
sensors

Article

Toward an Adaptive Threshold on Cooperative Bandwidth
Management Based on Hierarchical Reinforcement Learning

Motahareh Mobasheri, Yangwoo Kim * and Woongsup Kim

����������
�������

Citation: Mobasheri, M.; Kim, Y.;

Kim, W. Toward an Adaptive

Threshold on Cooperative Bandwidth

Management Based on Hierarchical

Reinforcement Learning. Sensors 2021,

21, 7053. https://doi.org/10.3390/

s21217053

Academic Editors: Cosimo Distante,

Luigi Patrono, Luigi Atzori

and Aitor Almeida

Received: 26 September 2021

Accepted: 21 October 2021

Published: 25 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Information and Communication Engineering Department, Dongguk University, Seoul 04620, Korea;
mm.mobasheri@dongguk.edu (M.M.); woongsup@dongguk.edu (W.K.)
* Correspondence: ywkim@dongguk.edu

Abstract: With the increase in Internet of Things (IoT) devices and network communications, but
with less bandwidth growth, the resulting constraints must be overcome. Due to the network
complexity and uncertainty of emergency distribution parameters in smart environments, using
predetermined rules seems illogical. Reinforcement learning (RL), as a powerful machine learning
approach, can handle such smart environments without a trainer or supervisor. Recently, we worked
on bandwidth management in a smart environment with several fog fragments using limited shared
bandwidth, where IoT devices may experience uncertain emergencies in terms of the time and
sequence needed for more bandwidth for further higher-level communication. We introduced fog
fragment cooperation using an RL approach under a predefined fixed threshold constraint. In this
study, we promote this approach by removing the fixed level of restriction of the threshold through
hierarchical reinforcement learning (HRL) and completing the cooperation qualification. At the first
learning hierarchy level of the proposed approach, the best threshold level is learned over time,
and the final results are used by the second learning hierarchy level, where the fog node learns
the best device for helping an emergency device by temporarily lending the bandwidth. Although
equipping the method to the adaptive threshold and restricting fog fragment cooperation make the
learning procedure more difficult, the HRL approach increases the method’s efficiency in terms of
time and performance.

Keywords: internet of things; fog computing; fog fragment cooperation; hierarchical reinforcement learning

1. Introduction

With the advent of cloud and fog computing, as a cloud complement, and the following
emergence of the Internet of Things (IoT), data generation has become faster through
various smart environments. Over time, with the increasing speed of data generation,
the term big data has emerged in network concepts. In contrast, network bandwidth
improvement has been insufficient to cover the increase in IoT devices and the volume of
generated data; therefore, the bandwidth limitation is a crucial IoT challenge and should
be considered in studies as a serious constraint.

Despite the advent of the IoT with its useful capabilities for network applications
and equipment augmentation due to user demand growth, some limitations must be
considered [1]. One is the bandwidth limitations, which cause bottlenecks in network
communication [2]. Accordingly, it is essential to pay attention to the network bandwidth
in smart environments, such as smart homes [3–5], smart cities [6,7], smart factories [8–10],
healthcare [11–13], smart metering [14], robotics [15,16], energy management systems [17],
and industrial IoT (IIoT) [18–20], because numerous kinds of devices cooperate using
heterogeneous network communication [21,22]. The steady increase in network complexity
and the sharing of physical resources, such as the network bandwidth, leads to flexible and
efficient resource management approaches [23].

In this way, the authors in [24] presented a dynamic approach to bandwidth manage-
ment in networked control systems in which control loops use the bandwidth according to

Sensors 2021, 21, 7053. https://doi.org/10.3390/s21217053 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4038-3267
https://orcid.org/0000-0002-0528-7026
https://doi.org/10.3390/s21217053
https://doi.org/10.3390/s21217053
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21217053
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21217053?type=check_update&version=2

Sensors 2021, 21, 7053 2 of 18

the dynamics of the controlled process while attempting to optimize the overall control
performance. The authors in [25] focused on managing real-time flows and predicting the
amount of bandwidth needed by a mobile host during its movements using a Markovian
approach. The resource allocation procedures and weighting policy were designed using a
software-defined network (SDN) controller to perform bandwidth management [26]. This
mechanism monitors and analyzes networks and the application’s status. Then, based on
the results, it reallocates resources dynamically with a software-defined discipline.

