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Abstract: Line-structured light has been widely used in the field of railway measurement, owing to
its high capability of anti-interference, fast scanning speed and high accuracy. Traditional calibra-
tion methods of line-structured light sensors have the disadvantages of long calibration time and
complicated calibration process, which is not suitable for railway field application. In this paper,
a fast calibration method based on a self-developed calibration device was proposed. Compared
with traditional methods, the calibration process is simplified and the calibration time is greatly
shortened. This method does not need to extract light strips; thus, the influence of ambient light on
the measurement is reduced. In addition, the calibration error resulting from the misalignment was
corrected by epipolar constraint, and the calibration accuracy was improved. Calibration experiments
in laboratory and field tests were conducted to verify the effectiveness of this method, and the results
showed that the proposed method can achieve a better calibration accuracy compared to a traditional
calibration method based on Zhang’s method.

Keywords: structured light; on-site calibration; wheel size measurement

1. Introduction

In recent years, line-structured light vision sensors have been widely used in dy-
namic railway wheel size measurement systems [1–6]. For example, a high-accuracy
line-structured light sensor-based wheel size measurement system was introduced in our
previous work [7]. A line-structured light vision sensor is generally composed of a camera
and a line laser projector. In the application of railway wheel size measurement, owing to
the restriction of view angle, it is necessary to combine at least two sensors whose laser
planes are coincident to obtain a whole wheel tread profile. Calibration is one of the crucial
phases to realize the wheel parameters reconstruction by the acquired 2D laser strips, which
is vital to improving the accuracy of the system. Generally, the calibration parameters of
a line-structured light vision sensor consist of the intrinsic parameters of the camera and
the light plane parameters. The calibration of camera intrinsic parameters has been wildly
studied [8–13]; thus, this paper mainly focuses on the calibration of light plane parameters.

Xie [14] used a planar target with grid lines to calibrate the intrinsic and light plane
parameters simultaneously. During the calibrating process, the intersection points between
the grid lines of the planar target and laser lines are extracted as calibration points. Liu [15]
adopted a ball target with high roundness to calibrate the laser plane. First, the spatial
cone equation and the sphere equation of the ball target are solved. Then, the solution
of the light plane equation is obtained by nonlinear optimization. Huynh [16] created a
V-shape 3D target for laser plane calibration. The sensor is mounted on an AGV to scan
the target in calibration. The position of sensor related to the world coordinate frame is
known. According to cross-ratio invariability, the laser plane equation can be solved by
combining the 3D coordinates of points of the target. Xu [17] employed a flat board target
with four balls. The orientation of the board plane is first solved by the four balls, and
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then the intersection line between the board plane and the laser plane is obtained. The
laser plane equation is fitted by these intersection lines. Xie [18] similarly utilized a flat
board target with squares pattern and solved the orientation of the board plane by the
corner points. Differently, the angle of the board plane and laser plane is computed by an
additional raised block on the board target. Wei [19] proposed a method based on a 1D
target. The feature points of the target are calculated in the camera coordinate frame using
the known distance constraint of target pattern. Then, the nonlinear optimization method
is used to solve the plane feature points and the light plane equation can be fitted.

The above methods have achieved good results in laboratory environment, but it is
not suitable for railway field application. The calibration of an on-site railway wheel size
measurement system has the following characteristics: (1) the available calibration time is
limited to the busy railway operations; (2) the calibration accuracy is influence by the strong
natural light on the outdoor environment; (3) the depth of field of vision sensors is short,
making it difficult to shoot calibration markers placed on different locations. To achieve fast,
high-accuracy on-site calibration of a wheel size measurement system, a new calibration
method is demonstrated in this paper, and the above issues in field calibration are solved.
This method shortens the calibration time, overcomes the problem caused by short depth
of field, and does not need to extract laser lines, avoiding the influence of natural light.
In order to realize the calibration method, a specific calibration device was developed.
In calibration, the calibration device is mounted on the rail, and the calibration board
plane is manually adjusted to coincide with the light plane. Then, the pixel coordinates
of corner points are abstracted, and the fitting equations of image coordinates and lase
plane coordinates are calculated. Finally, a calibration revising method based on epipolar
constraint is employed to reduce the calibration error and improve the data fusion effect.

