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Abstract: Bottom-up saliency models identify the salient regions of an image based on features such
as color, intensity and orientation. These models are typically used as predictors of human visual
behavior and for computer vision tasks. In this paper, we conduct a systematic evaluation of the
saliency maps computed with four selected bottom-up models on images of urban and highway
traffic scenes. Saliency both over whole images and on object level is investigated and elaborated
in terms of the energy and the entropy of the saliency maps. We identify significant differences
with respect to the amount, size and shape-complexity of the salient areas computed by different
models. Based on these findings, we analyze the likelihood that object instances fall within the salient
areas of an image and investigate the agreement between the segments of traffic participants and
the saliency maps of the different models. The overall and object-level analysis provides insights on
the distinctive features of salient areas identified by different models, which can be used as selection
criteria for prospective applications in autonomous driving such as object detection and tracking.

Keywords: autonomous driving; bottom-up saliency models; perception; saliency detection; saliency
maps; visual salience

1. Introduction

Visual attention is the mechanism by which human beings can selectively process
salient stimuli. The selection mechanism can be influenced by bottom-up and top-down
factors [1]. Bottom-up factors refer to the features of the image (e.g., color, intensity and
orientation). Top-down refers to the cognitive factors of the observer which determine
whether an object or a region of the visual field is salient. In the context of driving, different
regions of a street are salient depending on the task, e.g., whether the driver is looking for
a parking spot or just driving forward.

Bottom-up factors have been extensively studied in the literature and many com-
putational models to identify salient regions have been proposed [1]. Depending on the
computational mechanisms involved, as well as the features or cues used to detect saliency,
different bottom-up models identify salient areas of an image differently (see Section 2).
As a result, salient areas identified by different models differ in terms of their size, shape
and location. Furthermore, an area identified as salient by one model can be regarded as
non-salient by another model. These differences are illustrated in Figure 1, showing the
saliency maps of an image generated by different bottom-up models.

Bottom-up saliency models have been used in computer vision applications including
object detection and recognition, robot navigation and localization, and image processing
(for a comprehensive list of applications see [1]). Such computer vision tasks can be
encountered on applications of Advanced Driver Assistance Systems (ADAS) and highly
autonomous driving (HAD). In these applications, an input image is initially processed
with a bottom-up model to obtain a saliency map. As a result of the feature extraction
conducted by the saliency model, the salient regions indicate the locations of proto-objects,
which represent coherent areas that approximate whole, partial or groups of objects in the
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image. Subsequent processing steps focus on the salient areas. The incorporation of bottom-
up models in object detection, object segmentation and object recognition applications
enables a faster processing of the image compared to approaches that analyze the full
scene to detect the objects by, for example, shifting analysis windows [2]. In the field of
bottom-up saliency for object detection, Silva et al. [3] proposed a method to improve
detection performance and execution speed. Specifically, saliency was used to prune the
search space for objects. They evaluated their approach over a dataset for person detection
in different types of scenes including cities and outdoor landscapes. They emphasize the
fact that bottom-up saliency can be affected by uncontrolled factors in scenes, such as
variations in color, size, illumination and noise of the target objects.

Figure 1. Example of an image, its semantic segmentation and the corresponding saliency maps
obtained with different bottom-up models. The example illustrates how salient areas identified with
different models differ on their shape, size, location and saliency level. The models are described in
Section 2.

Differences in performance resulting from the use of different bottom-up saliency
models have been investigated for object detection [4] and driver gaze prediction appli-
cations [5]. Duthon et al. [4] evaluated different bottom-up saliency models to test their
applicability for object detection in autonomous vehicles. The experimental results show
that bottom-up saliency on its own is not sufficient for robust detection in the road context.
In this case, detection is not reliable because not all relevant objects (e.g., cars, bicycles or
pedestrians) are necessarily salient. Nevertheless, they emphasize that bottom-up saliency
can facilitate detection when used as a pre-processing step. They also conclude that factors
such as the task and the context (e.g., type of landscape, point of view) can influence
the performance and that the selection of a saliency model should consider the target
application.

Deng et al. [5] evaluated the use of different state-of-the-art bottom-up saliency models
for traffic saliency detection. The experimental results obtained from the comparison of the
predicted saliency and human gaze data indicate that bottom-up saliency models cannot
be directly applied to predict the drivers’ allocation of visual attention. They show that
this limitation can be resolved by adding a top-down control to modulate the bottom-up
prediction.