Adaptive bandwidth management was designed via a prototyping technique to
increase the bandwidth of institutional, educational users who access more on educational
websites [27]. The problem does not include fog node cooperation to increase efficiency,
and the proposed technique should recognize target users who are worthy of receiving
more bandwidth. The authors in [28] improved fault resilience and managed the required
bandwidth in industrial cyber-physical system networks through SDN. The problems of
shared bandwidth and the size of the network expansion were studied in [23]. The authors
focused on the demand for flexible and efficient communication network management in
IIoT applications while different flow types share the bandwidth. They proposed a resource
management mechanism using a combined SDN and network virtualization solution
under varying workloads and flow priorities to reduce network management complexity.
This approach exploits a priority-based runtime bandwidth distribution mechanism to
dynamically react to load changes due to alarms. The smart environment is not fragmented,
and the proposed mechanism seems usable for one smart fragment only. Therefore, it is
not useful for a scenario where several cooperating smart fragments exist, each with its fog
node. Moreover, the authors in [23] used the SDN and network visualization, where the
control plane does not need to be disassociated from the data plane, if machine learning
techniques were used.

The vast smart environment of [29] includes several environments called fragments.
Each fragment has several IoT devices and a single fog node as the fragment manager
responsible for communicating with a higher-level manager (e.g., a cloud server). In an
emergency detection by an IoT device, it informs its connected fog node. The amount
of assigned bandwidth for each IoT device is fixed; thus, the fog node is responsible for
assigning the bandwidth of another IoT device as the emergency device requires and for
taking it back when the emergency is over. Under the conditions with a fixed predefined
threshold, the fog node can borrow the bandwidth of a neighboring fragment’s feasible IoT
device. The fog cooperation problem is solved via the RL approach, where the received
reward of the learning procedure is based on a fixed predefined threshold.

Due to the development of learning cases and the surge in state and action spaces, the
typical RL is not an appropriate approach. We use hierarchical RL (HRL) as a complement
to the typical RL approach. The process of learning the threshold is performed at the first
hierarchy level, and the second hierarchy learning level starts based on the results of the
first learning level. The fog node starts to learn to select the best helper for an emergency
device among its own and neighbors’ feasible help lists based on the learned threshold, its
situation, and neighboring situations.

In this study, at the first level, the fog node should learn the best level for the threshold
based on internal and neighboring situations, and at the second level, it should learn
to select the best helper among internal and neighboring nodes by following the rules.
The main issue is fog cooperation with a high-performance guarantee in a limited band-
width network; thus, the neighbor fragment situations must be considered (the number of
neighbor emergency devices) in cases where the fog node wants to use their bandwidth.
The predetermined fixed threshold is a definite constraint in fog cooperation; therefore, it
causes trouble in the cases allowing a fog node to receive help from a neighbor while that
neighbor’s situation is not normal. In general, helping others should be achieved when no
internal emergency problems and subsequent bandwidth requirements exist.

In the remainder of this paper, the research problem and solution approach are
explained in detail in Section 2. In Section 3, we formalize the decision-making problem

Sensors 2021, 21, 7053 3 of 18

and describe the simulation results of the proposed approach, followed by the conclusions
in Section 4.

