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Abstract: The routing algorithm is one of the main factors that directly impact on network perfor-
mance. However, conventional routing algorithms do not consider the network data history, for
instances, overloaded paths or equipment faults. It is expected that routing algorithms based on
machine learning present advantages using that network data. Nevertheless, in a routing algorithm
based on reinforcement learning (RL) technique, additional control message headers could be re-
quired. In this context, this research presents an enhanced routing protocol based on RL, named
e-RLRP, in which the overhead is reduced. Specifically, a dynamic adjustment in the Hello message
interval is implemented to compensate the overhead generated by the use of RL. Different network
scenarios with variable number of nodes, routes, traffic flows and degree of mobility are implemented,
in which network parameters, such as packet loss, delay, throughput and overhead are obtained.
Additionally, a Voice-over-IP (VoIP) communication scenario is implemented, in which the E-model
algorithm is used to predict the communication quality. For performance comparison, the OLSR,
BATMAN and RLRP protocols are used. Experimental results show that the e-RLRP reduces network
overhead compared to RLRP, and overcomes in most cases all of these protocols, considering both
network parameters and VoIP quality.

Keywords: routing algorithms; machine learning; reinforcement learning; intelligent routing; VoIP;
QoE

1. Introduction

Nowadays, there is a great demand for internet application services, such as video [1]
and audio streaming, Voice-over-IP (VoIP) [2,3], online games [4] among others. Multimedia
services represent more than 50% of current Internet traffic [5]. VoIP service is one of
the most popular communication services due to the low phone call rate compared to
conventional telephony [6], but also due to the high speech quality level achieved in recent
years [7]. Thus, network providers need to perform monitoring and operation tasks to
ensure an acceptable end-user’s Quality-of-Experience (QoE).

In ad-hoc wireless networks, to ensure a reliable network performance is a great
challenge due to the characteristic of this kind of network [8]. Dynamic topology, shared
wireless channels, and limited node capabilities are factors that need to be considered in
order to provide a high quality VoIP service. For instance, device batteries are limited
resources that can lead to link losses connected to that nodes during power failures [9].

In a VoIP communication, end-user’s QoE is determined by the user’s perception [10–12].
In general, speech quality assessment methods can be divided in subjective and objective
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methods. Subjective methods are performed in a laboratory environment using a standard-
ized test procedure [13]. Several listeners score an audio sample and the average value
is computed and named Mean Opinion Score (MOS). However, subjective methods are
time-consuming and expensive [14]. Another manner to predict the quality of a VoIP call
is through a parametric method, such as the E-model algorithms [15,16] which provides
a conversation quality index estimated through different parameters related to acoustic
environment, speech codec characteristics and network performance parameters.

Several factors, such as channel transmission capacity, node processing capacity,
and routing protocols affect network performance parameters [17].

Conventional routing protocols in ad-hoc networks, such as Optimized Link State
Routing (OLSR), are unable to learn from abnormal network events that occurred several
times in the past [18]; then, those protocols can choose a path that in the past had recurrent
problems. For example, let us consider a path P where a given node N presents recurrent
shut downs due to either device failures or programmed power-offs to save energy [19].
If a conventional protocol chooses this path P, network degradation can occur, such as
packet losses [20]. A routing protocol that is able to learn from previous network failure
events could avoid this path improving the network performance. Hence, there is a need
for protocols capable to learn from network data history. Therefore, it is important that
routing protocols use strategies that make them learn from past experiences to choose
optimal routing paths [21].

In the latest decades, Machine Learning algorithms have come to be used in several
applications [22–28]. Thus, these algorithms can be applied into routing control proto-
cols [29–31], specifically Reinforcement Learning (RL) is increasingly being used to solve
routing problems [32–34]. In RL, an agent must be able to learn how to behave in a dynamic
environment through iterations [35]. For instance, an agent who makes a choice receives a
reward or a punishment whether the choice was good or bad, respectively. Hence, the RL
technique can improve the steps along the decision making of path choice process, leading
to better network performance, and consequently improved applications services, such as
a VoIP communication [36].

In Reference [37], the authors introduce a generic model based on RL for ad-hoc
networks focusing on routing strategies. Some works use RL for routing in urban vehicular
ad-hoc networks (VANETs) [32]. Other works focus on wireless sensor networks and their
characteristics [38] or unmanned robotic systems [39].

In Reference [18], an intelligent traffic control through deep learning is proposed,
whose results demonstrated a performance gain compared to the traditional Open Shortest
Path First (OSPF) routing protocol. In Reference [21], author uses Deep Reinforcement
Learning to develop a new general purpose protocol, and obtained superior results com-
pared to OSPF. However, both works do not focus on ad-hoc networks, and they do
not compare the algorithm developed with ad-hoc network protocols. In Reference [40],
a Reinforcement Learning Routing Protocol (RLRP) is proposed, which can be applied to
ad-hoc networks.

Routing protocols require the use of control messages for their operation, they are
responsible for the discovery of routes, for the dissemination of information on topology,
among other things. However, control messages generate overhead on the network, thus
decreasing network capacity especially in situations where the transmission channel may
suffer interference or be saturated.

The use of RL technique in routing protocols may require an extra header, new control
messages, or increasing the sending frequency of these messages. There are studies that
aim to reduce overhead in traditional protocols. In protocols that use RL, a mechanism
that provides the reduction of this overhead is relevant, because these routing techniques
generate additional overhead.

In RL, there is an agent that interacts with an environment through the choice of
actions [35]. In RL, each action generates a reward that generally defines whether the action
taken was good or bad. In Reference [40], the rewards are sent to the nodes through control
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messages using a reward header that generates an overhead due to the use of RL. This
additional overhead impacts on the global network performance.

In this context, there are research initiatives focused on decreasing the overhead
originated by control messages. In Reference [41], authors propose an adjustment in the
interval for sending hello messages of the AODV protocol in a Flying Ad-Hoc Networks
(FANETs) scenario, focusing on reducing the energy consumption of unmanned aerial
vehicles (UAVs) by reducing the frequency of sending the hello message.

The results show a reduction in energy consumption without loss of network perfor-
mance. Despite presenting relevant results, the work focuses on FANETs and their specific
characteristics. In Reference [42] the authors propose three algorithms to adjust the time to
send Hello messages. The first algorithm is called Reactive Hello, where Hello messages
are only sent when the node wants to send some packet. In other words, the discovery of
the neighborhood is done only when the node wants to send a packet. Despite reducing
overhead once the number of messages is reduced, this approach can degrade the network
if its mobility is high, since the changes will only be noticed when the node needs to send
a packet. The second method is called Event-Based Hello and the adjustment is made
based on the events that occur in the network. In this approach, at first a network node
sends Hello messages with the default frequency, but if after a predefined period of time
that node does not receive any Hello messages from a neighbor or does not need to send
packets it stops sending Hello messages. The problem with this approach is that if all
the nodes in the network move away and after the time period return to get closer, no
one will send Hello messages and the topology information would be out of step until
a node decides to send a packet with the same problem as the Reactive Hello approach.
In the third method, called Adaptive Hello, each node in the network sends a Hello after
moving a defined distance. The problem with this algorithm is that each node needs to
assume its position. In Reference [43], the frequency depends on the speed of the nodes,
and the problem of this approach is when there are nodes that do not move but disconnect,
for example, to save energy.

The works previously mentioned demonstrate that a dynamic adjustment reduces
overhead in relation to the simplistic model where the frequency of sending messages
is defined in a static manner using fixed values. In this context, the goal is that the
algorithm adjusts the sending of Hello messages according to the mobility of the network.
The mobility occurs when a node moves out of the reach of neighbors, shuts down or it is
inoperative. In case of mobility events, the frequency is adjusted to higher values so that
the new network information can converge quickly. If there is no mobility on the network,
the frequency should be reduced but not suspended as proposed in other works.

In this context, the main contributions of this paper can be summarized as follows:

• To develop an enhanced routing protocol based on RL technique, named e-RLRP, that
is able to learn from network events history, avoiding paths with connection problems.
Also, it is able to reduce the number of control messages. The routing algorithm based
on RL is developed according to Reference [40].

• Implementation of an algorithm that compensates the overhead inserted by the mes-
sages related to RL algorithm in the RLRP. To the best of our knowledge, a dynamic
adjustment algorithm of Hello Message time interval to compensate the overhead has
not been treated by other routing protocols based on RL. Thus, the present research
contributes with the advances in the state-of-the-art of these protocol types.

• The performance of the proposed method is compared to other widely used routing
protocols, such as the Better Approach To Mobile Ad-hoc Networking (BATMAN)
and Optimized Link State Routing (OLSR), and also the RLRP protocol. To this end,
different network typologies and traffic flows were implemented. The performance
comparison considers key network parameters, such as throughput, packet loss rate
and delay. Also, the speech perceptual quality in a VoIP communication service is
evaluated, in which two operation modes of the AMR-WB speech codec [44] are used.
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The algorithm to compensate for the overhead caused by the use of RL is based on
the reduction of the overhead generated by another control message, the Hello message,
which is responsible for the dissemination of information about the neighborhood of each
network node. A dynamic adjustment in the frequency of sending the Hello message is
capable of reducing the global overhead. The algorithm proposed in this work adjusts
the sending of Hello messages according to the mobility of the network. Thus, this work
contributes in the improvement of routing protocols based on RL technique, because it
addresses one of the deficiencies of these protocols, which is the increasing number of
control messages; therefore, the network overhead is also affected.