In Section 2, the calibration device and the principle of the proposed calibration
method are introduced. In Section 3, a corner extraction method for calculating the calibra-
tion parameters is proposed, and the calibration errors caused by the extraction process are
analyzed. Then, the revising method of calibration parameters is described in Section 4.
The epipolar constraint is used to find matching points, laying a foundation for establishing
constraint equations in calibration parameters calculation. In Section 5, the results of the
physical experiment are presented, and the calibration accuracy is evaluated by comparison.
Finally, conclusions are drawn in Section 6.

2. Calibration Principle

Figure 1 illustrates the setup of calibration by our method. Sensor 1 and sensor 2
are both line-structured light vision sensors; the two laser planes are carefully adjusted to
be coincident for measuring the wheel tread size together. This on-site wheel tread size
measurement system is demonstrated in our previous work [7]. The system can reach
0.11 mm theoretical measurement accuracy at the designed 300 mm work distance. The
maximum frame rate of the camera is 20 fps, which is enough to meet the requirement of
dynamic measurement under 48 km/h. When the train passes, the photoelectric switch
triggers the camera to grab images. Then, the image is transmitted to computers and
processed to extract laser stripes. Here, the purpose of the calibration is to establish a
criterion of transforming the laser stripes to three-dimensional reconstruction profiles.

The calibration device is composed of a magnetic holder, a calibration board and
an adjustable bracket composed of multiple cardan joints. The adjustable bracket allows
the calibration board to move and rotate in space and be fixed when the adjustment is
finished. During calibration, the magnetic holder is fixed on the rail and the plane of
the calibration plate is placed to coincide with the light plane by adjusting the adjustable
bracket. In experiment, the laser light covering the whole board can be seen as a sign that
the coincidence degree of two planes meets the requirements. The calibration method only
needs to take one shot of the calibration plate, and then the image of the calibration pattern
is obtained by the camera, and the corner points in the calibration pattern are extracted.
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Figure 1. Schematic of the calibration process.

The schematic of the line-structured light vision sensor is exhibited in Figure 2. In
this figure, Owxwywzw represents the world coordinate frame (WCF), Ocxcyczc indicates the
camera coordinate frame (CCF), and Ouxuyu refers to the image coordinate frame (ICF).
Assume that an arbitrary point Pw = [xw,yw,zw,1]T in WCF has a projection Pu = [xu,yu,1]T

in ICF. According to the camera imaging model and disregarding distortion, it can be
expressed as:

sPu = A[ R t ]Pw (1)

where s denotes the size factor, A is the camera’s intrinsic parameters matrix, R and t refer
to the rotation matrix and translation vector from WCF to CCF, respectively. The equation
can realize the transformation from WCF to ICF. In order to reconstruct a 3D profile of the
measured object, the equation is combined with the light plane equation to transform a
coordinate from ICF to WCF, that is:{

sPu = A[R t]Pw
axw + byw + czw + d = 0

(2)
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Figure 2. Schematic of the line-structured light vision sensor.
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When line-structured light vision sensors are applied to measure the object size, the
stipulation of WCF is irrelevant. The Owxwyw plane of WCF can be set as the light plane π.
Thus, when reconstructing 3D profile, zw = 0. The functional relationship between (xw, yw)
and (xu, yu) can be simply expressed as xw~(xu, yu), yw~(xu, yu), which can be obtained by
fitting. In this paper, the selected polynomial basis is shown as follows:

xw =
m
∑
i

i
∑

j=0
cijxi

uyi−j
u

yw =
m
∑
i

i
∑

j=0
qijxi

uyi−j
u

(3)

where m indicates the highest power of the polynomial. In our proposed calibration method,
the calibration board plane is adjusted to coincide with the light plane. Therefore, a set of
(xw,i,yw,i) and (xu,i, yu,i) used for fitting can be obtained by the manufacturing dimensions
of the calibration board and the extraction of corner points. The coefficients of polynomials
are acquired based on the least-square principle [20]:

t = (VTV)
−1

VT L (4)

where V represents the Vandermonde matrix.

