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Abstract: Introduction: Chronic Obstructive Pulmonary Disease (COPD) is a progressive disease
that causes long-term breathing problems. The reliable monitoring of respiratory rate (RR) is very
important for the treatment and management of COPD. Based on inkjet printing technology, we have
developed a stretchable and wearable sensor that can accurately measure RR on normal subjects.
Currently, there is a lack of comprehensive evaluation of stretchable sensors in the monitoring of
RR on COPD patients. We aimed to investigate the measurement accuracy of our sensor on COPD
patients. Methodology: Thirty-five patients (Mean ± SD of age: 55.25 ± 13.76 years) in different
stages of COPD were recruited. The measurement accuracy of our inkjet-printed (IJPT) sensor was
evaluated at different body postures (i.e., standing, sitting at 90◦, and lying at 45◦) on COPD patients.
The RR recorded by the IJPT sensor was compared with that recorded by the reference e-Health sensor
using paired T-test and Wilcoxon signed-rank test. Analysis of variation (ANOVA) was performed to
investigate if there was any significant effect of individual difference or posture on the measurement
error. Statistical significance was defined as p-value less than 0.05. Results: There was no significant
difference between the RR measurements collected by the IJPT sensor and the e-Health reference
sensor overall and in three postures (p > 0.05 in paired T-tests and Wilcoxon signed-rank tests). The
sitting posture had the least measurement error of −0.0542 ± 1.451 bpm. There was no significant
effect of posture or individual difference on the measurement error or relative measurement error
(p > 0.05 in ANOVA). Conclusion: The IJPT sensor can accurately measure the RR of COPD patients
at different body postures, which provides the possibility for reliable monitoring of RR on COPD
patients.

Keywords: flexible and wearable sensors; respiratory rate; COPD patients; inkjet printing; clini-
cal evaluation

1. Introduction

Respiratory rate (RR) is a vital sign that is related to, therefore regulated by, multiple
physiological and neural activities [1–3]. RR plays an important role in the detection of
various cardiovascular and respiratory diseases, as well as relevant clinical events [4,5].
The variation of RR reflects the deterioration of respiratory diseases including asthma,
chronic obstructive pulmonary disease (COPD), and other clinical conditions including
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fever, infection, and drug overdose [6]. Despite the development of RR measurement
technologies, RR is still often neglected or inaccurately estimated in clinical practice [7].

Recently, wearable and flexible sensors (WFS) have been widely applied in medical
and healthcare areas [8–13]. Especially, WFS can be used in the non-invasive monitoring
of vital signs such as blood pressure [14], cardiac [15], and respiratory activities [15–17].
More specifically, several studies have investigated the use of WFS extensively in RR
monitoring [18–24]. For instance, Jeong et al. [25] developed a fabric piezo-resistive sensor
of RR and tested it in different physiological conditions, including resting, walking at
two different speeds, and running activities. It was found that the averaged relative error
of the sensor in RR measurement was about 3%. Lei et al. [26] proposed a PVDF-based
(Piezoelectric-film) sensor patch and tested it in static (e.g., sitting or sleeping) and dynamic
(e.g., walking) conditions. No significant measurement error was found when compared to
the reference sensor (p > 0.05). Moreover, WFS can be used in the monitoring of vital signs
on patients who have special medical conditions such as Chronic Obstructive Pulmonary
Disease (COPD) [27].

COPD is a term to describe lung diseases such as chronic bronchitis, emphysema,
and refractory asthma, and it is usually characterized by increasing breathlessness. The
symptoms of COPD may differ between individuals, but commonly include shortness of
breath, wheezing, and tightness in the chest [28]. The link between dyspnea and respiratory
rate is of particular interest in COPD patients [3]. Moreover, it was suggested that hypnosis
could contribute to the improvement of anxiety levels and breathing mechanics in severe
COPD patients [29]. Several studies in the literature highlighted the importance of reliable
RR monitoring in the early detection of COPD [30–32], where a RR over 25 breaths per min
(bpm) was considered as a sign of COPD exacerbation [30,33]. Hence, the comprehensive
evaluation of the measurement accuracy and the suitability of WFS in RR monitoring on
COPD patients is important for clinical application.

Regarding RR measurement, the clinical evaluation of WFS was mainly performed on
healthy subjects [34–39]. Few studies have investigated the accuracy of WFS in monitoring
COPD patients’ vital signs [31,33,40]. Bellos et al. [31] investigated the accuracy of a wearable
vest in monitoring different vital signs including RR on COPD patients. The system consisted
of a wearable platform and some external devices connected to a smart device and a home
patient monitor. The wearable platform along with the external devices extracted some useful
information about the patient’s activities, living environment, and lifestyle. The collected
data were then processed to evaluate the patient’s health status. The system achieved about
94% accuracy in RR monitoring. Moreover, Rubio et al. [33] evaluated the accuracy of five
home-based RR measurement devices on 21 stable COPD patients during daily activities.
The authors also investigated the acceptability (comfort) of the patients regarding wearing of
the sensors. They concluded that the chest-band sensor was the most acceptable sensor for
patients with good measurement accuracy with a bias of −1.60 bpm.

Al-Halhouli et al. [16] have presented the development of stretchable and wearable
strain gauge sensor using inkjet printing technology for RR monitoring. The accuracy
and performance of the developed sensor have been validated on healthy subjects at
different body locations [41] and at different body postures [17]. They concluded that the
inkjet-printed (IJPT) sensor was accurate and had a good potential for monitoring RR on
non-healthy patients such as COPD patients. To the best of our knowledge, there is a lack
of studies that investigated the accuracy of WFS for RR measurements on COPD patients
at different postures. Hence, this study aimed to comprehensively evaluate the accuracy of
the IJPT RR sensor- developed in [16] on COPD patients at different body postures at rest.
Despite that, this study did not aim to investigate the ability of the developed sensor to
diagnose COPD types, however the use of this sensor could help in reducing the frequency
and severity of COPD exacerbation symptoms by early detection of abnormal physiological
measurements including the respiratory rate [42] especially with the use of wireless sensors
that are capable of monitoring the RR continuously. The preliminary version evaluated in
this study is a wired one for the sake of sensor’s clinical evaluation.
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2. Methodology

The extraction of the RR using the IJPT on COPD patients consists of several stages,
including the fabrication of the IJPT sensor and the signal processing of the RR signal.
Figure 1 shows a brief summary of the fabrication process of the IJPT sensor as well as
the RR extraction procedure on COPD patients. The following sections elaborate more on
these stages.

Figure 1. Schematic diagram of the inkjet-printed (IJPT) sensor fabrication process and respiratory rate (RR) extraction on
Chronic Obstructive Pulmonary Disease (COPD) patients.
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2.1. Ethical Approval

The protocol adhered to the tenets of the Declaration of Helsinki [43]. Each patient
had the freedom of choice to participate in this work. The procedure was explained
in details with questions answered. Then, the participants signed the consent form,
which was reviewed and approved by Jordan University Hospital Ethics Committee
(REF 67/2019/6480).