Typically, saliency models are evaluated using benchmark datasets for object detec-
tion [6] and human gaze allocation during free-viewing tasks [7]. Benchmark datasets aim
at testing the applicability of saliency models over images with diverse characteristics:
natural indoor and outdoor scenes, artificial stimuli (e.g., patterns), and a wide variety of
objects and settings. On the contrary, context- and task-specific evaluations reveal how
the models perform over images of particular characteristics and/or attention tasks. This
is exemplified in the evaluation performed by Deng et al., where saliency models that



Sensors 2021, 21, 6825 3 of 18

are successful at predicting gaze allocation during free-viewing of images across different
categories fail to predict where drivers look at while observing driving scenes [5].

To use a bottom-up saliency model in a particular autonomous driving application, it
is important to consider the characteristics of the images registered by the frontal camera
of a vehicle. Frontal camera images provide panoramic views of the road ahead in which
the low-level features of the image, such as color, contrast and object size, might differ
a lot depending on the landscape (e.g., urban or rural roads), traffic conditions (e.g.,
light or heavy traffic), time of day (e.g., day or night) and weather conditions. Previous
evaluations of bottom-up saliency models in driving applications have been focused on
task performance (i.e., driver gaze prediction or object detection). However, those studies
provide no insights on how the distinctive features of the saliency predictions produced by
different models influence the outcome.

In this paper, we conduct a systematic evaluation of the saliency maps computed with
different bottom-up models on urban and highway scenes. Our goal is to compare the size
and shape of the salient areas identified by different models and the extent to which traffic
participants in the image fall within them. For this purpose, we compute the saliency of the
images available in the KITTI semantic instance segmentation dataset [8]. The evaluation
is based on energy and entropy features which represent the size and shape-complexity
of the salient areas. In addition, we assess the agreement between the salient areas and
the segments corresponding to traffic participants in the images. The features used to
assess the saliency maps enable us to perform a comprehensive quantitative and qualitative
comparison of different models. It is important to note that we consider the saliency
computation as the initial step of a computer vision processing pipeline. Therefore, the
evaluation features and criteria are not restricted to the outcome of a particular computer
vision task, such as object segmentation or recognition, which depend on how the identified
salient locations are processed. In this sense, our analysis describes and compares the
salient areas identified in a prospective initial processing step with respect to the traffic
participants in the picture. To the best of our knowledge, no other studies have been
devoted to compare the size and shape complexity of salient areas and their relation to
object instances in the image. The analysis aims to provide insights on how distinct salient
areas are identified by different models, both over the whole image as well as on the object
level. We encounter significant differences between the models which indicate the extent
to which object instances (such as cars or pedestrians) fall within the salient areas.

The rest of the paper is organized as follows. In Section 2, we provide details about
different types of bottom-up saliency models and describe the main characteristics of the
ones that our study is based on. Section 3 focuses on details about the dataset we employ,
and the computation of saliency maps followed by a thorough evaluation of those based
on their energy, entropy and the agreement between the salient areas and the segments
corresponding to traffic participants in Section 4. Based on the evaluation, we discuss how
our results provide selection criteria to choose a particular saliency model for prospective
autonomous driving applications in Section 5.

2. Bottom-Up Saliency Models

Based on their computational mechanisms, bottom-up models can be classified into
four categories [9]: (1) Rarity/Contrast-Based, which compute center–surround contrast
and/or local rarity/contrast based on image features, (2) Spectral Analysis Models, which are
based on the frequency spectrum of the image, (3) Learning-Based Models, in which machine
learning models are trained using low, middle and high-level features and/or eye tracking
data, and (4) Salient Object-Detection Models, which aim to segment boundaries of salient
objects by highlighting overall foreground regions.

In general, a saliency model takes an image I(x, y) with pixel coordinates x and y
as input and outputs a saliency map S(x, y) representing the conspicuity or saliency at
every location in the image by a scalar quantity [10]. Thus, saliency maps are typically
displayed as intensity images, where the intensity of each pixel represents its probability
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of belonging to salient regions or objects. Although models belonging to the first three
categories usually identify sparse blob-like salient regions aimed to predict gaze fixations,
salient object-detection models often generate smooth connected areas [6].

In this work, four bottom-up models are evaluated for comparison covering three of
the above-mentioned categories. In the rarity/contrast-based category we consider the
IttiKoch model [10], which is based on feature integration theory, and the Graph-Based
Visual Saliency (GBVS) [11], which is based on graph theory [2]. Both models perform
low-level feature extraction and integration. In the spectral analysis category, we include
the Spectral Residual (SR) model [12]. Finally, the Boolean Map Saliency (BMS) model [9] is
considered for the salient object-detection category. The selected models are representative
of each category and are frequently cited in the literature. Furthermore, three of them
(IttiKoch, GBVS and SR) have been analyzed in previous studies in the context of traffic
saliency detection [5] and two of them (GBVS and SR) in the context of object detection
for autonomous vehicles [4]. To conduct a fair comparison, we exclude learning-based
approaches as they depend on the quality of the training data and the learning capabilities
of the machine learning model. In the following, we describe the main characteristics of
the selected models.