Vij = xk1
u,iy

k2
u,i, k = max(k, k ∈ j−

k

∑
m=0

m > 0), k1 = j−
k

∑
m=0

m− 1, k2 = k− k1 (5)

where L represents the vector [xw,i]T and [yw,i]T, and t denotes the vector of the coefficients
of polynomials.

3. Corner Extraction and Influence of Image Noise

The Harris corner detection algorithm is widely used to detect corner points on the
image. The basic idea of the algorithm is to use a fixed window to slide on the image
and compare the change of gray values in the window before and after sliding. If there
is a large gray change in any direction sliding, there will be a corner point in the window.
Here, the Harris corner detection algorithm is employed to obtain the preliminary rough
image coordinates (xu0, yu0) of corner points, as presented in Figure 3. The precise image
coordinates of the corner points can be obtained by the following iterative process [21]:

(
xu,i+1
yu,i+1

)
=

 ∑
w

gyy −∑
w

gxy

−∑
w

gxy ∑
w

gxx

 ∑
w

gxxxu + gxyyu

∑
w

gxxxu + gxyyu


∣∣∣∣∣∣

∑
w

gyy −∑
w

gxy

−∑
w

gxy ∑
w

gxx

∣∣∣∣∣∣
(6)

gxx(xu, yu) = g2
xω(xu, yu), gxy(xu, yu) = gxgyω(xu, yu), gyy(xu, yu) = g2

vω(xu, yu) (7)

where w represents the detection window with the center of (xu,i,yu,i), gx(xu,yu) and gx(xu,yu)
indicate gray gradients along xu and yu direction, respectively, andω(xu,yu) denotes the
two-dimensional Gaussian distribution function:

ω(xu, yu) = e
(xu−xu,i)

2+(yu−yu,i)
2

2σ2 (8)



Sensors 2021, 21, 6717 5 of 14

Sensors 2021, 21, x FOR PEER REVIEW 5 of 15 
 

 

),x(),x( 2
xx uuxuu ygyg ω=

,
),(),(xy uuyxuu yxggyxg ω=

,
),(),x( 2
uuvuyy yxgyg

u
ω=

 (7)

where w represents the detection window with the center of (xu,i,yu,i), gx(xu,yu) and gx(xu,yu) 
indicate gray gradients along xu and yu direction, respectively, and ω(xu,yu) denotes the 
two-dimensional Gaussian distribution function: 

2

2
,

2
,

2
)()(

),x( σω
iuuiuu yyxx

uu ey
−+−

=  
(8)

In most cases, the iterative accuracy of 0.005 pixels can be achieved after two or three 
iterations. The iterative process is shown in Figure 4. 

 
Figure 3. Corner points detected by Harris corner detection algorithm. 

 
Figure 4. The iterative process of extracting corner points starting from the result of the Harris 
detection algorithm (blue point). 

A standard calibration plate pattern image was generated by computer program to 
estimate the accuracy of the corner extraction. Gaussian noise was added to the standard 
image with a different noise level varies from 0 to 40 DB at an interval of 0.1 DB. For each 
noise level, 50 experiments were conducted, and the extraction error was computed and 
shown in Figure 5. It can be seen that the extraction accuracy increases as the noise de-
creases. 

Figure 3. Corner points detected by Harris corner detection algorithm.

In most cases, the iterative accuracy of 0.005 pixels can be achieved after two or three
iterations. The iterative process is shown in Figure 4.
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Figure 4. The iterative process of extracting corner points starting from the result of the Harris
detection algorithm (blue point).

A standard calibration plate pattern image was generated by computer program to
estimate the accuracy of the corner extraction. Gaussian noise was added to the stan-
dard image with a different noise level varies from 0 to 40 DB at an interval of 0.1 DB.
For each noise level, 50 experiments were conducted, and the extraction error was com-
puted and shown in Figure 5. It can be seen that the extraction accuracy increases as the
noise decreases.
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Figure 5. The mean extraction error of corner points at different noise levels.