2.2. Inkjet-Printed RR Sensor

The fabrication of flexible electronics using inkjet printing technology has gained
significant interest in recent years. The RR sensor evaluated in this study was fabricated
using this technology where silver nanoparticle ink was deposited on polydimethylsiloxane
(PDMS) substrates. The RR was detected by the IJPT sensor via the variations of the
resistance of the conductive traces caused by the volumetric change in the ribcage or
abdomen areas during the respiration process. In other words, the IJPT sensor acted as a
strain gauge sensor. The details of the fabrication process of the IJPT sensor can be found
in [16].

2.3. Measurements Protocol

Thirty-five patients were included in the study after taking their permissions using
the informed consent form. All of them were diagnosed with COPD, and managed with
adequate medication and on regular follow-up. Firstly, patients were asked to rest for five
minutes while the questionnaire was filled with the health records in patient’s file validated.
Then, the respiration rate was measured with the reference e-Health nasal flow sensor and
the IJPT sensor simultaneously. The measurement was repeated in 3 different positions:
Lying position 45◦, sitting upright, and standing. In each position, the measurement lasted
for one minute. The e-Health sensor was placed in the nostrils while the IJPT sensor was
fixed on the xiphoid process through an adjustable belt over the clothes. It should be noted
that the patients were asked not to move while taking the measurements.

The patients included in the study had different GOLD stages of COPD (1, 2, 3 or 4),
different age groups (mean ± standard deviation (SD) of age: 55.25 ± 13.76 years) and
different smoking status (ex-smoker, quit smoking, or smoker). Some of the limitations
faced prevented the measurement of the RR at some postures, such as the inability to
take readings from patients on continuous oxygen support as the e-Health sensor was
placed by the nostrils. Another limitation was the endurance of some patients to stay
in a certain position as it caused fatigue and irritability. In addition, some patients had
chest tubes, which caused improper mounting of the IJPT sensor. Despite these limitations,
the respiratory signals were successfully recorded in most measurements. A summary of
patients’ information, as well as CAGE (Cut-Annoyed-Guilty-Eye) questionnaire summary,
can be found in Tables A1 and A2 in Appendix A, respectively.

2.4. Respiration Rate Derivation

The strain gauge sensor, whose resistance value varied during respiration, was con-
nected to a Wheatstone Bridge with suitable values for the resistors. The output was
connected to an Instrumentational Amplifier with a suitable value for the gain resistor,
as shown in Figure 2. The output of the amplifier was connected to an analog input of
the Arduino board. The airflow sensor was connected to e-Health Sensor Shield V2.0 for
Arduino [44] and connected to the same Arduino board as the strain gauge circuitry. Ar-
duino Mega2560 with an ATMega2560 chip as its microcontroller was used with maximum
sampling rate of 15 kSPS at maximum resolution [45,46].
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Figure 2. Electrical circuit configuration of the strain gauge sensor.

The signals of the strain gauge sensor and the airflow sensor were sampled at 100 Hz
using the Arduino board, which was connected to a MATLAB/Simulink file to save the
data. Afterward, a MATLAB-based bandpass filter was used to filter both signals with
cut-off frequencies of 3 and 90 bpm, or 0.05 and 1.5 Hz, respectively, with the function
configured to an infinite impulse response. The calculation of the respiratory rate was done
by finding the frequency at which the power spectral density of the filtered data had its
maximum value. Figure 3 shows the raw RR signals from the IJPT and e-Health sensors as
well as power spectral densities of both signals before and after the filtering. The circle and
cross indicate the maximum value of the power spectral density of each signal at which the
respiratory rate was found.

2.5. Statistical Analysis
2.5.1. Data Cleaning

For the data of each measurement, the quality of reference (airflow) respiratory signal
was double-checked. If the quality of reference respiratory signal was low (e.g., blurred
waveform, missing period longer than 5 s, or missing more than two consecutive respiratory
cycles), the data of that measurement were discarded. The considered RR data can be
found in Table A3 in Appendix A.

2.5.2. Comparison of RR Values

The RR values derived from inkjet-printed strain gauge (RRSG) and airflow (RRAF)
were compared to investigate if there was any significant difference. Firstly, the Shapiro–
Wilk test was performed on RR values to investigate if they followed normal distribution.
If both RRSG and RRAF groups followed normal distribution (defined as p > 0.05 in Shapiro-
Wilk test), the paired T-test was performed to investigate if there was any significant
difference (defined as p < 0.05) between RRSG and RRAF. If normal distribution was not
followed in any one group, the Wilcoxon signed-rank test (significant difference defined
as p < 0.05) was performed as the non-parametric substitute of paired T-test. Considering
the missing data in some subjects, the test was performed globally and for each posture,
respectively.
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Figure 3. Sample of RR signal processing and RR derivation obtained from patient #9 while sitting using the strain gauge
sensor and the e-Health airflow sensor.

2.5.3. Analysis of Errors of RR

The estimation error of RR was calculated as in Equation. (1). The analysis of variance
(ANOVA) was performed to investigate if there was any significant effect of individual
difference or posture on the results. It has been proven that ANOVA is applicable even if
the data deviate from normal distribution [47]. For reliable estimation, the Shapiro–Wilk
test was performed to investigate if the error followed normal distribution in three postures
respectively. The paired T-test was performed on the data of error derived in different
postures if both groups followed normal distribution. Otherwise, the Kruskal–Wallis test
was used to investigate if the effect of posture on error was significant (defined as p < 0.05),
while the Wilcoxon signed-rank test was performed as the non-parametric substitute of
paired T-test.

E = RRSG − RRAF (1)
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2.5.4. Analysis of Relative Errors of RR

The relative error of RR estimation was calculated as in Equation (2). The analysis
method is the same as that for error of RR.

Er =
RRSG − RRAF

RRAF
(2)

2.5.5. Bland-Altman Analysis

To illustrate the difference between RRSG and RRAF in different postures, the Bland–
Altman analysis was performed on RRSG and RRAF for each posture, respectively [48,49].
In signal processing, the resolution of RR was 0.001 bpm. To accurately show and compare
the biases, the results of Bland-Altman analysis were rounded to the third significant digit
after the decimal point.

2.5.6. Regression Analysis

Linear regression analysis was used to inspect whether the correlation between the
RRSG and the RRAF followed a linear correlation or not. The consistency in the RRSG and
RRAF was evaluated using the regression coefficient of the linear correlation.

3. Results
3.1. Comparison of RR Values

The overall distribution of RRSG and RRAF followed normal distribution (p = 0.689 and
p = 0.066 in Shapiro–Wilk test). The paired T-test showed no significant difference between
RRSG and RRAF (p = 0.572). In sitting posture, normal distribution was followed by RRAF
but not RRSG (p = 0.104 and p = 0.045 in Shapiro–Wilk test, respectively). The Wilcoxon
signed-rank test showed no significant difference between RRSG and RRAF (p = 0.968).
In standing posture, both RRSG and RRAF followed normal distribution (p = 0.977 and
p = 0.652 in Shapiro–Wilk test, respectively). The paired T-test showed no significant
difference between RRSG and RRAF (p = 0.873). In lying45◦ posture, both RRSG and RRAF
(p = 0.629 and p = 0.242 in Shapiro–Wilk test, respectively) followed normal distribution.
The paired T-test showed no significant difference between RRSG and RRAF (p = 0.619).