2. Materials and Methods

In RL, the agent’s goal is represented through a reward function representing a
special signal received from the environment by the agent, and its value varies for each
step. Moreover, the agent should maximize the total amount of the received reward (i.e.,
maximizing the immediate reward and long-term cumulative reward). Formalizing an
agent’s goal through a reward signal is one of the most distinctive features of RL [30].
An RL agent maximizes its cumulative reward through interaction with an unknown
environment (i.e., the agent observes a state, takes action, receives an immediate reward,
and transmits to the next state, repeating this cycle in each step). The agent is supposed to
learn the behavior, called the policy, to map the observed states to the appropriate actions.
To maximize the expected future sum of rewards, the agent must explore the environment
by taking various actions and observing their effects, and after a while, exploiting its
current knowledge through selecting actions with the highest past rewards. An essential
challenge in RL is solving domains with sparse rewards (i.e., when most of the immediate
reward signal is zero). In this case, all actions initially appear equally good, and it becomes
crucial to explore actions efficiently until the agent finds a high-reward action. Therefore, it
becomes possible to distinguish actions that eventually lead to the highest rewards [31].

Although RL has been widespread and achieved superhuman performance in various
fields, such as system management and configuration, it has some problems [32–35], such
as scaling (i.e., when the state and action spaces increase, the efficiency decreases). Several
approaches have been developed to manage RL problems, such as HRL, a computational
approach intended to address scaling by learning to operate at various temporal abstraction
levels. Unlike RL with just one policy to achieve the goal, the HRL approach has several
subpolicies that work together in a hierarchical structure. In this technique, the policy is
divided into several subpolicies, and the actions of the higher-level policies are passed
to their lower levels as their goals over smaller time horizons [32,35]. Therefore, one of
the benefits of HRL is improved exploration because the action space is reduced, and
exploration is simpler.

Moreover, HRL learns a policy comprising multiple layers responsible for control at
each temporal abstraction level. The key novelty of HRL is to extend the available action
set so that the agent can choose to perform primitive and macro actions (i.e., sequences
of lower-level actions [36]). In addition, HRL facilitates exploration because the number
of necessary decisions is reduced before obtaining a reward [31]. In the control aspect, a
macro is an open-loop control policy and is inappropriate for stochastic system control.
Further, HRL approaches generalize the macro idea to closed-loop policies or closed-loop
partial policies, as they are defined for a subset of the state space. Furthermore, partial
policies must have well-defined termination conditions [37].

The concurrency of multiagent coordination is the basis for modeling coordination
among multiple simultaneous agents. From a theoretical aspect, it matters whether con-
current actions are executed by a single agent or multiple cooperating agents. One of
the complexities of the multiagent problem is that an agent cannot generally perceive the
actions or states of other agents in the environment (hidden states). The authors in [37]
introduced a learning policy across joint states and actions and assumed that states indicate
the joint state of n agents, where each agent i may only have access to a partial view si
and may not know the other agents’ actions. A separate connection between HRL and
multiagent RL has been studied in [35]. In this study, multiple fog nodes of the scenario
are set up as a multiagent system. As mentioned in the previous section, the RL approach
of [29] employs a fixed-value threshold. In this study, by adding the ability to vary the
threshold level (variable threshold), we break the policy into two subpolicies and proceed
using HRL.

Sensors 2021, 21, 7053 4 of 18

The authors in [38] introduced a decision-making problem of a single fog node con-
nected to various IoT devices, determined via different priorities. The fog node belongs to
the only smart fragment of a small environment. This scenario is extended to a vast smart
environment with various fog nodes, and each belongs to its distinct fragment [29]. Then,
these fog nodes are to cooperate so that the fragment and cooperation conditions are met.

When a device encounters an abnormal situation, it is responsible for informing its
connected fog node of the situation, and the fog node is responsible for making it possible
to receive more data from this emergency device, whereas the assigned transmission
bandwidth is insufficient. In an emergency, its assigned bandwidth may not be sufficient
for an emergency device due to the limited network bandwidth, and some devices in a
normal situation should decrease the bandwidth to provide additional bandwidth capacity
for emergency devices. Moreover, as the number of emergency devices increases, extra
bandwidth assignment becomes more complicated.