2.1. IttiKoch: Rarity and Center—Surround Contrast Model

The model proposed by Itti et al. [10] is regarded as the baseline saliency model [2]
and is referred to as the Itti or IttiKoch model in the literature. The model computes feature
maps from an image’s intensity, color and orientation, which represent the feature at every
location of the image by a scalar quantity [10]. These low-level features are known to attract
human visual attention [2]. These feature maps are analyzed in different scales (i.e., in
different resolutions) to account for objects and locations of different sizes.

The effect of the intensity, color and orientation on the saliency of a pixel region
depends on the contrast with its surroundings. Thus, the edges of objects in the image, as
well as regions that locally stand out from their surroundings, are highlighted by means of
a center–surround operation [2]. The resulting saliency map represents local saliency over
the entire image [10]. Itti et al. pointed out the applicability of the identified salient image
locations for subsequent computer vision tasks, such as object detection [10].

2.2. Graph-Based Visual Saliency (GBVS): Rarity-Based Model

The GBVS model proposed by Harel et al. [11] extracts intensity, color and orientation
features maps such as the IttiKoch model but omits the center–surround process for
orientation maps and reduces the number of scales with which the image is processed [2].
As a result, the GBVS model groups sparse edges into integral regions that stand out from
their surroundings [2]. GBVS produces high-saliency values in the center of the image
plane (center bias) and is regarded to be robust with respect to differences in the sizes of
salient regions [11].

Harel et al. argue that the center bias of the model is well suited for predicting human
gaze allocation based on two observations: (1) everyday life head motion often results in
gazing straight ahead and (2) the motif of photographs is typically located in the center [11].

2.3. Spectral Residual (SR): Spectral Analysis Model

The SR model proposed by Hou and Zhang [12] aims to simulate the behavior of
pre-attentive visual search, in which low-level features such as orientation, edges, or
intensities stand out automatically. In the SR model, the spatial frequency content of
an image represents novel and redundant information, where a peak in the frequency
spectrum is considered novel information. Based on this assumption, SR approximates the
salient parts of an image by removing the statistical redundant components. The saliency
map is computed based on the spectral residual of the image in the frequency domain,
based on the hypothesis that saliency is the residual difference between the spectrum and
the characteristic spectrum of natural images [2].
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Since SR removes the statistical redundant components of an image, the saliency
map highlights the non-trivial regions of the scene and suggests the positions of proto-
objects [12]. SR is regarded by its authors as a general-purpose saliency detection system,
well suited for object-detection applications since the saliency computation does not rely
on features, categories, or other prior knowledge about the objects [12]. In contrast to the
IttiKoch and GBVS models, the saliency computation of the SR model does not need to
compute color, intensity and orientation feature maps or to analyze the image at differ-
ent scales.

2.4. Boolean Map Saliency (BMS): Enclosure-Based Figure-Ground Segregation

The BMS model proposed by Zhang and Sclaroff [9] detects salient regions with closed
outer contours based on the surroundedness (enclosure) cue for figure-ground segregation.
As a result of the surroundedness cue, the model does not assign high-saliency values to high-
contrast boundary areas typical of natural images (e.g., the boundary between the trees and
the sky). Thus, compared to other models, BMS is less responsive to the edges and cluttered
areas in the background [9]. Another effect of saliency detection based on the surroundedness
cue is that the model highlights the interior regions of salient objects [9]. BMS can identify
salient regions of different sizes due to the scale-invariant nature of the surroundedness cue
and thus does not require the image to be processed at different scales [9].

BMS was proposed as a saliency detection model for eye fixation prediction but has
been shown to be useful for salient object detection [9], and for the detection of proto-
objects [6] outperforming several salient object-detection models [6]. Furthermore, it was
ranked as the best non-neural network model on the MIT300 Benchmark [7].

To demonstrate the qualitative differences between the output generated by different
models, we provide an example of the saliency maps computed for a video sequence of the
KITTI object tracking dataset in Supplementary Materials.

3. Materials and Methods

We analyze the saliency maps obtained from semantically annotated images from
urban and highway scenes, where we compute four maps from each image with the
IttiKoch, GBVS, SR and BMS models. From each saliency map, we compute two features
that describe the amount and shape-complexity of the salient areas. Subsequently, we
assess the agreement between the salient areas and the segments corresponding to the
traffic participants by means of an error measure. Finally, we compute the proportion of
salient pixels for different saliency thresholds. This enables us to compare the size of the
salient areas identified by different models both over the whole image, as well as on the
object instance level. The statistical analysis of the differences between bottom-up models
was performed with R [13] and the package PMCMR for pairwise comparisons [14].