3.2. Analysis of Errors of RR

The ANOVA showed no significant effect of posture (p = 0.318) or individual difference
(p = 0.857) on the measurement error. The normal distribution was followed by the data
of standing posture (p = 0.516 in Shapiro-Wilk test) but not those of sitting (p = 0.007) or
lying45◦ posture (p < 0.001). The Wilcoxon signed-rank test showed no significant difference
between the data of sitting and standing (p = 0.754), sitting and lying45◦ (p = 0.107), or
standing and lying45◦ posture (p = 0.944).

3.3. Analysis of Relative Errors of RR

The ANOVA showed no significant effect of posture (p = 0.418) or individual difference
(p = 0.959) on the relative measurement error. The normal distribution was followed by the
data of standing posture (p = 0.278 in Shapiro-Wilk test) but not those of sitting (p = 0.031) or
lying45◦ posture (p < 0.001). The Wilcoxon signed-rank test showed no significant difference
between the data of sitting and standing (p = 0.496), sitting and lying45◦ (p = 0.176), or
standing and lying45◦ posture (p = 0.889).

3.4. Bland-Altman Analysis

As shown in Figure 4, the smallest bias between the SG-derived and reference RRs
was from the measurement in sitting posture (bias: −0.0543 bpm, 95% limits of agreement
(LoA): −2.952 to 2.843 bpm). The measurement in standing posture had a similar bias but
a wider LoA. The measurement in lying45◦ posture has the largest bias (−0.501 bpm) and
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the widest LoA (−8.970 to 7.967 bpm). Thus, the SG measurement was most accurate in
sitting posture and least accurate in the lying45◦ posture.

Figure 4. Bland-Altman analysis of the measured respiratory rate of the COPD patients at different
postures, namely at (a) sitting, (b) standing, and (c) lying45◦ posture. Each cross represents the
data point of RR measurement. The continuous red line represents the bias, which is the average
difference between the RRAF and the RRSG while the dashed blue lines are the limits of agreement
where 95% of the data lies in between.
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3.5. Regression Analysis

The linear regression coefficient between RRSG and RRAF measurements was high
for the sitting and standing postures (0.9394 and 0.9067, respectively) while the value
was lower in the lying45◦ posture (0.7744), as shown in Figure 5. The small regression
coefficient in the lying45◦ posture was largely related to the result from an outlier (patient
#2) due to losing mounting of the IJPT sensor.

Figure 5. Linear regression analysis of the measured respiratory rate of the COPD patients at different
postures namely at: (a) Sitting, (b) standing, and (c) lying45◦ posture.
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4. Discussion

In this work, the IJPT sensor was comprehensively evaluated on 35 COPD patients
to measure the RR at different body postures namely standing, sitting at 90◦, and lying at
45◦ positions. The results in this work indicated the high accuracy of the IJPT sensor in RR
measurement, with minor differences between different postures.

4.1. Measurement of RR on COPD Patients: Difficulties and Approaches

The RR value is one of the most important indicators of several chronic diseases
including COPD [50]. RR over 25 bpm is considered as one of the COPD exacerbation
signs while the normal range of RR in adults is about 12–20 bpm [40]. RR monitoring
of COPD patients is usually carried out in hospitals and clinics via manual counting of
breaths, using nasal sensors, or extracted from the electrocardiogram (ECG) signals. The
measurement with manual counting is inaccurate [16] while the use of nasal sensors is
difficult especially when patients are on continuous oxygen support. Additionally, ECG
and nasal sensors are cumbersome and uncomfortable for long-term monitoring. On the
other hand, significant progress in the development of WFS has provided the possibility for
the convenient, long-term, and low-cost monitoring of vital signs including RR for COPD
patients [16,33]. However, there is a lack of validation and clinical evaluation of WFS on
COPD patients in different postures, daily activities, and other physiological conditions
where the noises could affect the signal quality [31,33,40]. Our results provided a reference
for the development of WFS for clinical use.

Another challenge is to get accurate estimation of RR in varying breathing patterns.
COPD patients usually have an unstable breathing pattern, which causes the variations
of RR during measurement. It was observed that RR changed from 15.2 ± 4.3 bpm to
19.1 ± 5.9 bpm during the exacerbation of COPD [24]. COPD patients show characteristic
symptoms like breathlessness and cough [51,52]. These symptoms in addition to body
posture are associated with the respiratory volume change. Resultantly, the deformed
respiratory waveform and amplitude of peaks can lead to the inaccuracy in RR estimation,
as observed in this study. Figure 6 shows a comparison between good and deformed
respiratory signals measured by the IJPT. It should be noted that the signal quality depends
on many factors including the stability of the sensor attachment on the patients. Another
factor that affects the signal is the amount of clothing on the patients. Furthermore, the
amount of volume change in the abdominal area varies significantly among individuals
and also among postures as reported in the literature [17]. These changes in the volume
could significantly affect the ability of the IJPT sensor to measure the RR accurately, as seen
in the lying45◦ posture, which is the most challenging posture for RR measurement and
yields the results consistent with what was reported in the literature [17]. Furthermore,
some COPD patients cannot endure standing or sitting for long periods. Therefore, the
comprehensive evaluation of RR monitoring in different circumstances is important for
the clinical application of the IJPT sensor [30]. The high measurement accuracy of the
IJPT sensor at different postures and among different patients highlighted its potential for
reliable monitoring of RR in COPD patients.
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Figure 6. Samples of raw respiratory signals acquired by the IJPT on COPD patient while standing: (a) Good signal (test
subject #8) and (b) deformed signal (test subject #10).

4.2. Accuracy of IJPT Sensor: Comparison with Other Sensors

The statistical analysis demonstrated a high accuracy of the IJPT sensor in RR mon-
itoring on COPD patients with good stability at different posture positions. In addition,
there was insignificant effect of posture or individual difference on the estimation error.
Moreover, the measurement accuracy of the IJPT sensor was comparable with other sensors
that have been clinically evaluated on healthy human subjects reported in [35–39]. As
shown in Table 1, the IJPT sensor showed higher accuracy in RR monitoring on COPD
patients (except in the lying posture, which could be related to losing mounting of the IJPT
sensor as aforementioned) than most of the existing sensors.

Table 1. Comparison between the accuracy and performance of the IJPT sensor and other sensors reported in the literature.