This issue considerably affects the environmental network when saving a millisecond
is essential for preventing damage and failure. The fog node is supposed to learn the best
selections among devices in ordinary situations to solve this problem and help devices
in emergencies by decreasing their transmission rates to the fog node. In the proposed
approach of [29,38], the fog node acts as an agent of the RL approach. Although the
fog node does not have a trainer or information regarding the distribution parameters
of future events, it can successfully gain an optimal policy through RL. As the learning
process converges, the fog node decisions become future-oriented and optimal. The learned
selections of the fog node help the system face the minimum number of devices with a lack
of bandwidth.

Large smart environments are fragmented, with many smaller smart environments
with their designated fog nodes. As the total bandwidth is limited and shared among
these fragments, the fog node cooperation is raised in [29], and each smart environment is
assumed to be a fog fragment; that is, each fog node and its connected IoT devices are called
a fog fragment. Therefore, in addition to learning the best helper for an emergency device
using the related fog node (as discussed in [38]), the cooperation of these fragments in
using a shared limited bandwidth under special conditions should be learned by fragments’
fog nodes, as discussed in [29].

The learning procedure for each fog node is the same as in [38]; therefore, the fog node
learns the best helper among devices with a normal situation and sufficient bandwidth
(called feasible devices) based on the device priority. The reason is that selecting a higher-
priority helper is not logical and efficient when a device with a lower priority exists for
helping. Moreover, fog nodes are allowed to receive help from their neighboring fog nodes
under defined conditions. A predefined threshold exists for each fragment that is set in the
priority range of its devices. The fog node can receive help from a neighboring fragment by
borrowing the bandwidth of a device in that neighbor’s help list only if no feasible device
is available with a priority lower than the fragment threshold. The threshold levels of the
fragments are predefined and fixed in [29]. The fragment situations change over time; thus,
the threshold must be dynamic.

In this study, the fragment thresholds are learned to be used in the subsequent learning
of the fog nodes (i.e., managing the bandwidth among normal devices and emergencies
through HRL). In addition, HRL decomposes an RL problem into a hierarchy of subprob-
lems or subtasks so that the higher-level problem invokes lower-level problem tasks as if
they were primitive actions [32]. Consequently, each fog node should learn three objects:
first, the best helpers for handling the required extra bandwidth for connected emergency
devices; second, the conditions of receiving help from neighboring nodes; and third,
learning the best threshold level based on external (neighbors) and internal situations.

The fog node should update a variable, zm, in every time step to determine the
fragment situation and inform its neighbors about it. Moreover, each fog node should
calculate another variable, zn, as the average of zm of its neighbors. Based on zm, zn, and the
last time step threshold (Thold), the fog node learns the best threshold in the current time

Sensors 2021, 21, 7053 5 of 18

step through RL (Figure 1A). The threshold level can be selected from the range of green
to orange (details in Section 3.1). In each time step, a matrix including the last selected
threshold, Thnew, based on zn, zm, and Thold, is updated (a further explanation is provided
in Section 3.1.2). When the threshold learning procedure is completed in the first fog
node learning level, the next learning level starts based on the results of the first learning
level. The fog node starts to learn by selecting the best helper for an emergency device
among its own and neighbors’ feasible help lists among its feasible connected devices
and the neighbors’ feasible lowest priority devices based on the index of the emergency
device (i), zn, zm, and Thnew, extracted from the final threshold matrix (Figure 1B). Therefore,
the fragment bandwidth varies by emergency in different fragments. As the result of
two-level learning, fragment cooperation leads to dynamic bandwidth allocations for each
fragment in every time step, whereas the sum of bandwidth allocations for all devices is
fixed (Figure 1C).

As discussed in [29], the threshold value is specified at the beginning of smart city
life through a smart city management configuration to specify the boundaries of obtaining
help from neighbors mentioned in the help lists. Therefore, the fog node is encouraged to
select a helper from its fragment when a feasible device exists with a lower priority than
the threshold. Otherwise, the fog node must select a helper from other fragments in its
vicinity. If an emergency occurs in a fragment without a feasible device with a priority
lower than the threshold, the fog node can use the neighbors’ help lists and select a helper
with adequate bandwidth for the emergency device. All these rules are learned over time
through RL.