For a real calibration image, there is an inevitable gradual change at the black-and-
white boundary due to manufacturing reasons. Therefore, the noise level at corner areas is
relatively higher than that at homogenous areas. For estimating the extraction accuracy
of corner points, small areas around corner points were intercepted from the simulation
calibration image and the real calibration image as shown in Figure 6. According to
previous studies of image noise estimation [22–24], the noise level of the acquired real
calibration image at corner areas is equal to the simulation calibration image with 35 DB
Gaussian noise. Therefore, the extraction accuracy of corner points for our setup is about
0.2 pixels. The calibration error caused by the image noise is simulated as shown in Figure 7.
In the simulation, the calibration plate, the square of the calibration plate, the image size
was set to 100 × 100 mm, 5 × 5 mm and 1000 × 1000 pixel, respectively. The extraction
error of 0.2 pixels was set to random different directions, and then the mean calibration
error was calculated.
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In this experiment, the calibration error caused by the corner extraction error is small
in the plate area (Xu and Yu direction in 0–1000 pixels range) and increases rapidly out of
this area. Therefore, the calibration plate should include the whole measurement range of
the sensor to obtain a higher calibration accuracy.
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Consider that the image noise level varies with camera parameters, shutter speed
and amount of ambient light, the extraction error also varies in different application
environment. Extra simulation experiments were conducted, and the average calibration
error in the plate area caused by different extraction error were calculated. As shown in
Figure 8, when the extraction error is up to 0.5 pixels, which only happens at extreme image
noise level, the average calibration error in the plate area is 0.025 mm. At this case, the
calibration setup should be adjusted to obtain a lower image noise level.
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4. Calibration Revising Based on Epipolar Constraint

When the measured object is a train wheel, it has to combine at least two line-
structured vision sensors with co-planar laser planes because of the restriction of view
angle. In practice, it is difficult to adjust the laser planes to be completely co-planar, and
there is always a small angle between them. Thus, the calibration planes cannot be adjusted
to be co-planar with both laser planes, leading to a certain calibration error. This calibra-
tion error leads to misalignment of reconstructed sections, which will bring problems to
further calculation.

In order to decrease these calibration errors, an epipolar constraint-based revising
method was employed. First, the matching points of two acquired images are found by
the epipolar constraint. Then, additional constraint equations based on matching points
are added to the calculation of calibration parameters. The constraint of image point and
camera optical center is formed in the projection model when the same point is projected
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onto two images with different viewing angles. As shown in Figure 9, the line O1O2
connecting the optical centers of the two cameras is called baseline, the intersection points
of the baseline and image planes (e1 and e2) are called base points, and the plane O1O2P is
called polar plane. If the projection point of P on image1 and image2 is denoted as P1 and
P2, the projection point P2 must be on the intersection line e2P2 of polar plane O1O2P and
image2 plane. The intersection line e2P2 is called the epipolar line.
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The epipolar constraint can be expressed as:

pT
k Fp′k = 0 (k = 1, 2, · · · , n) (9)

where pi = (xu,k, yu,k, 1) and p′i = (xu,i, yu,i, 1) indicate the projection points on image1
and image2 of the same point. The basic matrix F can be solved based on the least-square
principle and the corner points extracted in the calibration process. For a point p′ on
image2, the epipolar line L1 of camera1 can be expressed as:

L1 = Fp′ (10)

Regarding a certain object captured by the line-structured light vision sensor, the
corresponding point pk on image1 of the point p′k on image2 must be the intersectionpoint
of the laser stripe on image1 and the epipolar line L1, which is useful to find matching
points. In experiment, the captured object is the train wheel. Based on these matchingpoints,
constraint equations are introduced into Equation (3), which can be expressed as:
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∑
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(11)

The matching points were found according to the epipolar constraint and exhibited in
Figure 10a together with the corresponding epipolar lines. The results of the calibration
revising process are presented in Figure 10b. Since the matching points are introduced
to calculate calibration parameters, the corresponding parts of the reconstructed profiles
become coincident. After choosing enough and proper matching points, the reconstructed
profiles of the two sensors are coincident, making it more accurate for further calculation.
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5. Physical Experiment

The line-structured light vision sensor-based wheel size measurement system was
introduced in our previous paper [7]. In the experiment, the wheel size measurement
system was calibrated by the proposed calibration method and a comparison method.