Ref. Method Posture Accuracy Parameter Protocol
Number of

COPD
Patients

[33]

Impedance

Activities of daily
living protocol

Bias (bpm) −1.18 Attached to the chest and
upper abdomen

44

LoA (bpm) −20.07 to 17.72

Photoplethysmography
(PPG)

Bias (bpm) 3.01 Worn on the wrist with a
finger probeLoA (bpm) −11.17 to 17.19

Camera
Bias (bpm) −3.21 Participant was videoed

while in sitting positionLoA (bpm) −12.71 to 6.30

Accelerometer
Bias (bpm) −2.18 Attached to the upper

abdomen just below the ribs
and taped to the skinLoA (bpm) −8.63 to 4.27

Chest-Band (strain gauge)
Bias (bpm) −1.60 Chest strap and an

electronics module that
attaches to the strap

62
LoA (bpm) −9.99 to 6.80
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Table 1. Cont.

Ref. Method Posture Accuracy Parameter Protocol
Number of

COPD
Patients

[20] Capacitive Rest (lying)
Bias (bpm) −0.14 bpm

Rest (after exercises) 9
SD (bpm) 0.28

[31] Respiration band
(strain gauge) - Relative Error

(%) 17.43 Attached to the wearable
Jacket 30

[53] Airflow pressure sensor -
Bias (bpm) 0.046

Hoses attached to the nose 14
LoA (bpm) 3.865 to 3.957

This
study

Strain gauge

Sitting

Bias (bpm) −0.0542 bpm

1 35

LoA (bpm) −2.951 to 2.842

SD (bpm) 1.451

Absolute
relative error

(%)
4.49

Standing

Bias (bpm) −0.0814

LoA (bpm) −4.257 to 4.094

SD (bpm) 2.071

Absolute
relative error

(%)
7.29

Lying45◦

Bias (bpm) −0.501

LoA (bpm) −8.969 to
6.807.967

SD (bpm) 4.227

Absolute
relative error

(%)
9.47

4.3. Applications of IJPT Sensor

Currently, the RR monitoring is often neglected or inaccurately recorded even on
patients with respiratory diseases due to the lack of appropriate devices for clinical use [7].
The low fabrication cost, biocompatible substrate, skin-friendly attachment on body sur-
face, and the ease of movement without restrictions in daily activities, as well as the
high measurement accuracy of the IJPT sensor make it a promising technology for re-
mote and continuous monitoring of RR for patients with COPD and other respiratory
diseases [13]. Reliable RR monitoring for COPD patients using the IJPT sensor could re-
duce the healthcare cost and the pressure on healthcare facilities especially in low-resource
settings such as refugee camps [54]. A recent systematic review disclosed that the majority
of physiological monitoring methods for COPD are intermittent with no more than twice a
day measurements’ frequency [55]. Acute exacerbations of COPD require intensive care
treatment immediately. The evaluation of vital signs is necessary to detect physiological
abnormalities (micro events), but patients may deteriorate between measurements [56].
The continuous monitoring of RR on COPD patients is an unmet clinical need that has
attracted increasing research focus. Especially, the RR monitoring based on WFS on chest
band has been proven with the highest reliability compared with other sensors [57], which
makes it possible to provide reliable daily monitoring of COPD based on WFS. Further-
more, the frequency and severity of COPD exacerbation symptoms would be reduced by
early detection of abnormal physiological measurements including the respiratory rate [42].
To fight the ongoing pandemic of COVID-19, the combination of internet-of-things (IoT)
technology and the IJPT sensor can generate a low-cost, safe, and convenient approach for
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the remote monitoring, management, and early intervention of the patients where recent
studies [58,59] have mentioned that RR could serve as a leading indicator of COVID-19.

4.4. Limitations and Future Work

There were some limitations associated with this study. Firstly, the IJPT sensor was
tested on 35 COPD patients with only one female and also not all of the measurements
at the three postures were available due to the limitations aforementioned in Section 2.3.
Therefore, further investigation with more diverse COPD patients is required. Secondly,
further clinical evaluation of the IJPT sensor on COPD patients during walking, running,
sleeping, and other daily activities can be carried out to expand its application scenarios.
Finally, longer time series data should be recorded and clinically evaluated on healthy
and non-healthy subjects to further investigate the applicability of the IJPT sensor for
continuous monitoring of RR. For future work, an innovative mounting mechanism can
be developed as the substitute for the fabric belt to achieve more convenient and reliable
attachment in different postures. A wireless platform can be designed to achieve more
comfortable measurement for the end user, which will ease the remote and continuous
monitoring of RR.

5. Conclusions

The results of clinical evaluation on 35 COPD patients in the present work indicated
that the IJPT sensor was able to accurately measure the RR at different postures. It can be
concluded that the IJPT sensor showed comparable accuracy with other wearable sensors
on COPD patients evaluated in the literature with the absolute relative error of 4.49%,
7.29%, and 9.47% at sitting, standing, and lying45◦ postures, respectively. The IJPT sensor
is promising in achieving reliable RR monitoring for COPD patients where the use of this
sensor would contribute to mitigating the frequency and severity of COPD exacerbation
symptoms by early detection of abnormal physiological measurements including the
respiratory rate.
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Appendix A

Table A1. Summary of patients’ information collected.

Patient Age Gender Height (m) Weight (kg) Smoking Status GOLD
Diagnosis First Diagnosed

1 50 M 169 62 Ex-Smoker 3 12/2018
2 51 M 170 71 Smoker 1 11/2001
3 46 M 174 83 Ex-Smoker 3 5/2010
4 30 M 180 62 Smoker 1 N/A
5 79 M 175 98 Ex-Smoker 2 4/2008
6 58 M 162 78 Smoker 3 4/2019
7 39 M 170 85 Quit smoking 2 11/2017
8 56 M 175 90 Smoker 1 8/2013
9 58 M 173 80 Ex-Smoker 2 2/2009
10 26 M 173 84 Ex-Smoker 1 8/2016
11 52 M 176 63 Ex-Smoker 2 2009
12 56 M 170 70 Smoker N/A 2014
13 47 M 175 80 Ex-smoking 1 7/2018
14 52 M 168 80 Smoker 2 5/2007
15 24 M 173 63 Smoker 1 1/2020
16 42 M 164 85 Smoker 1 10/2014
17 60 M 178 84 Smoker 1 8/2019
18 42 M 165 75 Smoker 2 8/2014
19 49 M 167 64 Smoker 3 1/2020
20 37 M 172 98 Smoker 3 1/2020
21 57 M 167 60 Smoker 3 2/2020
22 70 M 160 50 Smoker 2 2/2020
23 66 M 179 77 Smoker 1 9/2013
24 67 M 175 70 Ex-Smoker 3 5/2001
25 55 M 167 58 Quit smoking 2 11/2019
26 69 M 175 88 Ex-Smoker 2 N/A
27 53 F 167 90 Smoker 1 2/2012
28 58 M 163 74 Ex-Smoker 1 1/2019
29 79 M 174 72 Smoker 3 8/2017
30 67 M 167 62 Smoker 2 8/2017
31 66 M 175 85 Ex-Smoker 1 6/2002
32 67 M 174 69 Smoker 3 6/2014
33 58 M 172 73 Ex-Smoker 3 3/2012
34 75 M 174 68 Smoker 1 11/2009
35 73 M 170 65 Smoker 1 7/2013

N/A: not available. quit smoking: stopped within the last 6 months of interview. Ex-Smoker: stopped smoking after 6 months of interview.
A/V fistula: arteriovenous fistula.
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Table A2. Summary of CAGE (cut-annoyed-guilty-eye) questionnaire.