In this work, different ad-hoc multihop network scenarios are implemented, con-
sidering different network topologies, a variable number of nodes, different traffic flows
and several degrees of network mobility. In order to simulate network failures, some
nodes drop in random instants during each simulation. In these scenarios, a VoIP traffic is
simulated and used as a case study. To this end, an UDP traffic is defined between a pair
of source and destination nodes, and some nodes in the network are randomly turned off
in order to simulate a network failure. Thus, it is possible to obtain network parameters,
such as throughput, delays, packet loss rate and number of control message sent to the
network, which are used to evaluate the impact of the routing algorithm on the perceptual
quality of VoIP communication according to the E-model algorithm described in ITU-T
recommendation G.107.1 [16]. It is important to note that VoIP service is used as a specific
study case, but the proposed routing algorithm is for general purposes being agnostic of
the service application. Finally, experimental performance results show that the proposed
e-RLP overcame, in most of the test scenarios used in this work, the other routing protocols
used for comparison purposes. The e-RLRP provides an overhead reduction of up to
18% compared to RLRP. The case study demonstrates that e-RLRP can provide a VoIP
communication quality improvement of more than 90% if compared to OLSR, and up to
8% if compared to RLRP.

The remainder of this paper is structured as follows. In the Section 2 a theoretical
review is presented. The proposed routing algorithm based on RL is described in Section 3.
In Section 4, the different steps of the experimental setup are described. Section 5 presents
the experimental results. Finally, the conclusions are presented in Section 6.

2. Theoretical Review
2.1. Reinforcement Learning

RL is a Machine Learning technique in which there is an agent that interacts with the
environment through actions and receives rewards for the actions taken. The RL problem
can be summarized as, an agent interacting with an environment in order to maximize the
accumulated reward over time [35].

The generalization of the RL interaction process [35] is shown in Figure 1, where the
Agent interacts with the Environment through an at action. This interaction leads to a new
st+1 state and generates a reward for the Agent.

Figure 1. Generalized Reinforcement Learning Scheme.
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Through the rewards the agent estimates the action taken, and this knowledge is then
used by the agent to adapt future decisions, which is usually controlled by the estimated
value Q. In general, the estimated value defines how good a given action is.

The formulation of the RL optimization process can be represented as a Markov
Decision Process (MDP) [35], introducing 4 sets S, A, P, R, where, S is a set of possible states
of the agent; A represents the set of possible actions that an agent can take; P is defined as
set of probabilities, in that an agent in a state s, advances to a state s′ when opting for an
action A. And finally the reward function R, which generates the reinforcement that the
agent receives for choosing action A.

According to MDP the transition probabilities from s to s′ after taking action a (Pss′
a),

can be described as follows:

Pss′
a = Pr

{
st+1 = s′ | st = s, at = a

}
. (1)

The estimation reward values (E) for action a (Rss′
a), from state s to s′, is defined by:

Rss′
a = E{rt+1 | st = s, at = a, st+1=s′}. (2)

The sets S and P can be defined by a set of estimation values Q, which is dependent
on the reward value obtained from an environment, and also from the current moment t,
when the corresponding action has been performed. The estimation function values are
presented as follows:

Qk+1 = Qk + α ∗ [rk+1 −Qk], (3)

where Qk represents the estimation value on the previous step; Qk+1 is the current esti-
mation value; rk+1 define the reward value for an action performed on the current step; α
represents step size parameter; and k is the current step number.

One of the main questions about RL is to take advantage of the current actions that
generate greater rewards or explore new actions in order to be able to obtain even better
rewards. In order to maximize the rewards received, the agent must balance the need to
explore new actions or take advantage of current ones.

In RL, the most common methods for action selection are greedy, e-greedy and softmax
methods [45]. The greedy selection of the action with the maximum estimation value all
the time. The e-greedy selection of action with the maximum estimation almost every
time, however, sometimes it explores new actions at random. The Softmax method [46]
provides a dynamic change of selection probabilities of the actions. This change of selection
probabilities of the actions occurs according to a predefined probability function, such as
the Gibbs-Boltzmann distribution [35].

2.2. Ad-Hoc Networks Routing Protocols

The purpose of a routing algorithm is to find good paths between a source and a
destination node. Usually, the best path is one that has the lowest cost [47]. There are
several routing algorithms, some of them aim to find the lowest cost path according to a
defined metric. Then, for these protocols, the most common metric is the hop count where
the cost of a path is the sum of the number of hops between source and destination.

Ad-hoc network routing protocols must be able to handle a dynamic topology. This
feature brings several challenges in their development. In general, these routing protocols
can be divided into three subclasses:

• Reactive protocols [48] which exchange topology information on demand. In this type
of protocol, the exchange of information about the topology occurs only when a node
wants to send a message. In the reactive protocol, the redundancy in the transmission
of service messages is lower in relation to other type of protocols.
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• Proactive protocols [49] which continuously update the route information by sending
control messages. In this type of protocol, the exchange of information between nodes
about the network topology occurs even before any node sends any packets. Proactive
protocols generally provide greater flexibility in route selection compared to reactive
ones. However, it produces a greater number of control messages that increases
the overhead.

• Hybrid protocols [50] that combine proactive and reactive characteristics. In hybrid
protocols, some routes are created using a proactive approach and later the protocol
works reactivelly.

As previously stated, for performance validation, the proposed algorithm is compared
to BATMAN, OSPF and RLRP routing protocols, which are described in the following lines.

2.2.1. Better Approach to Mobile Ad-Hoc Networking (BATMAN)

The BATMAN [51] is a proactive routing protocol for Ad-hoc network. It uses a
different approach for sharing the knowledge about the best paths. Basically, each node has
information about which jump distance neighbor has the best route to a given destination
X, that is, which neighbor must be chosen when it is desired to send a packet to node X.

In the BATMAN each node in the network sends a message, called OriGinator Mes-
sages (OGMs), to all its neighbors to inform of its existence. The OGMs are small messages
that contain the address of the originating node, the address of the node that relayed,
a Time To Live (TTL) and a sequence number to record the route already taken by the
packet. When a node receives an OGM message it updates its routing table, decreases the
TTL and increases the sequence field. After that it forwards the message to its neighbors;
this procedure is repeated until all nodes in the network receive the message.

BATMAN uses the exchange of OGMs messages to influence the choice of routes,
basically this happens as follows: When an X node in the network receives the same OGM
from a Y emitter through two different paths it discards the last message and considers only
the first message. The idea is that OGM that arrived first probably traveled the best route.

The node X then records which neighbor of a jump emitted the OGM that arrived first.
This neighbor is defined as the best path for a possible route to the Y transmitter. When
OGMs go through bad routes are usually lost or take a longer time to arrive, thus, the node
will only consider OGMs from good routes, that is, only the routes considered the best
are recorded.

Another important mechanism of BATMAN is the selective flooding system that
works as follows: When a node receives an OGM in addition to relaying the OGM received
to neighbors it also responds the source node with another OGM message. However, it
does not send the message in brodcast, it first queries in its table which neighbor has the
best route to the source node and sends only to this neighbor. In this way, messages are
sent selectively. Which decreases the overhead of control messages.

BATMAN is used as a reference in this work because it is a well-known protocol for
ad-hoc networks.

2.2.2. Optimized Link State Routing (OLSR)

The OLSR [52] is a proactive protocol commonly used in ad-hoc networks. The OLSR
uses two control messages for topology discovery and maintenance: Hello and Topology
Control (TC). Hello messages are used for neighbor discovery. The TC messages are used
to disseminate information about neighbors and the state of the links established between
them in order to build the network topology.

The OLSR employs a technique called Multi-Point Replaying (MPR) to reduce over-
head caused by sending control messages and the number of rebroadcasting nodes [53].
This technique is to limit the number of neighbors that can relay control messages. For this
to occur each node selects a number of neighbors that can relay the messages. Unselected
neighbors receive the messages but do not forward them to other nodes. Additionally,
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TC packets include a sequence number to avoid infinite retransmissions due to undesir-
able loops.

The OLSR is used as a reference in this work because it is a widely used protocol in
ad-hoc networks. In addition, this protocol provides better results, in terms of Quality of
Service, than other routing algorithms [54] also considering the VoIP service [55].

2.3. Reinforcement Learning Routing Protocol (RLRP)

The RLRP is a reactive routing protocol for multi-hop ad-hoc networks. In general,
the purpose of RLRP is to make a decision about the forwarding of packets to neighboring
nodes based on estimated values. These values are dynamically updated through the
rewards mechanism used by RL. The RLRP works on Linux systems with the TCP/IP
stack providing routing for any data packets with either IPv4 or IPv6 addressing [40].
The routing process starts after initializing the routing daemon and runs on a created
virtual interface.

The RLRP as any other conventional protocol for ad-hoc multi-hop networks is based
on two operational modes. The first one is path discovery, which occurs when a node
needs to send a packet and has no routing information for a destination. The second is
packet forwarding, which is when a protocol decides which route is the best to send the
packet [40].

In the first mode, the RLRP uses the reactive approach. Thus, a source node (A) sends
a route request (RREQ) message to its direct neighbors and the neighbors in turn relay this
RREQ to their neighbors. This manner, the RREQ message is forwarded to all network
nodes until the transmission time-to-live (TTL) counter is reached or until a node that has
already sent this RREQ receives the message again. All network nodes that participated in
the RREQ relay get route information toward the source node and update their routing
tables with that information. The destination node (B) receiving RREQ sends a route
response message (RREP) that goes through the same relay process. Neighbor nodes of B
and all node participating in RREP relay update their routing table with path information
to reach node B. When the node A receives the RREP sent by the node B, all network nodes
are already aware of the routes between A and B. Thus, the path discovery process ends
and packet forwarding mode can be started.

Conventional routing protocols have in their routing table a field with destination
address information. Each route is associated to a cost that is calculated according to an
specific metric, then the path which has the lowest cost is selected. In turn, RLRP uses RL
to decide which path is the best.

As explained in the Section 2.1 in RL there is an agent, a set of actions that the agent
can do. Each agent’s action generates a reward. To this end, there is a set of estimations for
the actions. For better association Table 1 introduces a relationship between reinforcement
learning and conventional routing protocols.