The calibration arrangement is shown in Figure 11. The two laser planes are carefully
adjusted to make them as coplanar as possible. The pixel size of the camera is 4.4 × 4.4 µm,
the image resolution is 1236 × 1626 pixels, and the lens focal length is 16 mm. The cameras
have a FOV of 180 × 135 mm at a working distance of 300 mm. The size of the calibration
plate is 160 × 60 mm, the square size is 5 × 5 mm, and the manufacturing precision is
0.003 mm. Furthermore, our proposed method is compared with another method based on
Zhang’s method [25] to verify its efficiency.

In the first experiment, the line-structured light vision sensor is calibrated by our
proposed method. The plane of the calibration plate is adjusted to coincide with the light
plane, and the calibration pattern is adjusted to contain the measuring area, as to reduce
the calibration error caused by the corner extraction error. The calibration polynomial
coefficients before and after epipolar constraint revising are displayed in Table 1.

In the second experiment, the calibration plate is placed in different locations and
directions 12 times. The cameras grab two images each time: one shot with natural
light and the other with laser light. The intrinsic parameters of the camera are solved by
Zhang’s method using the images in natural light, the extrinsic parameters (representing
the locations and directions of the calibration plate) are also calculated. The laser stripes on
images are extracted and the coordinates of the laser stripes in CCF can be solved according
to the extrinsic parameters. Then, the laser plane equation in CCF can be obtained by fitting
these coordinates as a plane, and the calibration is completed. The images used for the
calibration are displayed in Figure 12. The extrinsic parameters and the fitted laser plane
are illustrated in Figure 13. The calibration results are exhibited in Table 2.



Sensors 2021, 21, 6717 10 of 14
Sensors 2021, 21, x FOR PEER REVIEW 10 of 15 
 

 

 
Figure 11. The arrangement of calibration. (1) Camera window; (2) laser window; (3) calibration 
board; (4) photoelectric switch. 

Table 1. Calibration polynomial coefficients of the proposed method. 

 
Camera 1 Camera 2 

Xw Direction Yw Direction Xw Direction Yw Direction 
Term Unrevised Revised Unrevised Revised Unrevised Revised Unrevised Revised 

1 156.5944 156.5728 91.3905 91.3099 166.5998 166.2415 128.0307 127.7353 
x −0.1439 −0.1438 0.0406 0.0406 −0.0901 −0.0897 −0.0227 −0.0224 
y 0.0407 0.0404 −0.1276 −0.1275 −0.0227 −0.0213 −0.1049 −0.1037 

xy −5.1677 × 10−5 −5.1809 × 10−5 4.5263 × 10−5 4.5539 × 10−5 1.0317 × 10−5 9.5430 × 10−6 1.5862 × 10−5 1.5247 × 10−5 
x² 3.8892 × 10−5 3.8857 × 10−5 −1.0673 × 10−5 −1.0718 × 10−5 4.0923 × 10−5 4.000 × 10−5 8.8862 × 10−5 8.8043 × 10−5 
y² 1.1971 × 10−5 1.2321 × 10−5 −3.5261 × 10−5 −3.5646 × 10−5 1.005 × 10−5 8.6387 × 10−6 1.1518 × 10−5 1.0409 × 10−5 

xy² −1.6359 × 10−8 −1.6387 × 10−9 2.9713 × 10−8 2.9321 × 10−8 −1.8560 × 10−8 −1.8135 × 10−8 −2.6934 × 10−8 −2.6594 × 10−8 
x²y 2.0933 × 10−8 2.1044 × 10−8 −2.0630 × 10−8 −2.0421 × 10−8 −2.272 × 10−8 −2.2595 × 10−8 −1.6565 × 10−8 −1.6470 × 10−8 
x³ −9.2042 × 10−9 −9.2251 × 10−9 4.4243 × 10−9 4.3744 × 10−9 −9.4866 × 10−9 −9.4757 × 10−9 −2.7881 × 10−9 −2.7759 × 10−9 
y³ 3.0349 × 10−9 2.8942 × 10−9 −1.5195 × 10−8 −1.4898 × 10−8 −4.1568 × 10−9 −3.6499 × 10−9 −1.6091 × 10−8 −1.5713 × 10−9 