Patient Cough Phlegm (mucus) Tightness of
Chest

Not Able to Climb a
Flight of Stairs

Cannot Perform
Home Activities

Can Go Out
Anytime Good Sleep Having Energy

1 frequently rare never always rare always frequently always
2 rare rare sometimes always never always frequently rare
3 always sometimes sometimes always rare never sometimes rare
4 rare rare frequently frequently never always frequently always
5 always sometimes rare frequently frequently rare sometimes rare
6 always always sometimes sometimes sometimes always sometimes never
7 rare rare sometimes rare rare rare frequently sometimes
8 frequently sometimes rare sometimes never always always always
9 sometimes rare never never never always frequently sometimes
10 never never never never never always frequently always
11 rare sometimes never rare rare frequently frequently sometimes
12 sometimes sometimes never never never frequently always always
13 rare sometimes never never never always always always
14 sometimes never never rare never frequently frequently frequently
15 rare never never never never always always always
16 sometimes frequently frequently rare rare never sometimes frequently
17 rare rare rare never never always frequently frequently
18 frequently rare sometimes never never always always frequently
19 frequently frequently sometimes sometimes rare frequently sometimes frequently
20 frequently frequently rare always always sometimes rare frequently
21 frequently rare always always always always sometimes rare
22 always sometimes sometimes sometimes sometimes always frequently never
23 rare never never never never always frequently frequently
24 sometimes never never never frequently frequently sometimes always
25 sometimes sometimes frequently always always sometimes rare never
26 sometimes always sometimes frequently frequently sometimes sometimes frequently
27 frequently rare never sometimes sometimes always frequently frequently
28 always always rare rare never always always frequently
29 always frequently never always rare frequently rare frequently
30 always always always always frequently rare rare never
31 sometimes never sometimes frequently always rare frequently rare
32 sometimes never never rare rare frequently always always
33 frequently always never sometimes frequently always rare sometimes
34 frequently rare rare sometimes never always sometimes frequently
35 sometimes rare sometimes sometimes rare sometimes frequently sometimes



Sensors 2021, 21, 468 16 of 19

Table A3. RRAF and RRSG of the COPD measured in addition to the relative error at different body
postures.

Patient Posture RRSG (bpm) RRAF (bpm) Error (bpm)

1
Sitting 28.57 28.57 0

Standing 30.77 30.77 0

2
Sitting 19.05 18.32 0.73

Standing 20.51 19.05 1.46
Lying45◦ 5.13 21.25 −16.12

3
Sitting 32.23 31.50 0.73

Standing 29.30 30.04 −0.74
Lying45◦ 29.30 31.50 −2.2

4
Sitting 18.32 17.58 0.74

Standing 7.33 13.92 −6.59
Lying45◦ 12.45 13.19 −0.74

5
Sitting 21.98 22.71 −0.73

Standing 22.71 22.71 0
6 Sitting 19.05 23.44 −4.39

7
Sitting 15.38 17.58 −2.2

Standing 22.71 20.51 2.2

8
Sitting 30.77 27.11 3.66

Standing 18.32 18.32 0

9
Sitting 11.72 11.72 0

Standing 12.45 12.45 0
Lying45◦ 10.99 10.99 0

10
Sitting 16.12 17.58 −1.46

Standing 19.78 19.78 0
11 Sitting 19.05 19.78 −0.73

12
Sitting 18.32 19.78 −1.46

Standing 24.18 24.18 0
Lying45◦ 14.65 13.92 0.73

13
Sitting 16.12 16.12 0

Lying45◦ 10.99 10.99 0

14
Sitting 23.44 25.64 −2.2

Standing 20.51 21.25 −0.74

15
Sitting 21.98 20.51 1.47

Lying45◦ 19.05 19.78 −0.73

16
Standing 28.57 28.57 0
Lying45◦ 21.25 20.51 0.74

17 Lying45◦ 13.19 16.12 −2.93
18 Sitting 17.58 17.58 0

19
Sitting 16.12 16.12 0

Standing 16.85 12.45 4.4
Lying45◦ 18.32 18.32 0

20
Sitting 35.90 35.90 0

Standing 33.70 34.43 −0.73
Lying45◦ 36.63 36.63 0

21 Lying45◦ 22.71 19.78 2.93

22
Sitting 28.57 27.84 0.73

Lying45◦ 24.91 24.91 0
23 Sitting 24.91 24.18 0.73

24
Sitting 15.38 16.12 −0.74

Standing 17.58 16.85 0.73
25 Lying45◦ 23.44 23.44 0
26 Lying45◦ 21.98 20.51 1.47

27
Sitting 19.78 19.05 0.73

Standing 12.45 14.65 −2.2
Lying45◦ 10.26 10.99 −0.73

28 Lying45◦ 38.83 31.50 7.33
29 Sitting 15.38 15.38 0
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Table A3. Cont.

Patient Posture RRSG (bpm) RRAF (bpm) Error (bpm)

30 Sitting 24.18 22.71 1.47
31 Lying45◦ 20.51 20.51 0
32 Sitting 19.78 19.05 0.73

33
Sitting 24.18 23.44 0.74

Standing 26.37 26.37 0
34 Lying45◦ 29.30 28.57 0.73

35
Sitting 16.12 16.12 0

Standing 27.11 26.37 0.74

References
1. Lucchini, M.; Pini, N.; Burtchen, N.; Signorini, M.G.; Fifer, W.P. Transfer Entropy Modeling of Newborn Cardiorespiratory

Regulation. Front. Physiol. 2020, 11, 1095. [CrossRef] [PubMed]
2. Liu, H.; Chen, F.; Hartmann, V.; Khalid, S.G.; Hughes, S.; Zheng, D. Comparison of different modulations of photoplethysmogra-

phy in extracting respiratory rate: From a physiological perspective. Physiol. Meas. 2020, 41, 094001. [CrossRef]
3. Nicolò, A.; Massaroni, C.; Schena, E.; Sacchetti, M. The Importance of Respiratory Rate Monitoring: From Healthcare to Sport and

Exercise. Sensors 2020, 20, 6396. [CrossRef]
4. Flenady, T.; Dwyer, T.; Applegarth, J. Accurate respiratory rates count: So should you! Australas. Emerg. Nurs. J. 2017, 20, 45–47.