Table 1. Relationship Between Reinforcement Learning (RL) and Conventional Routing Protocols.

RL Task Routing Task

Agent Source node
Set of actions Neighbors set

Set of estimation values (Q) Routing table
Agent Action Send a packet to neighbors

Agent receives a reward Node receives an ACK message

The Table 1 shows the relationship between the routing mechanism/tasks and the
Reinforcement Learning mechanisms. Through this relationship it is possible to apply the
RL to the routing task. Thus, an X node of the network that uses the RLRP protocol can be
considered an Agent.
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The set of actions is the set of nodes in the network on which X can send messages.
Sending a packet to a given network node is an Agent Action. And when sending this
packet, node X expects to receive an Acknowledgment Message (ACK), if this happens
it means that the message reached the given node, that is, a reward was generated for
having chosen this node to send the message. If the ACK is not received it means that the
message has been lost and the route is bad; then, node X receives a punishment for the
chosen action.

Finally, the protocol routing table defines the best route to send a packet to a given
destination. Similarly, an estimate set defines which action generates the best reward.

2.4. Speech Quality Assessment in VoIP Services

One of the major concerns in VoIP service is the cost associated with the transmission
medium. Due to this fact, in a VoIP communication compression techniques are used,
and they do not cause significant losses in the received signal quality [56]. Speech codecs
are responsible for this compression. There are different speech codecs, one of the most
adopted in current communication networks is the Adaptive Multi-Rate Wideband (AMR-
WB) codec [57].

The AMR-WB is a speech codec used for mobile device communications. It is widely
used by network operators to provide high quality conversations. AMR-WB is based on the
linear prediction generated by the ACELP algebraic code that uses a vector quantization
technique [58]. The AMR-WB uses nine operation modes, from 6.6 kbps to 23.85 kbps,
and each of one has a different response to packet losses.

The WB E-Model algorithm [16] is a parametric method that predict a conversa-
tion quality using different impairment factors related to acoustic environment, network,
and speech codec. The RWB is the global quality rating that is obtained using all the impair-
ment factors. This value is expressed on a quality scale from 0 to 129, the higher the value
the better the quality. The RWB score is determined by:

RWB = R0,WB − Is,WB − Id,WB − Ie-eff,WB + A, (4)

where R0,WB represents the basic signal-to-noise ratio (SNR), and for WB networks the
standardized value is 129; Is,WB represents the combination of all impairments which occur
simultaneously with the voice signal, for WB signals the adopted values of this factor is 0;
Id,WB represents the impairments caused by delay and; Ie-eff,WB is the quality degradation
due to equipment, specifically the speech code; A represents an advantage factor, but in WB
E-model is not considered and it is equal to 0. In this paper, we mainly focus on Ie-eff,WB,
and the Id,WB is also evaluated.

The Ie-eff is determined by:

Ie,eff,WB = Ie,WB + (95− Ie,WB) .
Ppl

Ppl + BplWB
, (5)

where Ie,WB is the equipment impairment factor at zero packet-loss, only related to codec
impairment; Ppl is the probability of packet losses, and the BplWB is the packet-loss
robustness factor for a specific codec in WB networks.

In Annex IV of ITU-T recommendation G.113 [59], Ie and Bpl values for AMR-WB
cocec are defined. Table 2 presents the number of bits and bit-rate of each AMR-WB
operation modes, and their existing standardized Ie and Bpl values. Note that some Bpl
values are not defined (ND) in some cases.
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Table 2. Adaptive Multi-Rate Wideband (AMR-WB) Operation Modes and their Bit-rates, Ie and
Bpl Values.

AMR-WB Operation Modes Number of Bits Bit-Rate (kbps) Ie Bpl

0 132 6.60 41 ND
1 177 8.85 26 ND
2 253 12.65 13 4.3
3 285 14.25 10 ND
4 317 15.85 7 ND
5 365 18.25 5 ND
6 397 19.85 3 ND
7 461 23.05 1 ND
8 477 23.85 8 4.9

In this work, the operation modes used in the simulation tests were 2 and 8, be-
cause they have the Bpl parameter already defined, as can be observed in Table 2. Thus,
the Ie,eff,WB value can be computed.

The Id is computed using the following relation:

Id,WB = Idte,WB + Idle,WB + Idd,WB, (6)

where Idte,WB gives an estimate for the impairments due to talker echo, Idle,WB represents
impairments due to listener echo, and Idd,WB represents the impairment caused by an
absolute delay Ta in the network. In this study, the Idte,WB and Idle,WB are not considered be-
cause they are related to echo and acoustic problems at the end-sides of the communication
that is out of the scope of this research.

The Idd,WB is defined by:

Idd,WB =

{
1, Ta < 100 ms

25[(1 + X6)(
1
6 ) − 3(1 + (X

3 )
6)

1
6 + 2], Ta > 100 ms

(7)

where

X =
log( Ta

100 )

log 2
. (8)

It is important to note that in the proposed network scenarios, the Ppl and Ta vari-
able values can be obtained in each simulation test; therefore, the RWB can be computed
using (4).

3. The Proposed e-RLRP Algorithm

In this section, the proposed e-RLRP algorithm is explained. Firstly, the RL technique
in the routing protocol is implemented according to Reference [40]. Later, the proposed
method to reduce the overhead is detailed.

3.1. Reinforcement Learning Used in Routing Protocol

The reward propagation with Acknowledgment message, the reward generation and
the estimation values are presented.

3.1.1. Reward Propagation with Acknowledgment Message (ACK)

The reward value is directly related to the receipt of the ACK. When a node wants to
send a packet to a given destination it selects a neighbor from the existing one and sends
the packet to that neighbor. After that, it waits for the corresponding ACK message, which
contains meta-information about the received packet, and the reward value by the action
of choosing this neighbor. This ACK message can return using a path different from the
one used to send the corresponding packet.

If the ACK is not received within a pre-defined time then the sender node sets a
punishment, that is, a negative reward to the neighboring node to which the packet was
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forwarded. This negative value is set to −1. If the ACK is not being received probably
the neighboring node has gone offline. The neighboring may be experiencing hardware
issues such as power outages, strong interference with wireless transmission or the node
is overloaded with incoming traffic. Hence, it is consistent that this neighbor should be
avoided in the future.

If the ACK message is received on time a reward value will be provided within the
message. If the value is high it means that the neighbor has a good way to the destination,
the probability of choosing this neighbor in the future will increase. If the value is low it
means that the chosen neighbor does not have a good route to that destination, because it
has hardware problems, there may be many hops or the further links quality is weak.
In this case the source node will slowly decrease the estimation value for this neighbor,
which is likely to cause the node to later choose other neighbors.

3.1.2. Reward Generation

The mechanism for adjusting the reward value must be flexible, that is, the adjustment
may not be too small that do not cause changes or too large as to induce sudden change
due to a specific events. For example, if the value of the punishment after choosing a bad
route is too low, the estimated value of that route will slowly decrease and probably this
bad route can still be chosen for a long time. On the other hand, if the punishment value is
too high, a route may no longer be chosen because of just one packet loss event. Therefore,
a balance must be found between low and high rewards/punishment.

According to Reference [40], the reward value is calculated as follows: When a node
X receives a packet of node Y, an ACK is sent with the reward value to Y. To calculate
the reward value, the sum of the estimated values that each neighbor has in relation to
destination node Y, called Qdstip is divided by the corresponding number of neighbors (N).
Thus, the rewardvalue is the average of the Q values of the neighbors in relation to node Y.
The rewardvalue is calculated according to:

rewardvalue = ∑ Qdstip /N. (9)

Upon receiving the rewardvalue, the node Y adjusts the estimated value for node X.
However if the ACK is not received, the node Y automatically set the reward value to −1,
that is, a punishment is generated that negatively impacts the estimated value for the route.
The estimation value is defined in the next subsection.

3.1.3. Estimation Values Based on Rewards

An initial value must be set for each node when the protocol starts, which is often
called cold start. The RLRP initially defines all neighbors with a value of 0 when a source
node has no route information towards a destination node. The available range of estimated
values is defined as: [0, 100]. When the protocol starts the route discovery process the
estimate values are set as follows:

Qn = 100/Nhops, (10)

where Qn is the estimated value for destination IP towards neighbor n; Nhops is the number
of hops in which RREQ or RREP messages has traversed from the source to the destina-
tion node

After the path discovery procedure ends all nodes in the network have the initial
estimated values for all routes. According to the calculation presented in (10), the estima-
tion value is initially defined based on the number of hops between the source and the
destination. It can be defined that the RLRP uses an initial approach of the hop count
metric, in which the routes with the least hop are chosen.

However, afterwards the values be adjusted since the route with the least number
of hops is not always the best one. For, a route may have the least number of hops but
present an overloaded link or have nodes that present malfunctions. The adjustment is
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made according to the received reward value. The estimation value Q like described in
Section 2.1 is calculated as follows:

Qk+1 = Qk + α ∗ [rk+1 −Qk], (11)

where Qk+1 represents the new estimation value for the action; Qk is the actual estimate
value; rk+1 define the reward value obtained; α represents step size parameter; and k is the
current step number. Therefore, the estimated value as stated above is impacted by the
reward value.

In e-RLRP, the reward is associated with the successful delivery of packets. Then,
in general, the local reward is given to the route that has the best rate of success in
delivering packets, and the long-term reward is related to the global network performance
by always looking for routes with the highest success rates. As explained in Section 2.1,
the RL algorithm has to consider two approaches in order to obtain a long-term reward,
the selection of actions that obtain the highest reward values or explore new actions that
can generate even better rewards. For this decision task, the e-RLRP uses the Softmax
method [60].