3.1. Dataset and Computation of Saliency Maps

For the evaluation and comparison of the saliency maps produced by the selected
models, we use the KITTI semantic instance segmentation dataset [8]. We choose this
dataset because of the variety contained in the images with respect to classes of traffic
participants (pedestrians and different types of vehicles), their position and size, traffic
situations (from a single to several vehicles) and environments (urban, rural and highway
scenarios). Specifically, we compute the saliency of the set of 200 training images, and we
use the pixel-level semantic instance segmentation annotations to assess the agreement
between the salient areas and segmented traffic participants in the image. We use the term
traffic participants to refer to the following object categories annotated in the dataset: car,
truck, person, bicycle, rider, bus, train, motorcycle, caravan, and trailer.

Saliency maps of the IttiKoch, GBVS and BMS models are computed using Pysaliency [15],
a Python package for saliency modeling. The saliency maps of the SR model are computed
using the OpenCV implementation (library version 4.0.1) [16]. We compute the SR with a
resolution parameter of 64 pixels, which provides a good estimation of the scale of normal
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visual conditions [12]. An example of the saliency maps computed with the selected models
is shown in Figure 1. The saliency maps produced by the IttiKoch and the BMS models are
normalized such that 0 ≤ S(x, y) ≤ 1.

3.2. Description of the Amount and Shape-Complexity of Saliency Maps Based on Energy and
Entropy Features

The saliency maps produced by different models are compared in terms of their
energy and entropy, as defined by Perrin et al. [17], which represent the amount and
shape-complexity of the salient areas in a saliency map. Based on the observation that
salient areas identified with different models differ in their shape, size and saliency level,
we use the energy and entropy features in this paper to provide an objective comparison
between the saliency maps obtained with different bottom-up models. Our use of the
energy and entropy features differs from the approach in [17], where these measures are
used to assess human saliency maps (i.e., saliency maps computed from human gaze data)
for the evaluation of content-wise biases of images acquired by unmanned aerial vehicles.

The energy E(x, y) of a saliency map S(x, y), defined in (1), is the sum of the vertical
and horizontal gradient absolute magnitudes [17]. A Sobel filter [18] of kernel size 5 is used
as derivative operator, following the implementation in [17].

E(x, y) =
∣∣∣∣∂S(x, y)

∂x

∣∣∣∣+ ∣∣∣∣∂S(x, y)
∂y

∣∣∣∣ (1)

As energy feature, we take the mean of E(x, y) over all pixels of the image [17].
Following the interpretation of Perrin et al., high mean energy indicates that the saliency
map contains several salient regions or shape-wise complex areas of interest, whereas low
energy indicates more simple-shaped salient regions [17]. To illustrate this interpretation,
the saliency maps with the maximum and minimum mean energy are shown in Figure 2.

Figure 2. Images and their corresponding saliency maps with the maximum and minimum mean
energy. SR produces several salient regions with complex shapes. In contrast, BMS produces blob-like
salient areas.

The Shannon entropy [19] H of a saliency map is defined in (2), where p(x, y) is the
probability of a pixel to be salient.

H = ∑
x,y

p(x, y) log(p(x, y)) (2)

A saliency map S(x, y) is converted into a probability distribution using a soft-max
function:

p(x, y) =
exp S(x, y)

∑x,y exp S(x, y)
(3)

such that 0 ≤ p(x, y) ≤ 1 and ∑x,y p(x, y) = 1. Entropy has been used as feature for
the evaluation of images and saliency maps [20,21], where larger entropy values indicate
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the presence of a complicated texture or structure [17,21]. Following the interpretation of
Perrin et al. [17], a high value of entropy indicates that the saliency map contains a lot of
information (i.e., “it is likely that saliency is complex”) and a low entropy value indicates a
single zone of salience. This interpretation is illustrated with the saliency maps with the
maximum and minimum entropy in Figure 3.

Figure 3. Images and the corresponding saliency maps with the maximum and minimum entropy.
SR produces complex areas of saliency (cf. SR saliency map in Figure 2). In contrast, the higher
saliency values produced by the GBVS model appear to be concentrated in a single zone.

3.3. Evaluation of the Agreement between the Salient Areas and the Traffic Participants

Different measures have been proposed to measure the agreement between saliency
predictions and annotated ground-truth. Two approaches are distinguished in the litera-
ture [6]: (1) metrics based on the overlap between salient areas identified by a model and
the ground-truth (i.e., a marked region in the image), and (2) measures of the accuracy of
the saliency maps with respect to the boundaries of the ground-truth regions.