[CrossRef] [PubMed]
5. Nicolò, A.; Marcora, S.M.; Sacchetti, M. Time to reconsider how ventilation is regulated above the respiratory compensation point

during incremental exercise. J. Appl. Physiol. 2020, 128, 1447–1449. [CrossRef] [PubMed]
6. Hill, B.; Annesley, S.H. Monitoring respiratory rate in adults. Br. J. Nurs. 2020, 29, 12–16. [CrossRef]
7. Liu, H.; Allen, J.; Zheng, D.; Chen, F. Recent development of respiratory rate measurement technologies. Physiol. Meas. 2019, 40,

07TR01. [CrossRef]
8. Nag, A.; Mukhopadhyay, S.C.; Kosel, J. Wearable Flexible Sensors: A Review. IEEE Sens. J. 2017, 17, 3949–3960. [CrossRef]
9. Rodgers, M.M.; Pai, V.M.; Conroy, R.S. Recent advances in wearable sensors for health monitoring. IEEE Sens. J. 2015, 15,

3119–3126. [CrossRef]
10. Yetisen, A.K.; Martinez-Hurtado, J.L.; Ünal, B.; Khademhosseini, A.; Butt, H. Wearables in Medicine. Adv. Mater. 2018, 30,

e1706910. [CrossRef]
11. Dittmar, A.; Meffre, R.; De Oliveira, F.; Gehin, C.; Delhomme, G. Wearable Medical Devices Using Textile and Flexible Technologies

for Ambulatory Monitoring. In Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference,
Shanghai, China, 1–4 September 2005; pp. 7161–7164.

12. Khan, Y.; Ostfeld, A.E.; Lochner, C.M.; Pierre, A.; Arias, A.C. Monitoring of Vital Signs with Flexible and Wearable Medical
Devices. Adv. Mater. 2016, 28, 4373–4395. [CrossRef] [PubMed]

13. Liu, Y.; Wang, H.; Zhao, W.; Zhang, M.; Qin, H.; Xie, Y. Flexible, stretchable sensors for wearable health monitoring: Sensing
mechanisms, materials, fabrication strategies and features. Sensors 2018, 18, 645. [CrossRef] [PubMed]

14. Abu-khalaf, J.M.; Saraireh, R.; Eisa, S.M.; Al-halhouli, A. Experimental Characterization of Inkjet-Printed Stretchable Circuits for
Wearable Sensor Applications. Sensors 2018, 18, 3476. [CrossRef] [PubMed]

15. Yilmaz, T.; Foster, R.; Hao, Y. Detecting vital signs with wearablewireless sensors. Sensors 2010, 10, 10837–10862. [CrossRef]
[PubMed]

16. Al-Halhouli, A.; Al-Ghussain, L.; El Bouri, S.; Liu, H.; Zheng, D. Fabrication and Evaluation of a Novel Non-Invasive Stretchable
and Wearable Respiratory Rate Sensor Based on Silver Nanoparticles Using Inkjet Printing Technology. Polymers 2019, 11, 1518.
[CrossRef]

17. Al-Halhouli, A.; Al-Ghussain, L.; El Bouri, S.; Habash, F.; Liu, H.; Zheng, D. Clinical Evaluation of Stretchable and Wearable
Inkjet-Printed Strain Gauge Sensor for Respiratory Rate Monitoring at Different Body Postures. Appl. Sci. 2020, 10, 480. [CrossRef]

18. Nicolò, A.; Massaroni, C.; Passfield, L. Respiratory frequency during exercise: The neglected physiological measure. Front.
Physiol. 2017, 8, 922. [CrossRef]

19. Massaroni, C.; Nicolò, A.; Presti, D.L.; Sacchetti, M.; Silvestri, S.; Schena, E. Contact-based methods for measuring respiratory
rate. Sensors 2019, 19, 908. [CrossRef]

20. Naranjo-Hernández, D.; Talaminos-Barroso, A.; Reina-Tosina, J.; Roa, L.M.; Barbarov-Rostan, G.; Cejudo-Ramos, P.; Márquez-
Martín, E.; Ortega-Ruiz, F. Smart vest for respiratory rate monitoring of copd patients based on non-contact capacitive sensing.
Sensors 2018, 18, 2144. [CrossRef]

21. Hesse, M.; Christ, P.; Hormann, T.; Ruckert, U. A respiration sensor for a chest-strap based wireless body sensor. In Proceedings
of the IEEE SENSORS 2014 Proceedings, Valencia, Spain, 2–5 November 2014; IEEE: Piscataway, NJ, USA, 2014; Volume 2014,
pp. 490–493.

http://doi.org/10.3389/fphys.2020.01095
http://www.ncbi.nlm.nih.gov/pubmed/32973570
http://doi.org/10.1088/1361-6579/abaaf0
http://doi.org/10.3390/s20216396
http://doi.org/10.1016/j.aenj.2016.12.003
http://www.ncbi.nlm.nih.gov/pubmed/28073649
http://doi.org/10.1152/japplphysiol.00814.2019
http://www.ncbi.nlm.nih.gov/pubmed/32053402
http://doi.org/10.12968/bjon.2020.29.1.12
http://doi.org/10.1088/1361-6579/ab299e
http://doi.org/10.1109/JSEN.2017.2705700
http://doi.org/10.1109/JSEN.2014.2357257
http://doi.org/10.1002/adma.201706910
http://doi.org/10.1002/adma.201504366
http://www.ncbi.nlm.nih.gov/pubmed/26867696
http://doi.org/10.3390/s18020645
http://www.ncbi.nlm.nih.gov/pubmed/29470408
http://doi.org/10.3390/s18103476
http://www.ncbi.nlm.nih.gov/pubmed/30332756
http://doi.org/10.3390/s101210837
http://www.ncbi.nlm.nih.gov/pubmed/22163501
http://doi.org/10.3390/polym11091518
http://doi.org/10.3390/app10020480
http://doi.org/10.3389/fphys.2017.00922
http://doi.org/10.3390/s19040908
http://doi.org/10.3390/s18072144


Sensors 2021, 21, 468 18 of 19

22. Chiarugi, F.; Karatzanis, I.; Zacharioudakis, G.; Meriggi, P.; Rizzo, F.; Stratakis, M.; Louloudakis, S.; Biniaris, C.; Valentini, M.;
Di Rienzo, M.; et al. Measurement of heart rate and respiratory rate using a textile-based wearable device in heart failure patients.
Comput. Cardiol. 2008, 35, 901–904.

23. Furtak, N.T.; Skrzetuska, E.; Krucińska, I. Development of Screen-Printed Breathing Rate Sensors. Fibres Text. East. Eur. 2013, 21,
84–88.

24. Wu, D.; Wang, L.; Zhang, Y.; Huang, B.; Wang, B.; Lin, S.; Xu, X. A wearable respiration monitoring system based on digital
respiratory inductive plethysmography. In Proceedings of the 2009 Annual international conference of the IEEE Engineering in
Medicine and Biology Society, Minneapolis, MN, USA, 3–6 September 2009; pp. 4844–4847.

25. Jeong, J.W.; Jang, Y.W.; Lee, I.; Shin, S.; Kim, S. Wearable Respiratory Rate Monitoring using Piezo-resistive Fabric Sensor. In
Proceedings of the World Congress on Medical Physics and Biomedical Engineering, Munich, Germany, 7–12 September 2009;
Dössel, O., Schlegel, W.C., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 282–284, ISBN 978-3-642-03904-1.

26. Lei, K.F.; Hsieh, Y.Z.; Chiu, Y.Y.; Wu, M.H. The structure design of piezoelectric poly(vinylidene fluoride) (PVDF) polymer-based
sensor patch for the respiration monitoring under dynamic walking conditions. Sensors 2015, 15, 18801–18812. [CrossRef]

27. Bonato, P. Clinical applications of wearable technology. In Proceedings of the 2009 Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 2–6 September 2009; pp. 6580–6583.