3.2. Algorithm Used in the e-RLRP to Reduce the Overhead

To send a packet, the node needs to know what neighbors nodes are directly connected.
Therefore, a neighborhood discovery procedure is required. In RLRP, this procedure occurs
through the broadcasting of messages called Hello.

By default, Hello messages are sent every 2 s, thus, the information about neighbors is
updated in the same period of time. This update interval parameter is called Broadcast
Interval (BI). The RLRP has 10 types of headers, two of them are Reward Header and Hello
Header. The structure of data fields of the Reward Header and Hello Header are shown in
Tables 3 and 4, respectively.

Table 3. Reward Header Format.

Field Name Size (Bits) Description

TYPE 4 Type ID of the header
ID 20 ID of the service message

NEG_REWARD_FLAG 1 Check reward
REWARD_VALUE 7 Value of the reward

MSG_HASH 32 ID of the data packet

The Reward Header is 8 bytes. The Type field defines what the header is, the ID field
is the unique identifier of the message service. The Neg Reward Flag field is a test flag that
checks whether the reward is negative or positive, the Reward Value is a value of reward,
and finally, the Msg Hash is the identifier of the packet to which the reward belongs.

Table 4. Hello Header Format.

Field Name Size (Bits) Description

TYPE 4 Type ID of the header
IPV4_COUNT 1 Number of IPv4 addresses
IPV6_COUNT 2 Number of IPv6 addresses
TX_COUNT 24 Number of frame re-broadcasts
GW_MODE 1 Indicates GateWay Mode

IPV4_ADDRESS 32 IPv4 address (if exists)
IPV6_ADDRESS_1 128 IPv6 address 1 (if exists)
IPV6_ADDRESS_2 128 IPv6 address 2 (if exists)
IPV6_ADDRESS_3 128 IPv6 address 3 (if exists)



Sensors 2021, 21, 504 12 of 32

The Hello Header size ranges from 4 to 56 bytes, this variation depends on the node
address that can be IPV4 or IPV6. The Type field defines what the header is, the field
IPv4 Count defines the number of assigned IPv4 addresses, limited to one. The IPv6
Count is number of assigned IPv6 addresses, limited to three. Tx Count is the number of
re-broadcasts, GW Mode define that a node is a Gateway in the network, the IPv4 and IPv6
address define the address of the node.

As can be observed in Table 3, the Reward header used in RLRP is 8 bytes long and
generates an additional overhead, which corresponds to the use of RL technique.

In this context, the present research implemented an algorithm to reduce the overhead
generated by the Hello message, specifically to reduce the frequency of sending Hello
messages in order to compensate the additional overhead generated by the Reward header.

It is clear that increasing the time interval for sending Hello messages, defined by
the BI parameter, will decrease the frequency of sending messages and consequently,
the overhead is also decreased. However, a high value also impacts the time of updating
information about the neighborhood, and the routing can be negatively affected.

Thus, the proposed algorithm implemented in the e-RLRP is capable of dynamically
adjusts the frequency of sending Hello messages. This adjustment in the parameter BI is
made according to the mobility present in the network. If the network is static, that is, no
neighbors enter or leave the coverage range, it is not necessary to send Hello messages
with a high frequency. Otherwise, if the network presents a high mobility, to send messages
more frequently is necessary.

A general high representation of the proposed algorithm is introduced in Figure 2.

Figure 2. Scheme of the dynamic adjustment algorithm proposed.

The sending of Hello messages starts together with the e-RLRP daemon. Next, the al-
gorithm checks the mobility of the network. To this end, there is a function named Update
Neighbors File responsible for updating the list of neighbors every time a Hello from a
new node is received. And there is a other function named Check Expired Neighbors that
checks if a Hello message has been received from neighbors every 7 s, if a neighbor is 7 s or
more without sending a Hello, it is removed from the list because it is out of reach. This
interval of time was defined experimentally in Reference [40]. In case, a new neighbor is
detected or an existing one is lost, it will be considered that there is mobility in the network.

In the proposed e-RLRP, when mobility occurs, the BI value will be reduced to a lower
limit called BI Lower Limit (BILL), the algorithm waits for a new time interval, sends a
message and restarts the process. If a mobility event does not occur, the BI parameter
will be increased with the Adjustment Factor (AF) parameter respecting the upper limit
called BI Upper Limit (BIUL). When the time defined by BI is reached, a Hello message



Sensors 2021, 21, 504 13 of 32

will be sent and the process is restarted. Hence, the frequency of sending Hello messages is
adjusted according to the mobility of the network

It is worth mentioning that the proposed dynamic adjustment is not based on RL,
because RL uses more computational resources.

3.2.1. Definition of the Upper and Lower Limits of Broadcast Interval

The higher the value of the BI parameter, the lower the frequency of sending Hello
messages, and consequently the overhead is reduced. However, it is necessary to define a
limit to that value does not grow indefinitely.

The BIUL cannot be greater or equal than 7 s due to the Check Expired Neighbors
function. Otherwise, the network nodes will be eliminated when the function timeout will
be reached. Considering that the BIUL value must be lower than 7 s and also the latency of
the existing network, the value 6 s is defined in order to guarantee that neighbors are not
erroneously removed.

To define the BILL, 3 values of BI lower that 2 s are tested in the scenario called
Programmed that is described in Section 4.1. The overhead is calculated considering the
source and destination node. The BI value of 2 s, defined in the RLRP, is also tested in the
same scenario, and the overhead obtained was 1.42 MB. The BI values 0.5, 1.0 and 1.5 were
tested. Table 5 shows the overhead results for each BI value.

Table 5. Broadcast Interval values to obtain overhead.

Broadcast Interval Value (s) Overhead (MB) Overhead Increase (%)

1.5 1.45 2.12% gain in relation to 2.0 s
1.0 1.48 4.22% gain in relation to 2.0 s
0.5 1.60 12.67% gain in relation to 2.0 s

Table 5 shows the increase in overhead of the tested values in relation to the default
value used in RLRP. The BI value of 1.5 had a gain of 2.12%, the value of 1.0 presented an
increase of 4.22%. The value of 0.5 obtained the highest increase, a gain of approximately
12.67%. Considering this value as a high increase in overhead compared to the previous
ones, the value of 0.5 is discarded. Hence, we opted for the intermediate tested value,
and BILL is set to 1.0.

3.2.2. Adjustment Factor

The objective of the e-RLRP is to reduce overhead but without degrading the perfor-
mance of the algorithm. Thus, after a scenario of high mobility is detected, the rise of the BI
parameter should be slower to ensure that the upper limit is slowly reached, because there
is a likelihood that the occurrence of mobility will repeat itself. In a scenario in which an
isolated episode of mobility occurs, the climb should be a little faster. Therefore, the AF
also should has responses according to the mobility of the network. It is important to note
that in initial tests, we used fixed values for the frequency of Hello messages, and the
results demonstrated that dynamic methods permit to obtain better results in terms of the
network performance parameters used in this work.

To ensure that no sudden changes occur in the AF, a scale of ten positions is defined,
in which the upper limit is called AFul and the minimum value is called AFll.

Also in the Programmed scenario described in the Section 4.1, the convergence time
(CT) of the e-RLRP, which is defined as the time elapsed between breaking a route until
the algorithm converged to find a new route, was also evaluated. Experimental test results
demonstrated that the average of CT is 20.6 s.
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The AF value cannot be high to avoid be aggressive enough to BI parameter reach the
BIUL before the CT. Then, to calculate AFul the Arithmetic Progression (AP) or also known
as arithmetic sequence is applied, with a difference between the consecutive terms equal
to BI, where term A1 is BILL, An is BIUL and the sum of the terms must not be greater
than CT.

To ensure that value is not reached before 20.6 s, the value is rounded to 21 s and
applying the formula of the sum of a AP, the AFul value is obtained.

CT ≤ (BIUL + BILL)× n
2

. (12)

Applying the result of Equation (12) in the formula for the general term of a AP:

BIUL=BILL + (n− 1)× AFul. (13)

The value obtained for AFul is 1, then, the maximum value of AF should be 1. As pre-
viously stated, a scale of 10 position was defined. Then, the value of AFll is 0.1, and each
position of that scale is increased by 0.1.

Whenever mobility occurs in the network the AF is decreased in the scale. The increase
will occur when there is a tendency of decrease in mobility during a period of time.

This period of time called Time of Check (TC) is defined by the average between CT
value and the time spent for the algorithm starting from BILL until reaching value BIUL
with adjustment AFll. To calculate TC, first, the formula of the general term of AP is applied.
The AFll is the common difference, BIUL and BILL are the terms An and A1 respectively.

BIUL = BILL + (n− 1) ∗ AFll. (14)

Applying the result of Equation (14) in the formula for the sum of a AP and averaging:

TC =
CT + (BILL+BIUL)∗n

2
2

. (15)

The TC value is 99.7, in this way after 99.7 s if there is a tendency to reduce mobility,
the AF will be increased. A mobility counter denominated Mcounter will be used to count
how many mobility events occur in the TC time period. Whether when a new neighbor
comes within range of a given node or when a neighbor leaves within range of that node

Mcounter = NewNeighborscounter + LostNeighborscounter. (16)

Belonging to a family of statistical approaches used to analyze time series data in the
area of finance and technical analysis [61], the Exponential Moving Average (EMA) can be
used to estimate values [61–63]. The EMA is used to calculate if the occurrence of mobility
tends to increase or decrease according to the Equation (17). The EMA is applied in a series
of 10 values Mcounter.

EMAk = (Mcounter − EMAk−1)(
2

(N + 1)
) + EMAk−1. (17)

If EMAk < EMAk−1, the number of mobility events has a tendency to decrease, then
the AF value will be increased. The period N of 10 values was chosen precisely because it
is the number of times that AF must be increased until reaching AFul.