Figure 2 illustrates a simple example of forming a feasible device set by the learner.
The first part of this figure, A, represents all IoT devices in the learner fragment, specified
with white, green, yellow, orange, and red as their priorities. Assuming the learner is in the
early stages of learning and that all devices have sufficient bandwidth, all except the red
priority devices (highest priority devices) can be helpers. Part B determines these possible
helpers by dashed-line squares. If the threshold level is yellow (Thnew = 2) and one of the
orange priority devices has an emergency, only devices with white and green priorities
should be included in the feasible device set. These devices are distinguishable in Part C.

In this study, having no feasible device with a priority lower than the threshold is
not the only condition for obtaining help from a neighbor. It is necessary to consider the
neighbors’ and internal situations. When a neighbor experiences a bad situation, it is not
logical to borrow the bandwidth of one of its help-list devices because that neighbor should
primarily handle its internal situation.

The authors in [29] appropriately defined a fixed threshold value to ensure a proper
tradeoff between choosing from its own or neighboring feasible devices. Defining a fixed
threshold value (or fixed rules for it) is not a proper approach. It is better to encourage or
punish the fog nodes as an RL agent to learn the optimal policy to increase, decrease, or
maintain the current threshold level. Therefore, the fog node should learn the threshold
level and best device for helping an emergency device over time without instructions from
a supervisor. Based on the RL approach, each fog node attempts all feasible threshold levels
one by one in each visit of all combinations of different situations that a fragment and its
neighbors may experience without considering any condition. In other words, the fog node
is free to test all threshold levels in different situations of itself and the neighbors. After
each selection, the fog node receives a reward value, indicating the quality of its recently
selected threshold. Therefore, the fog node learns the best threshold level over the learning
process through the received rewards and applies the best experience for successive similar
visits in the future without a trainer or supervisor.

Sensors 2021, 21, 7053 6 of 18

Sensors 2021, 21, x FOR PEER REVIEW 6 of 20

.

Figure 1. Illustration of the two-level learning hierarchy in which (A,B) denote the first (lower)
and second (higher) learning hierarchy levels. The second learning level uses the final threshold
matrix, the result of the first level after convergence. (Part C) presents the amount of each fragment’s
bandwidth during three consecutive time steps.

Sensors 2021, 21, 7053 7 of 18

Sensors 2021, 21, x FOR PEER REVIEW 7 of 20

Figure 1. Illustration of the two-level learning hierarchy in which (A,B) denote the first (lower) and
second (higher) learning hierarchy levels. The second learning level uses the final threshold matrix,
the result of the first level after convergence. (Part C) presents the amount of each fragment’s band-
width during three consecutive time steps.

Figure 2 illustrates a simple example of forming a feasible device set by the learner.
The first part of this figure, A, represents all IoT devices in the learner fragment, specified
with white, green, yellow, orange, and red as their priorities. Assuming the learner is in
the early stages of learning and that all devices have sufficient bandwidth, all except the
red priority devices (highest priority devices) can be helpers. Part B determines these pos-
sible helpers by dashed-line squares. If the threshold level is yellow (Thnew = 2) and one of
the orange priority devices has an emergency, only devices with white and green priori-
ties should be included in the feasible device set. These devices are distinguishable in Part
C.

Figure 2. Feasible device set forming. (A) illustrates a learner fragment. Considering all IoT devices
have enough bandwidth to help, feasible devices are specified in (B). Assuming the current emer-
gency device’s priority is orange and Th = yellow (2), the feasible device set includes devices with
priorities lower than yellow priority (C).

Figure 2. Feasible device set forming. (A) illustrates a learner fragment. Considering all IoT devices
have enough bandwidth to help, feasible devices are specified in (B). Assuming the current emergency
device’s priority is orange and Th = yellow (2), the feasible device set includes devices with priorities
lower than yellow priority (C).