In the second experiment, the calibration plate is placed in different locations and 
directions 12 times. The cameras grab two images each time: one shot with natural light 
and the other with laser light. The intrinsic parameters of the camera are solved by 
Zhang’s method using the images in natural light, the extrinsic parameters (representing 
the locations and directions of the calibration plate) are also calculated. The laser stripes 
on images are extracted and the coordinates of the laser stripes in CCF can be solved ac-
cording to the extrinsic parameters. Then, the laser plane equation in CCF can be obtained 
by fitting these coordinates as a plane, and the calibration is completed. The images used 
for the calibration are displayed in Figure 12. The extrinsic parameters and the fitted laser 
plane are illustrated in Figure 13. The calibration results are exhibited in Table 2. 

Figure 11. The arrangement of calibration. (1) Camera window; (2) laser window; (3) calibration
board; (4) photoelectric switch.

Table 1. Calibration polynomial coefficients of the proposed method.

Camera 1 Camera 2

Xw Direction Yw Direction Xw Direction Yw Direction

Term Unrevised Revised Unrevised Revised Unrevised Revised Unrevised Revised

1 156.5944 156.5728 91.3905 91.3099 166.5998 166.2415 128.0307 127.7353
x −0.1439 −0.1438 0.0406 0.0406 −0.0901 −0.0897 −0.0227 −0.0224
y 0.0407 0.0404 −0.1276 −0.1275 −0.0227 −0.0213 −0.1049 −0.1037

xy −5.1677 × 10−5 −5.1809 × 10−5 4.5263 × 10−5 4.5539 × 10−5 1.0317 × 10−5 9.5430 × 10−6 1.5862 × 10−5 1.5247 × 10−5

x2 3.8892 × 10−5 3.8857 × 10−5 −1.0673 × 10−5 −1.0718 × 10−5 4.0923 × 10−5 4.000 × 10−5 8.8862 × 10−5 8.8043 × 10−5

y2 1.1971 × 10−5 1.2321 × 10−5 −3.5261 × 10−5 −3.5646 × 10−5 1.005 × 10−5 8.6387 × 10−6 1.1518 × 10−5 1.0409 × 10−5

xy2 −1.6359 × 10−8 −1.6387 × 10−9 2.9713 × 10−8 2.9321 × 10−8 −1.8560 × 10−8 −1.8135 × 10−8 −2.6934 × 10−8 −2.6594 × 10−8

x2y 2.0933 × 10−8 2.1044 × 10−8 −2.0630 × 10−8 −2.0421 × 10−8 −2.272 × 10−8 −2.2595 × 10−8 −1.6565 × 10−8 −1.6470 × 10−8

x3 −9.2042 × 10−9 −9.2251 × 10−9 4.4243 × 10−9 4.3744 × 10−9 −9.4866 × 10−9 −9.4757 × 10−9 −2.7881 × 10−9 −2.7759 × 10−9

y3 3.0349 × 10−9 2.8942 × 10−9 −1.5195 × 10−8 −1.4898 × 10−8 −4.1568 × 10−9 −3.6499 × 10−9 −1.6091 × 10−8 −1.5713 × 10−9
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Table 2. The calibration results are displayed in experiment 2.