The scheme of the AF adjustment algorithm is shown in Figure 3.
Thus, the BI is adjusted according to the mobility of the network, making possible to

reduce overhead.
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Figure 3. Scheme of dynamic adjustment of Adjustment Factor (AF).

4. Experimental Setup

In this section, different network scenario configurations used in the simulation tests
for performance validation of the proposed e-RLRP are described. Different network
topologies with different numbers of nodes, routes, traffic flows and network mobility
conditions are considered. Firstly, the four network topologies used in the simulations are
described. Later, two simulation scenarios are explained. Finally, the transmission rate in
the scenarios are explained, and the simulation environment is described.

4.1. Network Topology

In this work, four network topologies were created to simulate a wireless node net-
work, which are called T1, T2, T3 and T4. Node names were distributed in order to improve
the understanding of the scenarios that will be described later. The topologies were devel-
oped in order to guarantee that each route has a different number of hops. In Topology T1,
there are 3 routes and 8 nodes as illustrated in Figure 4.

Figure 4. Network Scenario Topology T1.

The Topology T2 is an extension of T1 with the addition of three nodes, thus, in total
there are 11 nodes and four different routes, which are distributed according to Figure 5.
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Figure 5. Network Scenario Topology T2.

The T3 is illustrated in Figure 6. This topology is also an extension of the T1 but now
we add five extra nodes; thus, there are a total of 13 nodes with 5 different routes.

Figure 6. Network Scenario Topology T3.

The T4 is illustrated in Figure 7. This topology like the others is an extension of the T1
but now we add eight extra nodes; thus, there are a total of 16 nodes with 6 different routes.

Figure 7. Network Scenario Topology T4.
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4.2. Emulation Scenario

In order to test the functionalities of the e-RLRP, two different scenarios were devel-
oped in which there are routes that degrade network performance. To this end, some nodes
in the network were configured to disconnect on a recurring basis at random instants,
simulating node failures and mobility in the network.

In the first scenario, only topology T1 is used. A flow is defined with node C being
the source and E being the destination, the node D will be programmed to shut down
5 times. This node is part of the shortest route between the source and destination of
traffic for T1. For a better later association, the first scenario is named Programmed (P).
Thus, the scenario P is a proof of concept to test the RL in the e-RLRP, in which a better
performance than other protocol is expected. In principle, the route with the least number
of hops is the best path and is the one that should be chosen initially by all protocols.
However, in this scenario, the choice of this path will cause degradation in the network
since there is a node that recurrently disconnects causing packet loss. As the e-RLRP can
learn from the network, it should be able to avoid the path containing nodes which present
recurrent drops.

The second scenario, named Random (R), also a flow is defined with node C being
the source and E being the destination. The nodes A, D and G of topology T1; nodes A,
D, G and J of T2; nodes A, D, G, J and L of T3; and nodes A, D, G, J, N, and O of T4 are
randomly disabled at different instants, in order to simulate random drops. In addition,
3 configurations for drops are defined. In the first configuration, 3 drops are drawn between
the aforementioned nodes for each topology. In the second configuration, 5 drops are drawn,
and in the third configuration 7 drops are considered. The reason for choosing only these
nodes is to ensure that each route has only one node that fails, thus, the same probability to
draw a drop for each route is ensured. These nodes are randomly disconnected in each
simulation. The instants in which each node drops during the simulation is randomly
defined, then, the routing algorithm does not know which node is down to avoid that
path. The objective of this scenario is to test the e-RLRP in a random scenario when the
network degradation increases. The network scenarios characteristics used in this research
are different from network scenarios in which node drops are controlled, and a scheduler
can be implemented in the network. It is important to note that the e-RLRP could also work
in conjunction with a scheduler for more complex network scenarios, but these scenarios
are out of the scope of this present research.

Additionally, two different configurations of the scenario R is defined for topologies
T3 and T4 where the flow number is greater than one. A network configuration with
3 flows is defined, in which the first one is from node C to E, second one from node F to
B and third one from node I to H. The second network configuration considers 4 flows,
where an additional flow from node M to K is added to the three previous mentioned flows.
The objective of these two scenarios, is to investigate the impact of the additional network
overhead due to RL control messages.

In these both scenarios, the ability of e-RLRP to avoid routes that degrade the network
through the use of RL is tested. And mainly the ability of e-RLRP to reduce network
overhead in mobility scenarios is also evaluated, providing a higher throughput and
reducing the Ppl value.

Table 6 shows which nodes have been configured to shut down simulating a drop in
T1, T2, T3 and T4 topologies for all scenarios. In the Programmed Scenario uses only the
T1 because it is a scenario for proof of concept.

Table 6. Nodes Set to Disconnect.

T1 T2 T3 T4

Scenario P D - - -
Scenario R ADG ADGJ ADGJL ADGJNO
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4.3. Transmission Rates of AMR-WB Codec

This work also aims to test the impact of the previously mentioned routing protocols
in a real communication service, to this end, VoIP communication scenario is used as a
case study. Thus, a traffic from node C to E is simulated with different bit-rates defined
according to the AMR-WB codec. In addition, we used UDP communication and a packet
time-length of 20 ms.

Speech signal transmitted on an IP network is compressed by a speech codec, and them
this payload must be packaged. For this, Real Time Protocol (RTP), the UDP and IP headers
are inserted. The bit-rates presented in Table 2 only refer to the payload, then, it is necessary
to add the number of bits regarding the RTP (12 bytes), UDP (8 bytes) and IP (20 bytes)
headers to obtain the transmission rate. For example, AMR-WB-Mode 2 (12.65 kbps)
contains 253 bits that are sent every 20 ms, then if the 320 bits of headers are added, a total
of 573 bits are sent in this same period of time, that represents a transmission rate of
28.65 kbps. Table 7 shows the transmission rates used in the test scenarios.

Table 7. Bit-rate After Adding RTP, UDP and IP headers.

AMR-WB Bit-Rate (kpbs) Bit-Rate Considering RTP/UDP/IP Headers (kpbs)

12.65 28.65
23.85 39.85

4.4. Emulation Environment

To test and analyze the performance of the four protocols previously mentioned, we
use the network emulator Common Open Research Emulator (CORE) [64]. Developed
by Boeing’s Research and Technology division, CORE is a real-time, open source, emula-
tor. The CORE is chosen because it enables the use of real-world routing protocols and
applications using Linux system virtualization. The e-RLRP code must be executed on a
Linux platform. Each node in the emulator is a virtual machine with network interface and
resources shared with the host machine. The e-RLRP, RLRP, BATMAN and OLSR routing
protocols are installed to be used by network nodes.

The network performance metrics obtained in the tests were throughput, Probability
of Packet Loss (Ppl), the Round Trip Time (RTT) and Overhead. The throughput and Ppl
values are calculated using Iperf tool [65]. It is capable of generating UDP and TCP traffic
streams at defined rates. To calculate RTT, the UDP stream is replaced by an ICMP stream
generated by the native Linux PING command. The PING command itself returns the
RTT value. The Overhead is measured using the WireShark [66] tool. In addition to
the aforementioned tools, the native Linux shell script is used to shutdown nodes on a
programmed or random basis.

Finally, the speech quality of a VoIP communication is evaluated. To this end, the net-
work parameters, such as Ppl and delay were used as inputs of the E-model algorithm to
estimate the communication quality.

5. Results and Discussions

In order to evaluate the e-RLRP performance in relation to BATMAN, OLSR and
RLRP protocols, different network scenarios were emulated. Each simulation scenario runs
50 times, and the average value for each scenario is computed. The simulation of each
scenario takes 600 s.

In the test scenarios, the AMR-WB operation modes 2 and 8 were considered. Thus,
the transmission bit-rates considered were those presented in Table 7.
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Firstly, an ideal scenario without drops is tested to assess the overhead reduction
obtained by the e-RLRP in relation to RLRP. The Table 8 shows the overhead in the net-
work scenario without drops, these results represent the average overhead of the nodes,
considering AMR-WB Modes 8 and 2.

Table 8. Overhead (kbps) obtained in Scenario without drops considering AMR-WB Modes 8 and 2.

Routing Protocol Mode 8 (kbps) Mode 2 (kbps)

e-RLRP 2.29 2.24
RLRP 2.71 2.65

Batman 6.60 6.30
OLSR 2.63 2.58

As expected, the results obtained in the ideal scenario without drops demonstrate
that e-RLRP obtained an overhead approximately 16% lower than RLRP. This result is
due to the fact that the e-RLRP in a scenario without falls keeps the frequency of sending
messages lower than the RLRP.

In a real ad-hoc network environment, nodes move or may fail, degrading the network
performance. Therefore, the e-RLRP, RLRP, BATMAN and OLSR protocols are testing in
scenario where mobility occurs. The throughput and Ppl results, in the so-called scenario P,
are illustrated in Tables 9 and 10, respectively.

Table 9. Throughput (kbps) obtained in Scenario P considering AMR-WB Modes 2 and 8.

AMR-WB Mode-8 AMR-WB Mode-2

T1 T1

(kbps) (kbps)

e-RLRP 39.80 28.60
RLRP 39.79 28.60

Batman 39.28 28.25
OLSR 36.59 26.31

Table 10. Ppl (%) obtained in Scenario P considering AMR-WB Modes 2 and 8.

AMR-WB Mode-8 AMR-WB Mode-2

T1 T1

(%) (%)

e-RLRP 0.04 0.03
RLRP 0.05 0.05

Batman 1.3 1.23
OLSR 8.08 8.02

Results presented in Tables 9 and 10 demonstrate that e-RLRP and RLRP have a better
performance than BATMAN and OSLR. The e-RLRP and RLRP have a Ppl value close
to zero because they avoid the route containing node B that presents recurring drops.
The value does not reach zero because when the routing starts, both protocols choose the
route of node B which has the lowest number of hops, but after successive drops of node B,
both protocols no longer consider the use of this route.
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Differently, the OLSR protocol chooses the route which contains node B, because this
is the path with the least number of hops. Despite the BATMAN protocol having obtained
a higher Ppl than e-RLRP and RLRP, it presented a performance better than OLSR. This is
due to the OGM messaging mechanism.