As fully discussed in [29], the threshold value is specified at the beginning of the smart
city life through smart city management configuration in order to specify the boundary of
obtaining help from neighboring helpers, mentioned in their sent help lists. Therefore, the
fog node is encouraged to select a helper from its own fragment when there is a feasible
device with a lower priority than the threshold in its fragment. Otherwise, the fog node
has to select a helper from other fragments in its vicinity. In other words, if an emergency
takes place in a fragment without any feasible device with a priority less than the threshold,
the fog node is allowed to use the neighbors’ help list and select a helper with adequate
bandwidth for the recent emergency device. Note that all these rules are learned over time
through RL.

In this study, having no feasible device with priority less than the threshold was
not the only condition of receiving help from a neighbor. It is necessary to consider the
neighbors’ situations in addition to the internal situation. In fact, when a neighbor is
experiencing a bad situation, it is not logical to borrow the bandwidth of one of its help list
devices, since that neighbor should handle its internal situation primarily.

Assumptions of this study are as follows:

Sensors 2021, 21, 7053 8 of 18

• Each fragment has only a single fog node, and all IoT devices in a fragment are
connected to the fog node of that fragment;

• In each time step, all fog nodes send their help lists, including their situation indicators
(zm) and the lowest priority devices with their current bandwidth to all neighboring
fog nodes;

• Fog node cooperation is performed through a dedicated wireless interface; therefore,
fog node communication performs at disparate frequencies from those assigned for
fog node communication with connected IoT devices;

• As with [29,38], eliminating emergencies is not studied in this paper, and the focus is
on managing the bandwidth in emergencies as higher-level decisions require more
bandwidth to receive more information.

3. Modeling and Results

As mentioned, several fog fragments exist in a vast smart environment, and they
operate in the same way. Therefore, we focus on one fog node in its fragment in the vicinity
of other fog nodes and distinguish it from the neighboring fog nodes by calling it the learner
fog node or “the learner.” The learner’s decision-making problem is modeled in [29] con-
cerning selecting the best device among its own feasible devices and the neighbors’ feasible
lowest priority devices to help an emergency device so that the reward and punishment
values are maximized and minimized, respectively. In this study, the model features are
completed in the second level of the learner’s learning, and before this level, the threshold
is made adaptive and variable as a learning procedure that should be performed before
starting the second learning level. Therefore, the hierarchy in these learning procedures
includes learning the best threshold considering the internal and external situation as the
first or lower learning hierarchy level and learning the best helper based on the learned
threshold as the second or higher learning hierarchy level. We explain the first, then the
second level below.

3.1. First Learning Hierarchy Level: Learning the Best Threshold Value

Each fragment threshold level is in the range of its IoT device priorities. The threshold
level should be between the lowest and highest priorities. If the threshold is adjusted to the
highest priority, the fog node cannot obtain help from neighbors, and if it becomes equal to
the lowest priority, the fog node selects a helper among neighbors’ lowest priority devices,
even in cases with feasible devices with higher priorities than the fragment threshold.
Therefore, the threshold should be appropriately adjusted to ensure a proper tradeoff
between choosing from its own or neighboring feasible devices. Unlike [29], the threshold
value is not fixed and is realized by learning by receiving rewards. A variable threshold
or adaptive threshold indicates that the threshold constraint of the learner’s threshold is
changed based on internal and neighboring situations.

In contrast to [29], we consider colors instead of numbers to illustrate the priority
levels. White represents the minimum priority, and green represents a low priority higher
than the white priority. Yellow represents a medium priority higher than the green priority,
and orange represents a high priority higher than the yellow priority and less than the
red priority, which is the highest. The threshold level can be switched among the range
of green to orange and cannot be equal to the white priority because the fog node would
always be allowed to obtain help from neighbors, even when some devices in its feasible
device set have low priorities. Additionally, it cannot be equal to red priority because the
fog node cannot receive help in any situation. Therefore, the threshold level could be green,
yellow, or orange, and level changing is performed by learning in the first level of HRL.
For this purpose, the state, action, policy, and reward functions are defined as follows.