To measure the agreement between a saliency map and ground-truth regions the Mean
Absolute Error (MAE) is recommended over other overlap-based measures as it considers
both true positives (i.e., the pixels correctly marked as salient) and the true negatives (i.e.,
the pixels correctly marked as non-salient) in a single measure [6,22]. (For a review of
other standard and universally agreed measures in the context of object detection see [6,22],
and in the context of human gaze prediction see [23].) (For a review of other standard
and universally agreed measures in the context of object detection see [6,22], and in the
context of human gaze prediction see [23].) (For a review of other standard and universally
agreed measures in the context of object detection see [6,22], and in the context of human
gaze prediction see [23].) The MAE is defined in (4) for continuous saliency map S(x, y)
normalized to the range [0, 1] and the binary ground-truth G(x, y) (i.e., 1 within a marked
region and 0 outside), where w and h represent the width and the height of the saliency
map, respectively.

MAE =
1

w× h ∑
x,y
|S(x, y)− G(x, y)| (4)

The MAE provides an overall measure of the quality of a saliency map [22]. Smaller
MAE values correspond to a better agreement between the salient regions and the objects
in the image. Therefore, we compute the MAE between the saliency maps obtained with
different bottom-up models and the binary ground-truth masks containing the traffic
participants in the image.

3.4. Overall Proportion of Salient Areas

Saliency maps computed with different models differ in the size of the areas identified
as salient. We analyze how much of the image is salient by thresholding the saliency maps.
As the threshold increases, the number of pixels in the salient area decreases. We quantify
this using (5) by computing the proportion PSth of salient pixels for each of the following
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saliency thresholds th: 0.25, 0.5 and 0.75, where n is the number of pixels in the salient area
and N is the total number of pixels in the image. An example of how the proportion of
salient pixels decreases for different saliency thresholds is shown in Figure 4.

PSth =
n
N

(5)

Figure 4. Example of the threshold analysis for a given segmented image. The top image shows
the segmented image and the number n of object instances. Below the corresponding saliency map
computed with the GBVS model is displayed. Subsequently, the proportion of salient pixels and the
number of object instances in the salient area for different saliency thresholds are shown.

3.5. Object Instance Saliency

We analyze the extent to which object instances are contained within the salient area
of the image for different saliency thresholds. As the threshold increases, the number of
object pixels within the salient area decreases. In (6), we compute the proportion of salient
pixels within the object instance OPSth for each of the following saliency thresholds th:
0.25, 0.5 and 0.75, where nsalient in object is the number of object pixels within the salient area
and Nobject the total number of object instance pixels.
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OPSth =
nsalient in object

Nobject
(6)

To account for cases in which an object instance is partially within the salient area,
the object instance is regarded as salient if OPSth > 0.5. Thus, as the saliency threshold
increases, fewer object instances are salient. An example of the number of salient instances
for different saliency thresholds is shown in Figure 4.

4. Results
4.1. Energy and Entropy Comparison of Saliency Maps

The distribution of the mean energy values obtained with the selected models is shown
in Figure 5a. There are significant differences in the mean energy of the saliency maps com-
puted with different models under a repeated measures ANOVA test [24] F(3, 796) = 4.632,
p < 0.001. A post-hoc Tukey test [25] (see Table 1) revealed that all the pairwise differences
are significant (p < 0.001). These results indicate that the number of salient regions and
their shape complexity differ across models (cf. Figure 1). Although BMS produces more
simple-shaped salient areas, SR produces a larger number of complex-shaped salient areas
(cf. Figure 2).

(a) Mean energy (b) Entropy
Figure 5. Mean energy and entropy of the saliency maps computed with different models.

Table 1. Tukey multiple comparisons of means for energy. 95% family-wise confidence level.

Contrast diff lwr upr p adj

IttiKoch-BMS 0.24 0.21 0.27 <0.001
SR-BMS 0.36 0.33 0.39 <0.001
GBVS-BMS 0.07 0.04 0.10 <0.001
SR-IttiKoch 0.12 0.09 0.15 <0.001
GBVS-IttiKoch −0.17 −0.20 −0.14 <0.001
GBVS-SR −0.29 −0.32 −0.27 <0.001

The distribution of the entropy values obtained with the selected models is shown in
Figure 5b. There are significant differences in the entropy of the saliency maps computed
with different models under a Friedman test [26] χ2(3) = 352.4, p < 0.001. A post-hoc
Nemenyi pairwise test [27] (see Table 2) revealed that except for the pair BMS-IttiKoch, all
the pairwise differences are significant (p < 0.001). These results indicate that SR produces
the most complex saliency maps in terms of the number of salient areas. In contrast,
the entropy values indicate that the saliency produced by the GBVS model tends to be
concentrated in a single zone.
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Table 2. p-Values obtained with a Nemenyi pairwise test for entropy.