The overhead results for scenario P considering AMR-WB Modes 2 and 8 are shown
in Table 11.

Table 11. Overhead (kbps) Obtained in Scenario P considering AMR-WB Modes 2 and 8.

Mode 8 (kbps) Mode 2 (kbps)

e-RLRP 2.80 2.75
RLRP 2.90 2.84

Batman 6.90 6.50
OLSR 2.88 2.80

The overhead results presented in Table 11 show that the e-RLRP reduced the overhead
in relation to the RLRP by approximately 7%, and also got better results than BATMAN
and OLSR protocols. This happens because the e-RLRP reduced the frequency of sending
Hello messages.

Similarly, the same network performance parameters are evaluated in R scenario. The
Throughput, Ppl when nodes are shut down 3 times are presented in Tables 12 and 13, respectively.

Table 12. Throughput (kbps) Obtained in Scenario R with Three Drops considering AMR-WB Modes
2 and 8.

AMR-WB Mode-8 AMR-WB Mode-2

T1 T2 T3 T4 T1 T2 T3 T4

(kbps) (kbps) (kbps) (kbps) (kbps) (kbps) (kbps) (kbps)

e-RLRP 39.40 39.50 39.54 39.56 28.31 28.39 28.41 28.41
RLRP 39.06 39.46 39.51 39.51 28.11 28.37 28.42 28.38

Batman 39.05 39.20 39.24 39.30 28.06 28.17 28.20 28.22
OLSR 37.57 38.5 39.09 39.14 27.06 27.74 28.11 28.12

Table 13. Ppl (%) Obtained in Scenario R with Three Drops considering AMR-WB Modes 2 and 8.

AMR-WB Mode-8 AMR-WB Mode-2

T1 T2 T3 T4 T1 T2 T3 T4

(%) (%) (%) (%) (%) (%) (%) (%)

e-RLRP 1.00 0.73 0.64 0.58 1.01 0.72 0.65 0.63
RLRP 1.85 0.85 0.72 0.71 1.72 0.81 0.75 0.76

Batman 1.86 1.49 1.39 1.25 1.79 1.51 1.35 1.32
OLSR 5.60 3.25 1.78 1.65 5.40 3.02 1.71 1.67

As can be observed in Tables 12 and 13, the OLSR had the worst performance con-
sidering Ppl and Throughput, which is explained by the use of RL in e-RLRP and RLRP,
and by the BATMAN OGM message mechanism. The e-RLRP reached similar throughput
results to the other protocols, but in some scenarios, the Ppl had a significant reduction
with e-RLRP.

The overhead when nodes are shut down 3 times are presented in Table 14. The results
presented in the Table 14 demonstrate that the overhead of e-RLRP is lower than that of
RLRP, reaching in some scenarios a reduction close to 18%.
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Table 14. Overhead (kbps) Obtained in Scenario R with Three Drops considering AMR-WB Modes 2
and 8.

AMR-WB Mode-8 AMR-WB Mode-2

T1 T2 T3 T4 T1 T2 T3 T4

(kbps) (kbps) (kbps) (kbps) (kbps) (kbps) (kbps) (kbps)

e-RLRP 2.71 2.83 2.95 2.99 2.68 2.77 2.89 2.92
RLRP 2.79 2.93 3.45 3.89 2.71 2.95 3.03 3.77

Batman 6.20 7.80 8.03 8.45 6.05 7.70 7.97 8.23
OLSR 2.74 2.94 2.99 3.27 2.70 2.86 2.95 3.18

The Throughput, Ppl and Overhead when nodes are shut down 5 times are presented
in Tables 15–17, respectively.

Table 15. Throughpu (kbps) Obtained in Scenario R with Five Drops considering AMR-WB Modes 2
and 8.

AMR-WB Mode-8 AMR-WB Mode-2

T1 T2 T3 T4 T1 T2 T3 T4

(kbps) (kbps) (kbps) (kbps) (kbps) (kbps) (kbps) (kbps)

e-RLRP 38.98 39.11 39.28 39.28 28.06 28.20 28.23 28.21
RLRP 38.97 39.01 39.16 39.23 28.01 28.05 28.16 28.19

Batman 38.48 38.20 38.88 38.95 27.68 27.47 27.87 27.99
OLSR 38.03 38.38 38.60 38.64 27.32 27.59 27.73 27.74

Table 16. Ppl (%) Obtained in Scenario R with Five Drops considering AMR-WB Modes 2 and 8.

AMR-WB Mode-8 AMR-WB Mode-2

T1 T2 T3 T4 T1 T2 T3 T4

(%) (%) (%) (%) (%) (%) (%) (%)

e-RLRP 2.10 1.71 1.29 1.30 1.90 1.67 1.28 1.25
RLRP 2.10 1.98 1.60 1.54 2.05 1.91 1.54 1.50

Batman 3.30 4.01 2.30 2.10 3.20 3.91 2.50 2.30
OLSR 4.44 3.56 3.01 2.95 4.47 3.52 3.04 2.98

Table 17. Overhead (kbps) Obtained in Scenario R with Five Drops considering AMR-WB Modes 2
and 8.

AMR-WB Mode-8 AMR-WB Mode-2

T1 T2 T3 T4 T1 T2 T3 T4

(kbps) (kbps) (kbps) (kbps) (kbps) (kbps) (kbps) (kbps)

e-RLRP 2.90 2.98 3.01 3.03 2.86 2.94 2.98 3.02
RLRP 2.94 3.14 3.88 3.95 2.92 3.09 3.78 3.90

Batman 11.05 11.20 11.40 11.48 11.01 11.00 11.30 11.38
OLSR 3.16 3.70 4.67 4.72 3.12 3.75 4.52 4.61

According to the results obtained in a Five Drops scenario, the e-RLRP and RLRP
algorithm performed better than BATMAN and OLSR. Also, the e-RLRP obtained an
overhead reduction and Ppl lower values in relation to RLRP.

Similarly, the Throughput, Ppl and overhead, when nodes are shut down 7 times, are
presented in Tables 18–20, respectively.



Sensors 2021, 21, 504 22 of 32

Table 18. Throughput (kbps) Obtained in Scenario R with Seven Drops considering AMR-WB Modes
2 and 8.

AMR-WB Mode-8 AMR-WB Mode-2

T1 T2 T3 T4 T1 T2 T3 T4

(kbps) (kbps) (kbps) (kbps) (kbps) (kbps) (kbps) (kbps)

e-RLRP 38.98 39.15 39.13 39.19 28.01 28.15 28.14 28.16
RLRP 38.97 38.95 38.98 39.01 28.00 27.99 28.06 28.19

Batman 37.19 37.63 37.47 37.49 26.73 27.05 27.00 27.03
OLSR 36.77 37.98 38.52 38.55 26.40 27.30 27.71 27.73

Table 19. Ppl (%) Obtained in Scenario R with Seven Drops considering AMR-WB Modes 2 and 8.

AMR-WB Mode-8 AMR-WB Mode-2

T1 T2 T3 T4 T1 T2 T3 T4

(%) (%) (%) (%) (%) (%) (%) (%)

e-RLRP 2.10 1.61 1.59 1.45 2.01 1.57 1.60 1.54
RLRP 2.09 2.13 2.10 1.55 2.05 2.12 1.90 1.83

Batman 6.55 5.45 5.85 5.62 6.56 5.39 5.60 5.49
OLSR 7.60 4.56 3.20 3.10 7.70 4.54 3.10 3.01

Table 20. Overhead (kbps) Obtained in Scenario R with Seven Drops considering AMR-WB Modes 2
and 8.

AMR-WB Mode-8 AMR-WB Mode-2

T1 T2 T3 T4 T1 T2 T3 T4

(kbps) (kbps) (kbps) (kbps) (kbps) (kbps) (kbps) (kbps)

e-RLRP 2.98 3.41 4.84 4.99 2.94 3.25 4.10 4.96
RLRP 3.10 3.64 5.29 5.45 3.01 3.39 5.36 5.25

Batman 11.12 11.15 12.10 12.35 11.21 11.13 12.01 12.49
OLSR 3.26 3.79 5.10 5.17 3.20 3.85 4.99 5.01

According to the presented results, the scenario where 7 drops occurs, the e-RLRP
obtains better performance in all cases compared to BATMAN and OLSR, and also it
presents a better performance than RLRP in most of the scenarios.

In general, the performance gain in scenarios R was lower than in scenario P. This
behavior is because, in the scenario P the drops are recurrent in only one route, which
facilitates the learning process of the e-RLRP.

Figure 8 demonstrates the e-RLRP performance improvement in relation to the other
protocols. The Ppl values obtained is the average of the results obtained in the four
topologies and both AMR-WB rates modes used in the tests.

Figure 8. e-RLRP Performance, in terms of Ppl, and considering different number of drops.
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From the results we can conclude that the performance of the e-RLRP in relation to
the other three protocols increases when the number of drops increases. By increasing the
number of drops, the performance of all algorithms degrades, however, in the e-RLRP and
RLRP this degradation is lower.

Figure 9 shows the relationship between e-RLRP performance and the number of
nodes in the network. The Ppl values obtained are the average of the results obtained
in the scenarios of 3, 5 and 7 drops and both AMR-WB rate modes used in the tests. It
is important to note that the higher the number of nodes in the network, the higher the
processing needed by the RL algorithm to determine the reward values. Despite the RL
processing increases, the performance obtained by the e-RLRP, in terms of Ppl, is superior
in relation to the other routing protocols.

Figure 9. e-RLRP Performance, in terms of Ppl, and considering different number of nodes.

