9c). Again, a clear
difference of the 32 bit and 64 bit OS behavior is evident as for the RAM usage. Now,
eNGene makes use of the libusb library to manage the USB stream of raw samples from
the FE; thus such behavior could be likely due to a different libusb library implementation
and handling from the OS side. It is worth noticing that, although specifically and properly
setting both thread-cores mapping and the threads priority with root permissions at the
receiver power on, the developer has not full control of the OS task scheduler. This
probably suggests implementing a real-time core load check, thereby changing dynamically
the allocation of the tasks. Indeed, while the load among cores looks more balanced on
ODROID-C4, it seems core 1 could bear additional tasks on ODROID-X2 and Raspberry
Pi4. The requirement for a better balance can also be deduced looking at the results in
Figure 10a, where the number of channels has been increased to 16, i.e., 10 GPS and 6
Galileo, while keeping the same cores allocation (five channels on cores 0 and 3, and six on
core 2). It can be observed how, among the embedded boards, only ODROID-C4 is able
to bear such a load, whereas both ODROI-X2 and Raspberry Pi4 stopped working before
80 s for a buffer overrun error. Indeed, as better detailed in [20], an intermediate buffer
is used to store the samples coming from the USB FE and makes them available for the
channels’ elaboration, in the so-called producer-consumer relationship. When new samples
from the USB FE are available but the intermediate buffer does not have free locations, a
buffer overrun happens. The percentage of available memory locations in the intermediate
buffer is therefore a good indicator of the real-time capability of the receiver, as reported in
Figure 10b for the embedded boards only.

Other aspects that should be carefully considered are the different clock values and
speed controller policies (governors) of the processors under consideration. For instance,
ODROID-X2 has been overclocked to 2 GHz [20] and the governor set to performance, while
no specific setup has been forced on Raspberry Pi4 and ODROID-C4 (default governor set
to on-demand and performance respectively).

As is clearly visible from the above analysis, the maximum number of signals si-
multaneously tracked (and acquired) in real-time strictly depends on the platform, since
the software functions’ execution time relies on the computational power offered by the
specific processor, and on the OS task scheduling policy. In this regard, some duration
tests have also been performed running the receiver for days: such tests confirm that
ODROID-C4 (platform 4) is able to bear up to 16 satellites: this can be considered as a
maximum limit in this current setup and for this specific platform. That limit drops to 12
for both ODROID-X2 (platform 2) and Raspberry Pi-4 (platform 3). Anyway, as pointed out
above, a possible performance improvement for the platforms 2 and 3 cannot be excluded
when implementing, for instance, a different task-core allocation rule, currently under
investigation. According to this, newer and possibly more powerful boards are expected to
be able to bear at least 12 satellites, which could be considered somehow a lower bound of
general validity.
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Figure 10. Time evolution of the CPU usage on the four platforms (a) and real-time capability of eNGene receiver on the
three embedded platforms (b) for 16 satellites, i.e., 6 GPS and 6 Galileo, simultaneously tracked.

6. Conclusions

This paper presents the software profiling analysis of the OSNMA functions imple-
mented in a real-time GNSS software receiver targeted for ARM-based embedded platforms.
This analysis has been performed for three different embedded platforms, and a standard
PC has been used as a reference.

The first step of the analysis is about the computational burden of the basic OSNMA
functionalities (TESLA key verification, MAC verification, MACSEQ verification, digital
signature verification, public key verification). The execution times measured for the
embedded platforms show a performance degradation that ranges from 4 to 21 with
respect to the execution time recorded on the PC. The functionality that exhibits the worst
degradation is the digital signature verification, whose complexity increases with the
EC order, except for the P256 curve, which shows the best performance, likely due to a
low-level implementation optimization of the used cryptographic library function.

The second step of the analysis is the assessment of the compatibility of the Galileo
OSNMA implementation on ARM-embedded boards with the real time elaboration of the
GNSS signal: a complete profiling has been executed, including all the steps of the GNSS
signal elaboration (e.g., acquisition, tracking, PVT computation).

All the reported results demonstrate that the OSNMA support does not impair the
real-time capability of the ARM-based implementation, especially when the most recent
platforms are considered. At the same time, the need for an optimized scheduling of the
multi-thread architecture of the receiver has been demonstrated by the real-time tests, which
have been strongly affected by the different operating systems of the considered platforms.
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