BMS IttiKoch SR

IttiKoch 0.08
SR <0.001 <0.001

GBVS <0.001 <0.001 <0.001

4.2. MAE between Saliency Maps and Traffic Participants

The distribution of MAE values obtained with the selected models is shown in Figure 6.
There are significant differences under a Friedman test: χ2(3) = 379.75, p < 0.0001. A
post-hoc Nemenyi pairwise test (see Table 3) reveals that except for the pair BMS-GBVS,
all the pairwise differences are significant (p < 0.001). These results indicate that the best
agreement (i.e., smaller MAE values) between the segments of the traffic participants and
the saliency maps is obtained with the IttiKoch and SR models.

Figure 6. MAE between the saliency maps computed with different saliency models and the segments
containing traffic participants.

Table 3. Nemenyi pairwise test for MAE.

BMS IttiKoch SR

IttiKoch <0.001
SR <0.001 <0.001

GBVS 0.16 <0.001 <0.001

4.3. Comparison of the Proportion of Salient Areas

The proportion of salient pixels over different thresholds and saliency models is
shown in Figure 7. There are significant differences under a Friedman test: χ2(11) = 1909.3,
p < 0.001. The results obtained with a post-hoc Nemenyi pairwise test for the combinations
of threshold and model are shown in Table 4. Note that cross-threshold pairs lack of
practical meaning. Therefore, they are not interpreted in the analysis. We encounter
significant differences (p < 0.05), except for the following pairs: BMS-GBVS and IttiKoch-
SR in the 0.25 threshold, BMS-IttiKoch in the 0.5 threshold, and BMS-IttiKoch in the
0.75 threshold. These results indicate that for the 0.5 and 0.75 thresholds the SR and GBVS
models produce the smallest and largest proportion of salient pixels, respectively. Based
on these results, it is expected that the number of objects within the salient areas differs
across the models. Therefore, in the following section, we perform a thresholding analysis
to determine the extent to which object instances are contained within the salient areas of
an image.

4.4. Comparison of Object Instance Saliency

The percentage of salient object instances with respect to the total number of object
instances in the dataset for different saliency thresholds is shown in Table 5. The table
indicates that for all the objects, the largest percentage of salient instances is identified with
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the GBVS model for all the saliency thresholds. The results shown for the rider, bus, train,
motorcycle, caravan, and trailer should be interpreted with caution due to the low number
of instances with respect to the total number of images in the dataset.

Table 4. p-Values obtained with a Nemenyi pairwise test for proportion of salient pixels over different saliency thresholds.

Threshold 0.25 0.5 0.75
Model BMS GBVS IttiKoch SR BMS GBVS IttiKoch SR BMS GBVS IttiKoch

0.25 GBVS 0.78
IttiKoch <0.001 <0.001
SR’ <0.001 <0.001 0.81

0.5 BMS <0.001 <0.001 <0.001 <0.001
GBVS <0.001 <0.001 0.96 1.00 <0.001
IttiKoch <0.001 <0.001 <0.001 <0.001 0.79 <0.001
SR <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.02

0.75 BMS <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
GBVS <0.001 <0.001 <0.001 <0.001 0.03 <0.001 0.91 0.72 <0.001
IttiKoch <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 1.00 <0.001
SR <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

(a)

(b)

Figure 7. (a) Proportion of salient pixels over different saliency thresholds. (b) Detailed view over
the scale of each threshold.

4.5. Qualitative Analysis

Based on the quantitative results shown in the previous sections we perform a qualitative
analysis of the saliency maps obtained with different models. This analysis aims to illustrate
the cases in which the saliency models show the best and worst agreement with respect to the
segments of traffic participants, highlighting the advantages and shortcomings of each model.

4.5.1. Qualitative Analysis BMS Saliency Maps

The top 5 best and worst agreements between the segments of traffic participants and
the saliency maps computed with the BMS model are shown in Figure 8. The saliency maps
with the best agreements show that while smaller traffic participants in the background fall
within a uniform salient area, the mid-size vehicles in the foreground generate high-saliency
blobs. The simple-shaped high-saliency areas can be attributed to the closed contours
of the vehicles. It is important to note that even in the pictures with small MAE values,
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elements such as lights (image 000104_10.png ) and traffic signs (images 000038_10.png
and 000043_10.png) generate areas of higher salience compared to the ones located over
the traffic participants.