3.1.1. State

The states of learning the best threshold level should describe the exact situation of
the fragment, as it is the basis of learning. Therefore, the state should consist of neighbors

Sensors 2021, 21, 7053 9 of 18

and internal situations, in addition to the last threshold. The combination of zn, zm, and
Thold (last threshold) satisfies this need. Although the goal of [29] was to handle the needed
bandwidth in emergencies to receive more data from emergency devices, the focus was
on the number of emergency devices: the number of normal devices plus the emergency
devices that received help was calculated in the reward function as a model for determining
the situation of the fog node fragment. In this study, an indicator representing the fog
fragment situation (the inner situation) is needed. Moreover, zm is a weighted average
representing the internal situation and is calculated in Equation (1) as follows:

zm = Ω

(
∑nd

i=1 f lag(i)× p(i)

∑nd
i=1(p(i)| f lag(i) = 1)

)
, (1)

where p(i) denotes the priority of device I, and flag(i) determines the situation of device
i, where flag is a Boolean array presenting the situations of nd connected devices to the
learner as 1 and 0 for emergency and other devices, respectively, based on their indices.
Moreover, Ω is a function that maps zm to either 0 or 1 using a constant c (e.g., when c = 0.5,
values below 0.5 are approximated to 0, meaning the internal situation is good or normal,
whereas values above 0.5 are rounded to 1, meaning the internal situation is bad or in
an emergency).

The external situation (neighbor situation) is another influential factor that should
be considered when borrowing bandwidth from a device out of the fog node fragment.
This indicator is denoted by zn and is equal to the weighted average of the learner’s
neighbors’zm, where the number of neighbors is denoted by nb in Equation (2) as follows:

zn = Ω

(
∑nb

j=1 zm(j)

nb

)
, (2)

where zn should be mapped to either 0 or 1, the same as zm. Therefore, if c = 0.5, values
below 0.5 are approximated to 0, meaning the external situation is good or normal, whereas
values above 0.5 are rounded to 1, meaning the internal situation is bad or in an emergency.
Moreover, zn and zm respectively indicate the internal and external situations affected by
accidental events, and the fog node does not have any information about the distribution
parameters of future emergencies.

3.1.2. Action

Based on zn, zm, and the last threshold (Thold), the learner should decide on the new
threshold level (Thnew). Therefore, the action represents the determined color level for the
threshold. A matrix called threshold is updated by the fog node based on its visited state
and selected threshold through RL in every time step, in Equation (3):

Threshold(zn, zm, Thold) = Thnew, (3)

where the selected level for the next threshold by the fog node is inserted as a member
of the threshold matrix with the position of zn, zm, and Thold as the first, second, and third
dimensions, respectively. Transference among different states is not only through the
selected actions; z = [zn zm] is the primary indicator for deciding on the action that will
become one of the state’s items for the next time step.

3.1.3. Policy

A learning policy defines the learner’s behavior at a given time (i.e., a policy deter-
mines how to map the perceived states of the environment to the proper actions). One
of the policy rules in this study is that the increase or decrease in the threshold level is
step by step (e.g., when the threshold level is green and should be increased, it becomes
yellow, and if more increase is needed, it becomes orange in the next time step). Table 1
describes the learning policy in detail, in which 0 and 1 in the policy columns indicate

Sensors 2021, 21, 7053 10 of 18

yes and no, respectively (e.g., according to Equations (1) and (2), when the internal and
neighbors’ situations are equal to 0, they are fine (row 1), thus decreasing the threshold
level and helping others are allowed). If the internal and neighbor’s situations are both
bad (row 4), the threshold is not decreased, and helping others is not allowed or logical
because lowering the threshold leads to more reliance on the neighbors’ helpers during
their emergencies.

Table 1. Learning policy.

z Policy
zn zm Decreasing Thold Helping Neighbors

1 0 0 0 0
2 0 1 0 1
3 1 0 1 0
4 1 1 1 1

Note: 0 and 1 represent yes and no, respectively, in the policy columns.