The Throughput, Ppl and overhead, for three flows considering AMR-WB Modes 8,
are presented in Tables 21–23, respectively.

Table 21. Throughput (kbps) Obtained in Scenario R with Three Flows considering AMR-WB Mode 8.

Mode 8

T3 T4

3 Drops 5 Drops 7 Drops 3 Drops 5 Drops 7 Drops

CE/FB/IH CE/FB/IH CE/FB/IH CE/FB/IH CE/FB/IH CE/FB/IH

(kbps) (kbps) (kbps) (kbps) (kbps) (kbps)

e-RLRP 38.50/38.38/38.20 38.16/38.11/38.33 37.81/37.60/38.10 38.49/38.40/38.27 38.15/38.17/38.32 37.91/37.77/38.06
RLRP 38.33/38.19/38.18 38.10/38.14/38.28 37.77/37.59/37.50 38.40/38.32/38.25 38.14/38.16/38.29 37.87/37.75/37.83

Batman 38.17/38.18/38.37 37.60/37.71/37.72 36.89/36.90/37.77 38.18/38.22/38.26 37.71/37.83/37.79 36.83/37.02/36.95
OLSR 37.93/38.11/38.18 37.32/37.84/38.01 37.46/37.59/37.44 38.04/38.22/38.26 37.48/37.96/38.06 37.52/37.66/37.56

Table 22. Ppl (%) Obtained in Scenario R with Three Flows considering AMR-WB Mode 8.

Mode 8

T3 T4

3 Drops 5 Drops 7 Drops 3 Drops 5 Drops 7 Drops

CE/FB/IH CE/FB/IH CE/FB/IH CE/FB/IH CE/FB/IH CE/FB/IH

(%) (%) (%) (%) (%) (%)

e-RLRP 0.69/0.63/1.03 1.40/1.10/0.82 2.05/2.63/1.99 0.51/0.51/0.85 1.17/1.10/0.72 1.80/2.20/1.40
RLRP 0.71/1.06/1.09 1.31/1.19/0.85 2.15/2.66/2.86 0.52/0.74/0.91 1.20/1.15/0.80 1.90/2.20/2.00

Batman 1.41/1.18/1.01 2.70/2.40/2.28 5.40/4.60/5.10 1.10/0.98/0.88 2.30/2.00/2.10 4.60/4.10/4.20
OLSR 1.75/1.27/1.1 3.41/1.96/1.52 2.95/2.68/3.01 1.45/0.98/0.89 2.90/1.67/1.40 2.80/2.45/2.70
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Table 23. Overhead (kbps) Obtained in Scenario R with Three flows considering AMR-WB Mode 8.

Mode 8

T3 T4

3 Drops 5 Drops 7 Drops 3 Drops 5 Drops 7 Drops

(kbps) (kbps) (kbps) (kbps) (kbps) (kbps)

e-RLRP 2.78 3.33 5.92 2.81 3.35 6.17
RLRP 4.78 4.72 7.95 4.90 4.82 6.41

Batman 9.90 12.20 15.45 10.20 11.98 14.85
OLSR 3.92 5.10 6.80 4.10 5.33 6.21

Similarly, the Throughput, Ppl and overhead, for three flows, and considering AMR-
WB Mode 2, are presented in Tables 24–26, respectively.

Table 24. Throughput (kbps) Obtained in Scenario R with Three Flows considering AMR-WB Mode 2.

Mode 2

T3 T4

3 Drops 5 Drops 7 Drops 3 Drops 5 Drops 7 Drops

CE/FB/IH CE/FB/IH CE/FB/IH CE/FB/IH CE/FB/IH CE/FB/IH

(kbps) (kbps) (kbps) (kbps) (kbps) (kbps)

e-RLRP 27.84/27.87/27.77 27.86/27.65/27.82 27.48/27.31/27.67 27.85/27.86/27.76 27.65/27.71/27.84 27.50/27.35/27.69
RLRP 27.83/27.71/27.73 27.80/27.70/27.66 27.46/27.30/27.23 27.84/ 27.76/27.75 27.65/27.74/27.82 27.48/27.34/27.20

Batman 27.69/27.74/27.76 27.60/27.63/27.66 26.69/26.97/26.87 27.70/27.75/27.75 27.63/27.68/27.71 26.87/26.91/26.80
OLSR 27.57/27.66/27.77 27.06/27.49/27.61 27.23/27.29/27.20 27.61/27.65/27.71 27.24/27.48/27.65 27.21/27.24/27.23

Table 25. Ppl (%) Obtained in Scenario R with Three Flows considering AMR-WB Mode 2.

Mode 2

T3 T4

3 Drops 5 Drops 7 Drops 3 Drops 5 Drops 7 Drops

CE/FB/IH CE/FB/IH CE/FB/IH CE/FB/IH CE/FB/IH CE/FB/IH

(%) (%) (%) (%) (%) (%)

e-RLRP 0.64/0.56/0.99 1.14/1.27/0.71 1.95/2.58/1.25 0.62/0.54/0.85 1.32/1.01/0.59 1.86/2.39/1.19
RLRP 0.68/1.03/1.11 1.20/1.15/0.78 2.02/2.59/2.84 0.64/0.95/0.98 1.32/1.02/0.72 1.95/2.42/2.69

Batman 1.19/1.01/1.03 1.70/1.40/1.28 4.50/4.10/4.30 1.15/ 0.98/0.96 1.42/1.22/1.10 4.10/3.98/4.35
OLSR 1.62/1.28/0.90 3.45/1.90/1.47 2.83/2.60/2.94 1.49/1.23/0.86 2.67/1.90/1.32 2.71/2.62/2.83

Table 26. Overhead (kbps) Obtained in Scenario R with Three flows considering AMR-WB Mode 2.

Mode 2

T3 T4

3 Drops 5 Drops 7 Drops 3 Drops 5 Drops 7 Drops

(kbps) (kbps) (kbps) (kbps) (kbps) (kbps)

e-RLRP 2.62 3.09 6.89 3.02 2.97 6.14
RLRP 4.16 4.76 6.92 4.21 4.80 6.62

Batman 9.70 11.45 14.26 9.23 11.52 13.52
OLSR 3.86 4.95 5.76 3.49 4.88 6.77

Analyzing the scenario with 3 flows, it can be seen that the e-RLRP overcomes in most
cases the other protocols considering Ppl and Troughput. Regarding overhead, the e-RLRP
reached the best results in all the network scenarios.
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The Throughput, Ppl and overhead, for four flows, and considering AMR-WB Mode 8,
are presented in Tables 27–29, respectively.

Table 27. Throughput (kbps) Obtained in Scenario R with Four Flows considering AMR-WB Mode 8.

Mode 8

T3 T4

3 Drops 5 Drops 7 Drops 3 Drops 5 Drops 7 Drops

CE/FB/IH/MK CE/FB/IH/MK CE/FB/IH/MK CE/FB/IH/MK CE/FB/IH/MK CE/FB/IH/MK

(kbps) (kbps) (kbps) (kbps) (kbps) (kbps)

e-RLRP 38.40/38.23/38.29/39.8 38.23/37.98/38.26/39.8 38.40/37.93/38.26/39.8 38.41/38.29/38.29/39.8 38.28/38.09/38.21/39.8 38.04/37.87/37.86/39.8
RLRP 38.37/38.23/38.27/39.01 38.14/38.16/38.20/39.6 37.89/37.79/38.18/39.8 38.39/38.28/38.29/39.8 38.15/38.07/38.18/39.8 38.02/37.82/37.81/39.8

Batman 37.99/38.06/38.15/39.7 37.60/37.49/37.53/39.8 36.52/36.71/36.79/39.8 38.04/38.10/38.22/39.8 37.71/37.54/37.51/39.8 36.72/36.92/36.81/39.8
OLSR 38.22/38.18/38.21/39.8 37.40/37.61/38.07/39.8 37.45/37.71/37.71/39.8 38.25/38.22/38.25/39.8 37.46/37.59/38.10/39.8 37.46/37.60/37.62/39.8

Table 28. Ppl (%) Obtained in Scenario R with Four Flows considering AMR-WB Mode 8.

Mode 8

T3 T4

3 Drops 5 Drops 7 Drops 3 Drops 5 Drops 7 Drops

CE/FB/IH/MK CE/FB/IH/MK CE/FB/IH/MK CE/FB/IH/MK CE/FB/IH/MK CE/FB/IH/MK

(%) (%) (%) (%) (%) (%)

e-RLRP 0.52/0.88/0.92/0 0.96/1.10/1.14/0 1.79/2.30/1.85/0 0.49/0.75/ 0.81/0 0.83/1.30/1.01/0 1.45/1.89/1.81/0
RLRP 0.61/0.95/0.96/0 1.22/1.25/1.15/0 1.83/2,31/1.93/0 0.55/0.84/0.81/0 1.17/1.35/1.10/0 1.50/1.96/1.89/0

Batman 1.59/1.41/1.16/0 2.58/2.89/2.78/0 5.40/4.90/4.70/0 1.46/ 1.31/0.98/0 2.30/2.76/2.65/0 4.78/4.30/4.65/0
OLSR 0.98/1.10/1.02/0 3.11/2.57/1.38/0 3.08/2.68/2.64/0 0.92/0.98/0.91/0 2.95/2.63/1.29/0 2.95/2.59/2.43/0

Table 29. Overhead (kbps) Obtained in Scenario R with Four flows considering AMR-WB
Mode 8.

Mode 8

T3 T4

3 Drops 5 Drops 7 Drops 3 Drops 5 Drops 7 Drops

(kbps) (kbps) (kbps) (kbps) (kbps) (kbps)

e-RLRP 3.15 4.19 4.20 3.25 4.37 4.60
RLRP 3.45 5.45 4.92 3.49 5.6 5.10

Batman 9.22 10.20 13.03 9.3 10.10 13.02
OLSR 3.22 4.72 5.30 3.33 4.68 5.90

Similarly, the Throughput, Ppl and overhead, for four flows, and considering AMR-WB
Mode 2, are presented in Tables 30–32, respectively.