Table 5. Percentage of salient objects with respect to the total number of instances over different saliency thresholds. The
column n shows the total number of object instances in the dataset. The saliency model with the largest percentage of salient
instances within each threshold is emphasized.

Threshold 0.25 Threshold 0.5 Threshold 0.75
object n BMS GBVS IttiKoch SR BMS GBVS IttiKoch SR BMS GBVS IttiKoch SR

car 810 72.8 87.7 12.8 39.4 20.4 68.6 2.1 5.8 2.6 25.4 0.4 0.0
truck 101 70.3 95.0 26.7 40.6 23.8 87.1 5.0 2.0 5.0 43.6 0.0 0.0

person 100 70.0 86.0 11.0 26.0 29.0 53.0 0.0 4.0 6.0 18.0 0.0 0.0
bicycle 43 53.5 76.7 0.0 16.3 11.6 51.2 0.0 0.0 0.0 11.6 0.0 0.0
rider 29 69.0 86.2 3.4 20.7 17.2 69.0 0.0 6.9 0.0 20.7 0.0 0.0
bus 19 52.6 100.0 10.5 42.1 26.3 63.2 0.0 5.3 10.5 31.6 5.3 0.0

train 18 72.2 88.9 22.2 16.7 11.1 72.2 5.6 5.6 0.0 16.7 0.0 0.0
motorcycle 8 87.5 87.5 0.0 62.5 25.0 75.0 0.0 12.5 0.0 37.5 0.0 0.0

caravan 7 100.0 100.0 28.6 57.1 28.6 100.0 0.0 14.3 14.3 42.9 0.0 0.0
trailer 5 100.0 60.0 20.0 40.0 0.0 40.0 0.0 0.0 0.0 20.0 0.0 0.0

Figure 8. Top 5 best and worst agreements between the segments of traffic participants and the saliency
maps computed with the BMS model. Smaller MAE values correspond to a better agreement.

The saliency maps with the worst agreements show that even though smaller traffic par-
ticipants in the background fall within salient areas, elements in the background such as tree
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branches and the grassy field form closed contours which are identified by the model as salient.
Such spurious salient areas lead to a large MAE. The image with the train (000144_10.png)
shows another way in which closed contours can generate large MAE values. The closed
shapes formed by the train’s windows and its white side generate high-saliency blobs, which
result in a non-uniform saliency distribution over the ground-truth segment.

4.5.2. Qualitative Analysis of GBVS Saliency Maps

The top 5 best and worst agreements between the segments of traffic participants and
the saliency maps computed with the GBVS model are shown in Figure 9. The saliency
maps with the best agreements show that the model produces a good match for mid- and
small-size traffic participants located in the central-horizontal regions of the image. This
result can be attributed to the center bias of the model. The examples also illustrate how
the model groups sparse edges into regions (images 000101_10.png and 000128_10.png),
by which small-sized vehicles in the background fall into high-saliency blobs. The saliency
maps with the worst agreements show that large segments of traffic participants located at
the extreme sides of the image, such as parked vehicles or vehicles approaching from the
sides, fall out of the salient areas resulting in large MAE values. This can also be attributed
to the center bias of the model.

Figure 9. Top 5 best and worst agreements between the segments of traffic participants and the saliency
maps computed with the GBVS model. Smaller MAE values correspond to a better agreement.
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4.5.3. Qualitative Analysis of IttiKoch Saliency Maps

The top 5 best and worst agreements between the segments of traffic participants and
the saliency maps computed with the IttiKoch model are shown in Figure 10. The saliency
maps with the best agreements show that images with mid-sized traffic participants which
locally stand out from their surroundings produce small MAE values. The saliency maps
with the worst agreements show that as in the case of GBVS, large segments of traffic
participants located at the extreme sides of the image fall out of the salient areas resulting
in large MAE values. In this case, the center–surround contrast operation highlights only
small portions of the vehicles, which results in separated salient areas.

Figure 10. Top 5 best and worst agreements between the segments of traffic participants and the saliency
maps computed with the IttiKoch model. Smaller MAE values correspond to a better agreement.

4.5.4. Qualitative Analysis of SR Saliency Maps

The top 5 best and worst agreements between the segments of traffic participants and
the saliency maps computed with the SR model are shown in Figure 11. The saliency maps
with the best agreements show that mid- and small-sized traffic participants located in
the central-horizontal regions of the image fall within the salient regions. The saliency
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maps with the worst agreements show that as in the case of GBVS and IttiKoch, large
segments of traffic participants located at the extreme sides of the image produce large
MAE values. In these examples, the parked vehicles produce small salient areas of complex
shapes corresponding to the boundaries of the vehicles. In addition to this, background
elements such as trees and buildings produce spurious high-saliency areas.