28. Berry, C.E.; Wise, R.A. Mortality in COPD: Causes, Risk Factors, and Prevention. COPD J. Chronic Obstr. Pulm. Dis. 2010, 7,
375–382. [CrossRef] [PubMed]

29. Anlló, H.; Herer, B.; Delignières, A.; Bocahu, Y.; Segundo, I.; Mach Alingrin, V.; Gilbert, M.; Larue, F. Hypnosis for the management
of anxiety and dyspnea in COPD: A randomized, sham-controlled crossover trial. Int. J. Chronic Obstr. Pulm. Dis. 2020, 15,
2609–2620.

30. Yañez, A.M.; Guerrero, D.; Pérez De Alejo, R.; Garcia-Rio, F.; Alvarez-Sala, J.L.; Calle-Rubio, M.; Malo De Molina, R.; Valle
Falcones, M.; Ussetti, P.; Sauleda, J.; et al. Monitoring breathing rate at home allows early identification of COPD exacerbations.
Chest 2012, 142, 1524–1529. [CrossRef] [PubMed]

31. Bellos, C.C.; Papadopoulos, A.; Rosso, R.; Fotiadis, D.I. Identification of COPD patients’ health status using an intelligent system
in the CHRONIOUS wearable platform. IEEE J. Biomed. Heal. Inform. 2014, 18, 731–738. [CrossRef] [PubMed]

32. Rolfe, S. The importance of respiratory rate monitoring. Br. J. Nurs. 2019, 28, 504–508. [CrossRef] [PubMed]
33. Rubio, N.; Parker, R.A.; Drost, E.M.; Pinnock, H.; Weir, C.J.; Hanley, J.; Mantoani, L.C.; Macnee, W.; McKinstry, B.; Rabinovich,

R.A. Home monitoring of breathing rate in people with chronic obstructive pulmonary disease: Observational study of feasibility,
acceptability, and change after exacerbation. Int. J. Chronic Obstr. Pulm. Dis. 2017, 12, 1221–1231. [CrossRef] [PubMed]

34. Dias, D.; Cunha, J.P.S. Wearable health devices—Vital sign monitoring, systems and technologies. Sensors 2018, 18, 2414.
[CrossRef]

35. Ciocchetti, M.; Massaroni, C.; Saccomandi, P.; Caponero, M.; Polimadei, A.; Formica, D.; Schena, E. Smart Textile Based on Fiber
Bragg Grating Sensors for Respiratory Monitoring: Design and Preliminary Trials. Biosensors 2015, 5, 602–615. [CrossRef]

36. Sharma, P.; Hui, X.; Zhou, J.; Conroy, T.B.; Kan, E.C. Wearable radio-frequency sensing of respiratory rate, respiratory volume,
and heart rate. NPJ Digit. Med. 2020, 3, 1–10. [CrossRef] [PubMed]

37. Yamamoto, A.; Nakamoto, H.; Bessho, Y.; Watanabe, Y.; Oki, Y.; Ono, K.; Fujimoto, Y.; Terada, T.; Ishikawa, A. Monitoring
respiratory rates with a wearable system using a stretchable strain sensor during moderate exercise. Med. Biol. Eng. Comput. 2019,
57, 2741–2756. [CrossRef] [PubMed]

38. Chu, M.; Nguyen, T.; Pandey, V.; Zhou, Y.; Pham, H.N.; Bar-Yoseph, R.; Radom-Aizik, S.; Jain, R.; Cooper, D.M.; Khine, M.
Respiration rate and volume measurements using wearable strain sensors. NPJ Digit. Med. 2019, 2, 8. [CrossRef] [PubMed]

39. Massaroni, C.; Lopes, D.S.; Lo Presti, D.; Schena, E.; Silvestri, S. Contactless monitoring of breathing patterns and respiratory rate
at the pit of the neck: A single camera approach. J. Sens. 2018, 2018, 1–13. [CrossRef]

40. Tomasic, I.; Tomasic, N.; Trobec, R.; Krpan, M.; Kelava, T. Continuous remote monitoring of COPD patients—justification and
explanation of the requirements and a survey of the available technologies. Med. Biol. Eng. Comput. 2018, 56, 547–569. [CrossRef]
[PubMed]

41. Al-Halhouli, A.; Al-Ghussain, L.; El Bouri, S.; Habash, F.; Liu, H.; Zheng, D. Clinical evaluation of stretchable and wearable
inkjet-printed strain gauge sensor for respiratory rate monitoring at different measurements locations. J. Clin. Monit. Comput.
2020, 10, 480. [CrossRef]

42. Cordova, F.C.; Ciccolella, D.; Grabianowski, C.; Gaughan, J.; Brennan, K.; Goldstein, F.; Jacobs, M.R.; Criner, G.J. A Telemedicine-
Based Intervention Reduces the Frequency and Severity of COPD Exacerbation Symptoms: A Randomized, Controlled Trial.
Telemed. Health 2016, 22, 114–122. [CrossRef]

43. Carlson, R.V.; Boyd, K.M.; Webb, D.J. The revision of the Declaration of Helsinki: Past, present and future. Br. J. Clin. Pharmacol.
2004, 57, 695–713. [CrossRef]

44. Hacks, C. e-Health Sensor Platform V2.0 for Arduino and Raspberry Pi [Biometric/Medical Applications]. Available online: https:
//www.cooking-hacks.com/documentation/tutorials/ehealth-biometric-sensor-platform-arduino-raspberry-pi-medical (ac-
cessed on 20 February 2019).

45. Arduino Mega 2560 Datasheet. Available online: http://eprints.polsri.ac.id/4598/8/File%20VIII%20%28Lampiran%29.pdf
(accessed on 10 January 2021).

http://doi.org/10.3390/s150818801
http://doi.org/10.3109/15412555.2010.510160
http://www.ncbi.nlm.nih.gov/pubmed/20854053
http://doi.org/10.1378/chest.11-2728
http://www.ncbi.nlm.nih.gov/pubmed/22797131
http://doi.org/10.1109/JBHI.2013.2293172
http://www.ncbi.nlm.nih.gov/pubmed/24808219
http://doi.org/10.12968/bjon.2019.28.8.504
http://www.ncbi.nlm.nih.gov/pubmed/31002547
http://doi.org/10.2147/COPD.S120706
http://www.ncbi.nlm.nih.gov/pubmed/28458534
http://doi.org/10.3390/s18082414
http://doi.org/10.3390/bios5030602
http://doi.org/10.1038/s41746-020-0307-6
http://www.ncbi.nlm.nih.gov/pubmed/32793811
http://doi.org/10.1007/s11517-019-02062-2
http://www.ncbi.nlm.nih.gov/pubmed/31734768
http://doi.org/10.1038/s41746-019-0083-3
http://www.ncbi.nlm.nih.gov/pubmed/31304358
http://doi.org/10.1155/2018/4567213
http://doi.org/10.1007/s11517-018-1798-z
http://www.ncbi.nlm.nih.gov/pubmed/29504070
http://doi.org/10.1007/s10877-020-00481-3
http://doi.org/10.1089/tmj.2015.0035
http://doi.org/10.1111/j.1365-2125.2004.02103.x
https://www.cooking-hacks.com/documentation/tutorials/ehealth-biometric-sensor-platform-arduino-raspberry-pi-medical
https://www.cooking-hacks.com/documentation/tutorials/ehealth-biometric-sensor-platform-arduino-raspberry-pi-medical
http://eprints.polsri.ac.id/4598/8/File%20VIII%20%28Lampiran%29.pdf


Sensors 2021, 21, 468 19 of 19

46. ATmega640/V-1280/V-1281/V-2560/V-2561/V. Available online: https://ww1.microchip.com/downloads/en/DeviceDoc/
ATmega640-1280-1281-2560-2561-Datasheet-DS40002211A.pdf (accessed on 10 January 2021).