Table 30. Throughput (kbps) Obtained in Scenario R with Four Flows considering AMR-WB Mode 2.

Mode 2

T3 T4

3 Drops 5 Drops 7 Drops 3 Drops 5 Drops 7 Drops

CE/FB/IH CE/FB/IH CE/FB/IH CE/FB/IH CE/FB/IH CE/FB/IH

(kbps) (kbps) (kbps) (kbps) (kbps) (kbps)

e-RLRP 27.58/27.48/27.50/28.6 27.51/27.59/27.43/28.6 27.29/27.15/27.48/28.6 27.88/27.82/27.79/28.6 27.81/27.70/27.74/28.6 27.71/27.41/27.65/28.6
RLRP 27.57/27.48/27.49/28.6 27.35/27.42/27.41/28.6 27.20/27.13/27.40/28.6 27.85/27.77/27.78/28.6 27.80/27.62/27.72/28.6 27.68/27.37/27.62/28.5

Batman 27.32/27.31/27.39/28.6 26.99/26.94/26.91/28.5 26.27/26.52/26.60/28.6 27.61/27.64/27.73/28.6 27.35/27.31/27.33/28.6 26.62/26.87/26.93/28.6
OLSR 27.29/27.38/27.49/28.6 26.78/27.21/27.33/28.6 26.95/27.02/26.92/28.5 27.61/27.64/27.73/28.6 27.35/27.31/27.33/28.6 26.62/26.87/26.93/28.6
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Table 31. Ppl (%) Obtained in Scenario R with Four Flows considering AMR-WB Mode 2.

Mode 2

T3 T4

3 Drops 5 Drops 7 Drops 3 Drops 5 Drops 7 Drops

CE/FB/IH CE/FB/IH CE/FB/IH CE/FB/IH CE/FB/IH CE/FB/IH

(%) (%) (%) (%) (%) (%)

e-RLRP 0.58/0.90/0.85/0 0.87/1.06/1.11/0 1.62/2.10/1.55/0 0.52/0.76/0.83/0 0.75/1.40/1.01/0 1.17/2.20/1.32/0
RLRP 0.59/0.91/0.89/0 1.38/1.26/1.19/0 1.93/2,20/1.63/0 0.62/0.84/ 0.84/0 0.75/1.41/1.05/0 1.23/2.32/1.43/0

Batman 1.52/1.55/1.26/0 2.70/2.86/2.98/0 5.30/4.40/4.10/0 1.49/1.35/1.03/0 2.41/2.56/2.49/0 5.01/4.1/3.89/0
OLSR 1.62/1.28/0.90/0 3.45/1.90/1.47/0 2.83/2.60/2.94/0 1.49/1.35/1.03/0 2.41/2.56/2.49/0 5.01/4.1/3.89/0

Table 32. Overhead (kbps) Obtained in Scenario R with Four flows considering AMR-WB Mode 2.

Mode 2

T3 T4

3 Drops 5 Drops 7 Drops 3 Drops 5 Drops 7 Drops

(kbps) (kbps) (kbps) (kbps) (kbps) (kbps)

e-RLRP 2.96 4.26 4.13 3.28 4.10 4.46
RLRP 3.88 5.25 4.61 3.72 4.55 4.88

Batman 8.26 9.04 11.65 8.25 9.16 11.33
OLSR 3.06 4.66 5.30 3.95 4.68 5.11

We can see from the results of the 4-flow scenarios that e-RLRP outperforms other
protocols in most cases in terms of Throughput and Ppl. Regarding the overhead e-RLRP
obtained the best results in all tested scenarios. In addition, it is worth mentioning that
the overhead in general increases when there are more flows, however, specifically the
overhead generated by the Hello control message is not so impacted. This is because Hello
messages are exchanged regardless of the number of streams in the network.

In the results presented in Tables 27, 28, 30 and 31, regarding Throughput and Ppl,
we can observe that one of the traffic flow (noted as MK) reached a Ppl almost equal to O,
because there is a direct route between the two pairs of nodes and no drops occurred in
this path. The extra flows were added in order to overload the network.

Analyzing the results of the scenarios with more than one traffic flow, specifically
three and four flows, it is possible to observe that the e-RLRP outperforms the other
routing protocols in most of the network scenarios tested, in terms of Ppl and Throughput.
Regarding overhead, we can see that e-RLRP continues overcoming the other protocols.
The experimental results confirmed that e-RLRP obtained a lower overhead than the RLRP
in most of the scenarios, even when the number of traffic flows, the number of routes
or node drops were increased. Thus, these demonstrated that the proposed adjustment
function worked properly in the task of overhead reduction.

Additionally, the RTT parameter values obtained in scenario P is presented in Figure 10.
Figure 11 shows the average of the RTT values of the scenarios R with also a single flow.
These results represent the average values of two AMR-WB mode, because there was not
difference between them.
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Figure 10. RTT Obtained in Scenario P (Programmed).

Figure 11. RTT Obtained in Scenario R (Random).

Analyzing the results presented in Figures 10 and 11, it is observed that the e-RLRP and
RLRP presented the highest RTT values. This can be justified because they are implemented
in user space on Linux using a dynamic Python interpreter. According to Reference [40],
this implementation-type generates a great loss of performance mainly due to the high
number of I/O operations that cause delays in the packet sending process. It is worth
mentioning that this is a limitation generated by the language in which it was implemented
and not by the code/project. Thus, the implementation of these both protocols had a
restriction in this regard, that was reflected in RTT values obtained in the experimental
tests. According to (6) and (7), delays in the network have a negative impact on speech
quality predictions.

Finally, the speech communication quality was evaluated using (4)–(6) considering
the Ppl and RTT values found in test scenarios that consider a single traffic flow with
the topologies T1, T2, T3 and T4 used in this work. Figure 12 presents the RWB scores
for scenario R with Three Drops, Figure 13 presents the RWB scores for Five Drops and
Figure 14 with Seven Drops.
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Figure 12. RWB Score in Scenario R with Three Drops.

Figure 13. RWB Score in Scenario R with Five Drops.

Figure 14. RWB Score in Scenario R with Seven Drops.

Figure 15 presents the RWB scores for scenario P.
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Figure 15. RWB Score in Scenario P.

As can be observed from Figures 12–15, the use of e-RLRP promotes a gain of RWB
score in relation to those obtained by the RLRP, BATMAN and OLSR protocols. In some
cases the gain in relation to OLSR is more to 90%. In relation to BATMAN, in some cases
the gain is approximately 33%. In relation to the RLRP, the gain approaches 8%.

Therefore, RL in routing protocols improves the user’s QoE in a speech communication
service. The e-RLRP not only reduces overhead but also provides a positive impact in the
quality of VoIP communication, mainly because the Ppl is decreased.

6. Conclusions

In this work, the experimental results demonstrate that a routing protocol based on
RL overcomes traditional protocols, such as BATMAN and OLSR, specifically in Ppl and
throughput parameters. These network performance results prove the relevance of the
RL-based routing protocols to improve the computer, and ad-hoc networks. However, the
RL technique generates an extra overhead. Thus, the proposed and developed adjustment
algorithm was able to reduce the network overhead in terms of reducing the number of
control messages. The dynamic adjustment in the frequency of sending Hello messages
provided a reduction of up to 18% overhead. This gain increases the network’s payload
providing better network performance. The global performance of the proposed method
was optimized using different configurations and parameter values, leading to a final
configuration which was defined experimentally. In terms of throughput and Ppl, in most
of the test scenarios used in this work the e-RLRP achieved better performance, specially
with respect to the Ppl parameter. Therefore, it is demonstrated that the proposed solution
reduces overhead and also improves the network conditions.

Reducing network overhead in conventional protocols is an important approach
because it provides performance improvements. This approach is even more relevant when
it is used by new routing techniques, such RL, that aim to improve network performance but
it generates extra overhead. Thus, an important contribution of this work is to demonstrate
that extra overhead can be reduced using the proposed dynamic adjustment function.

It is worth noting that in our experimental tests different network topologies and
configurations were used, including different numbers of nodes and their drops, and also
different numbers of traffic flows.

Also, experimental results show the impact of network performance parameters on
the user’s QoE in the VoIP communication services. The e-RLRP obtained better values
of RWB due to having lower Ppl values despite to have higher RTT values, which are
calculated according to (6) and (7) defined in the WB E-model algorithm. In this case, it is
observed that Ppl has a greater negative impact on speech quality than RTT, for the values
obtained in the simulation scenarios considered in this research. Results indicate a quality
improvement of more than 90% if compared to OLSR, and up to 8% if compared to RLRP.
Therefore, it can be concluded that the RL-based routing protocols has a significant positive
impact on user’s QoE in real-time communication services.
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As a general conclusion, this research highlights the usefulness of incorporating
machine-learning algorithms in routing protocols, specially for ad-hoc networks that
recurrently present node drops. RL-based routing protocols can help to improve network
conditions, and as a consequence, different communication applications are improved.
In this work, only the VoIP service is evaluated, but in future works, video communication
service will also be evaluated. Also, the implemented dynamic adjustment mechanism
in the sending of Hello messages provided a performance improvement on the network,
mainly by reducing overhead, which is an important approach to be applied in RL-based
routing protocols.

In a future work, the proposed e-RLRP will be implemented in a real network envi-
ronment to validate the performance results and potential benefits found in our simulation
tests. Also, the inclusion of a scheduler or decentralized schedulers will be considered
to work in conjunction with the e-RLRP algorithm in a future research, in which more
complex and dynamic networks will be also implemented.
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