Camera 1 Camera 2

Laser Plane Equation K =

 3670.82 0 820.42
0 3669.58 618.75
0 0 1

 K =

 3682.17 0 826.36
0 3682.67 613.59
0 0 1


The Distortion Parameters k1 = −0.11776

k2 = 0.02398
k1 = 0.13982
k2 = 0.02102

Laser Plane Equation −0.560xc + 0.568yc + 0.601zc − 200.46 = 0 −0.523xc − 0.578yc − 0.625zc + 199.52 = 0

Furthermore, a planar target with grid lines in a horizontal direction is adopted
to compare the two calibration methods. The target is placed in the measuring region
of the line-structured light vision sensor three times with different orientations. The
coordinates of intersection points between the laser stripe and the grid lines are extracted
from images. These coordinates are transformed to CCF or WCF by the two calibration
methods separately. Then, the distance of intersection points and the angle between the
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laser stripe and the grid lines are calculated. Additionally, the widths of grid lines on the
planar target are calculated as wm. The fabricated widths of grid lines with a precision of
0.01 mm are regarded as ideal widths wi. In this experiment, three pairs of intersection
points on the planar target are selected each time. The comparison of wm and wi are
displayed in Table 3.

Table 3. Analysis of calibration accuracy (mm).

Zhang’s Method Proposed Method

Unrevised Revised

Camera 1 wi wm ∆w wm ∆w wm ∆w

1 25.00 25.03 0.03 24.97 −0.03 24.98 −0.02
2 50.00 50.05 0.05 49.96 −0.04 49.97 −0.03
3 75.00 50.07 0.07 74.94 −0.06 74.95 −0.05
4 25.00 25.02 0.02 24.97 −0.03 24.98 −0.02
5 50.00 50.05 0.05 49.94 −0.06 49.97 −0.03
6 75.00 75.07 0.07 74.90 −0.10 74.95 −0.05
7 25.00 25.02 0.02 24.97 −0.03 24.98 −0.02
8 50.00 50.04 0.04 49.93 −0.07 49.97 −0.03
9 75.00 75.08 0.08 74.95 −0.05 74.94 −0.06

MAE 0.048 0.052 0.034
RMSE 0.052 0.057 0.037

Camera 2

10 25.00 25.04 0.04 25.03 0.03 25.01 0.01
11 50.00 50.06 0.06 50.04 0.04 50.02 0.02
12 75.00 75.08 0.08 75.05 0.05 75.05 0.05
13 25.00 25.02 0.02 25.03 0.03 25.02 0.02
14 50.00 50.04 0.04 50.05 0.05 50.04 0.04
15 75.00 75.06 0.06 75.07 0.07 75.06 0.06
16 25.00 25.03 0.03 25.05 0.05 25.02 0.02
17 50.00 50.04 0.04 50.08 0.08 50.03 0.03
18 75.00 75.06 0.06 75.11 0.11 75.05 0.05

MAE 0.048 0.057 0.033
RMSE 0.051 0.062 0.037

The calibration accuracy of the proposed method before epipolar constraint revising
is approximately 0.052 and 0.057 mm under a measurement range of 150 × 50 mm on
camera 1 and camera 2, respectively. After epipolar constraint revising, the calibration
accuracy of the proposed method is improved to 0.034 and 0.033 mm. Moreover, the
calibration accuracy of the compared method in experiment 2 is 0.048 mm. As revealed by
checking the used images, the calibration accuracy of the compared method is relatively
low versus that of the proposed method due to the image blur caused by the short depth
of field.

To verify the reproducibility of our method, the calibration device was removed
and then reinstalled four times. Each time, the calibration parameters were recalculated
and revised by epipolar constrain. The relative error compared to the experiment 1 at
different pixel coordinates are shown in Figure 14. The maximal relative error of the four
measurements is 0.008 mm, that is, the repeatability error is within 0.016 mm.
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6. Conclusions

The coordinates of the calibration plate can represent the coordinates of the laser plane
when the calibration plate plane coincides with the laser plane. Based on this feature, a fast
line-structured light vision sensor calibration method is proposed in this paper. In addition,
the calibration error is revised based on the epipolar constraint to improve the accuracy
of calibration. The basic principle and the implementation of the proposed method are
described in detail. Then, the proposed method is validated by experiments.

The advantages of the proposed method are described as follows. (1) The proposed
method is easy to perform and time-saving, suitable for line-structured light vision sensors
used on special environment which is hard to maintain such as the railway site. (2) The
proposed method does not need to extract laser lines on images and can adapt to the
outdoor environment under strong natural light. (3) The proposed method can avoid the
image blur caused by the depth of field as one image on the working distance is enough to
accomplish the calibration process.
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