Figure 11. Top 5 best and worst agreements between the segments of traffic participants and the
saliency maps computed with the SR model. Smaller MAE values correspond to a better agreement.

5. Discussion

In this paper, we conducted a systematic evaluation of the saliency maps computed
with different bottom-up models. The number of salient areas and their shape-complexity
was analyzed by comparing the mean energy of the saliency maps. Additionally, whether
saliency is distributed over different areas or concentrated within a single zone was ana-
lyzed by comparing the entropy of the saliency maps.

Regarding the shape complexity of the salient areas, the BMS and SR models produced
simple-blob-like and complex-shaped areas, respectively. The entropy values revealed that
although saliency produced by the SR model is distributed over several areas, the saliency
produced by the GBVS model tends to be concentrated in a single zone.
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The analysis of the MAE values revealed that the best agreements between the salient
areas and the segments of the traffic participants are obtained by the IttiKoch model,
followed by SR. A qualitative analysis showed that segments of traffic participants located
at the extreme sides of the image, which occur when there are parked vehicles or when
vehicles approach from the side, result in large MAE values with the GBVS, IttiKoch and
SR models. The analysis also showed that background elements, such as tree branches and
buildings, produce high-saliency regions with the BMS and SR models, which results in a
reduced agreement between the salient areas and the traffic participants.

The insights about the shape and the number of salient areas were complemented
by analyzing their size, quantified as the proportion of salient pixels. The comparison of
this proportion over different saliency thresholds revealed that the SR and GBVS produce
smaller and larger salient regions, respectively.

Given the differences between models with respect to the amount, shape and size of
the salient areas, we analyzed the extent to which object instances are contained within the
salient areas of an image. The analysis indicates that for the car, truck, person, and bicycle
objects the largest percentage of salient instances is identified with the GBVS model across
different saliency thresholds.

The analysis suggests that due to the smaller size and the shape complexity of the SR
saliency maps fewer object instances fall within the salient areas of an image. In contrast,
the larger size and concentration of saliency over one area of the GBVS model increases
the likelihood of object instances being contained within the salient areas of an image.
In this respect, it is important to recall that the salient areas of SR maps show a better
agreement with the segments of traffic participants in contrast with the worse agreement
obtained with GBVS. Altogether, these results constitute a trade-off between coverage and
agreement for the SR and GBVS models.

It is important to note that saliency of particular object categories can be improved by
means of adding a top-down prior component such as the vanishing point of the road [5] or
the horizon line of the image [28]. Based on our qualitative analysis, a top-down prior could
be applied to reduce the saliency assigned to trees and buildings and to increase saliency to
traffic participants on the side of the image. Furthermore, the saliency of particular object
categories or image areas can also be improved by combining the predictions of different
bottom-up models.

The suitability of a particular model depends on the application. Although for object
segmentation it is desirable that the high-saliency areas correspond to the object’s contours,
for object detection large portions of the object should be located within salient areas.
Furthermore, in object-detection applications for autonomous vehicles is highly important
that all traffic participants fall within a predicted map because otherwise they become
invisible and could lead to dangerous situations. Our evaluation method and the features
used to characterize the saliency maps provide selection criteria that can be applied to
different computer vision and prediction of driver behavior tasks. For example, SR saliency
maps might be appropriate for a segmentation pipeline due to the large number of complex-
shaped salient areas, as quantified by the entropy and energy features. On the other hand,
the large and simple-shaped salient areas with center bias produced by the GBVS model
can be used to prune the surveillance area of an algorithm.

To extend the insights obtained from our quantitative and qualitative results, further
evaluations need to be conducted on other datasets including various light, weather and
traffic conditions, which might introduce a large variability in the images registered by the
frontal camera of a vehicle. However, it is important to note that such an evaluation is chal-
lenging to conduct with full control of factors to achieve a fair comparison. For example,
a fair comparison between different rain intensities would require constant background
and constant, or at least highly comparable, positioning of traffic participants and other
elements in the scene. Furthermore, future work will be focused on the combination of
bottom-up and top-down models to obtain reliable prior information for object detection
and tracking algorithms such as [29]. In this way, we assume to reduce both the computa-
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tional effort and the number of false detections resulting in more accurate environmental
perception for autonomous driving scenarios.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/s21206825/s1, Video S1: Saliency maps over a sequence in a traffic scene. The video illustrates
the BMS, IttiKoch, GBVS and SR computed over each frame from a sequence of the KITTI object
tracking dataset (sequence id: 0006).
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