47. Schmider, E.; Ziegler, M.; Danay, E.; Beyer, L.; Bühner, M. Is It Really Robust? Methodology 2010, 6, 147–151. [CrossRef]
48. Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986,

1, 307–310. [CrossRef]
49. Giavarina, D. Understanding Bland Altman analysis. Biochem. Med. 2015, 25, 141–151. [CrossRef] [PubMed]
50. Siafakas, N.M.; Vermeire, P.; Pride, N.B.; Paoletti, P.; Gibson, J.; Howard, P.; Yernault, J.C.; Decramer, M.; Higenbottam, T.; Postma,

D.S.; et al. Optimal assessment and management of chronic obstructive pulmonary disease (COPD). Eur. Respir. J. 1995, 8,
1398–1420. [CrossRef] [PubMed]

51. Roche, N.; Chavannes, N.H.; Miravitlles, M. COPD symptoms in the morning: Impact, evaluation and management. Respir. Res.
2013, 14, 112. [CrossRef] [PubMed]

52. Miravitlles, M.; Worth, H.; Soler Cataluña, J.J.; Price, D.; De Benedetto, F.; Roche, N.; Godtfredsen, N.S.; van der Molen, T.;
Löfdahl, C.G.; Padullés, L.; et al. Observational study to characterise 24-hour COPD symptoms and their relationship with
patient-reported outcomes: Results from the ASSESS study. Respir. Res. 2014, 15, 122. [CrossRef] [PubMed]

53. Soler, J.; Alves Pegoraro, J.; Le, X.L.; Nguyen, D.P.Q.; Grassion, L.; Antoine, R.; Guerder, A.; Gonzalez-Bermejo, J. Validation of
respiratory rate measurements from remote monitoring device in COPD patients. Respir. Med. Res. 2019, 76, 1–3. [CrossRef]

54. Klersy, C.; De Silvestri, A.; Gabutti, G.; Raisaro, A.; Curti, M.; Regoli, F.; Auricchio, A. Economic impact of remote patient
monitoring: An integrated economic model derived from a meta-analysis of randomized controlled trials in heart failure. Eur. J.
Heart Fail. 2011, 13, 450–459. [CrossRef]

55. Al Rajeh, A.; Hurst, J. Monitoring of Physiological Parameters to Predict Exacerbations of Chronic Obstructive Pulmonary Disease
(COPD): A Systematic Review. J. Clin. Med. 2016, 5, 108. [CrossRef]

56. Elvekjaer, M.; Aasvang, E.K.; Olsen, R.M.; Sørensen, H.B.D.; Porsbjerg, C.M.; Jensen, J.-U.; Haahr-Raunkjær, C.; Meyhoff, C.S.
Physiological abnormalities in patients admitted with acute exacerbation of COPD: An observational study with continuous
monitoring. J. Clin. Monit. Comput. 2020, 34, 1051–1060. [CrossRef]

57. Parker, R.A.; Weir, C.J.; Rubio, N.; Rabinovich, R.; Pinnock, H.; Hanley, J.; McCloughan, L.; Drost, E.M.; Mantoani, L.C.; MacNee,
W.; et al. Application of Mixed Effects Limits of Agreement in the Presence of Multiple Sources of Variability: Exemplar from the
Comparison of Several Devices to Measure Respiratory Rate in COPD Patients. PLoS ONE 2016, 11, e0168321. [CrossRef]

58. Miller, D.; Capodilupo, J.; Lastella, M.; Sargent, C.; Roach, G.; Lee, V.; Capodilupo, E. Analyzing changes in respiratory rate to
predict the risk of COVID-19 infection. PLoS ONE 2020, 15, e0243693. [CrossRef]

59. Nakano, H.; Kadowaki, M.; Furukawa, T.; Yoshida, M. Rise in nocturnal respiratory rate during CPAP may be an early sign of
COVID-19 in patients with obstructive sleep apnea. J. Clin. Sleep Med. 2020, 6, 1811–1813. [CrossRef] [PubMed]

https://ww1.microchip.com/downloads/en/DeviceDoc/ATmega640-1280-1281-2560-2561-Datasheet-DS40002211A.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/ATmega640-1280-1281-2560-2561-Datasheet-DS40002211A.pdf
http://doi.org/10.1027/1614-2241/a000016
http://doi.org/10.1016/S0140-6736(86)90837-8
http://doi.org/10.11613/BM.2015.015
http://www.ncbi.nlm.nih.gov/pubmed/26110027
http://doi.org/10.1183/09031936.95.08081398
http://www.ncbi.nlm.nih.gov/pubmed/7489808
http://doi.org/10.1186/1465-9921-14-112
http://www.ncbi.nlm.nih.gov/pubmed/24143997
http://doi.org/10.1186/s12931-014-0122-1
http://www.ncbi.nlm.nih.gov/pubmed/25331383
http://doi.org/10.1016/j.resmer.2019.05.002
http://doi.org/10.1093/eurjhf/hfq232
http://doi.org/10.3390/jcm5120108
http://doi.org/10.1007/s10877-019-00415-8
http://doi.org/10.1371/journal.pone.0168321
http://doi.org/10.1371/journal.pone.0243693
http://doi.org/10.5664/jcsm.8714
http://www.ncbi.nlm.nih.gov/pubmed/33063660

	Introduction 
	Methodology 
	Ethical Approval 
	Inkjet-Printed RR Sensor 
	Measurements Protocol 
	Respiration Rate Derivation 
	Statistical Analysis 
	Data Cleaning 
	Comparison of RR Values 
	Analysis of Errors of RR 
	Analysis of Relative Errors of RR 
	Bland-Altman Analysis 
	Regression Analysis 


	Results 
	Comparison of RR Values 
	Analysis of Errors of RR 
	Analysis of Relative Errors of RR 
	Bland-Altman Analysis 
	Regression Analysis 

	Discussion 
	Measurement of RR on COPD Patients: Difficulties and Approaches 
	Accuracy of IJPT Sensor: Comparison with Other Sensors 
	Applications of IJPT Sensor 
	Limitations and Future Work 

	Conclusions 
	
	References