Based on Table 1, Figure 3 is obtained, illustrating the transition among threshold
levels based on the perceived situations of the fragment and neighbors. The threshold
levels of green, yellow, and orange are numbered 1, 2, and 3, respectively, and zn and
zm are represented by the array z = [zn zm]. The primary threshold level for all fog nodes
is yellow, and when the situations for all fragments are fine, the fog nodes should return to
this primary level step by step.

Sensors 2021, 21, x FOR PEER REVIEW 11 of 20

3.1.2. Action
Based on zn, zm, and the last threshold (Thold), the learner should decide on the new

threshold level (Thnew). Therefore, the action represents the determined color level for the
threshold. A matrix called threshold is updated by the fog node based on its visited state
and selected threshold through RL in every time step, in Equation (3): ℎ ℎ (, , ℎ) = ℎ , (3)

where the selected level for the next threshold by the fog node is inserted as a member of
the threshold matrix with the position of zn, zm, and Thold as the first, second, and third di-
mensions, respectively. Transference among different states is not only through the se-
lected actions; = [] is the primary indicator for deciding on the action that will
become one of the state’s items for the next time step.

3.1.3. Policy
A learning policy defines the learner’s behavior at a given time (i.e., a policy deter-

mines how to map the perceived states of the environment to the proper actions). One of
the policy rules in this study is that the increase or decrease in the threshold level is step
by step (e.g., when the threshold level is green and should be increased, it becomes yellow,
and if more increase is needed, it becomes orange in the next time step). Table 1 describes
the learning policy in detail, in which 0 and 1 in the policy columns indicate yes and no,
respectively (e.g., according to Equations (1) and (2), when the internal and neighbors’
situations are equal to 0, they are fine (row 1), thus decreasing the threshold level and
helping others are allowed). If the internal and neighbor’s situations are both bad (row 4),
the threshold is not decreased, and helping others is not allowed or logical because low-
ering the threshold leads to more reliance on the neighbors’ helpers during their emer-
gencies.

Table 1. Learning policy.

z Policy

zn zm Decreasing Thold Helping Neighbors
1 0 0 0 0
2 0 1 0 1
3 1 0 1 0
4 1 1 1 1

Note: 0 and 1 represent yes and no, respectively, in the policy columns.

Based on Table 1, Figure 3 is obtained, illustrating the transition among threshold
levels based on the perceived situations of the fragment and neighbors. The threshold lev-
els of green, yellow, and orange are numbered 1, 2, and 3, respectively, and and are
represented by the array = []. The primary threshold level for all fog nodes is yel-
low, and when the situations for all fragments are fine, the fog nodes should return to this
primary level step by step.

Figure 3. Transition states among green, yellow, and orange as threshold levels, perceiving z = [zn zm]

as the internal and external situations.

3.1.4. Reward Function

As mentioned, defining the reward function is the most important part of an RL
approach because it presents the effects of the learner’s actions on the environment and
the fog node fragment. Moreover, the reward function should be defined to satisfy the
learning policy goal. Based on the learning policy, Table 2 lists the policy goals in detail.
For example, when the internal and neighboring situations are fine (row 1), the target level
is yellow (level 2) regardless of the last threshold level. When the internal and neighboring
situations are both bad (row 4), if the last threshold level was 1, the target level is 1, and if
the last threshold level was 2 or 3, the target level is 3.

Sensors 2021, 21, 7053 11 of 18

Table 2. Policy goals.

State Action
zn zm Thold Thnew

1 0 0 X 2

2 0 1
1,2 1
3 2

3 1 0
1 2

2,3 3

4 1 1
1 1

2,3 3
Notes: Threshold levels 1, 2, and 3 represent green, yellow, and orange, respectively; X denotes levels 1, 2, and 3.

We define the reward function based on the policy goal. As explained, an RL agent
takes action randomly, observes the received rewards of actions, and learns the best action
in each state using this procedure. As the learning is reinforced over time, the probability of
random action selection decreases. According to Table 2, when the learner selects a correct
action, it receives a reward value, and when it takes an incorrect action (the wrong level for
the threshold), the received reward value is 0. Equation (4) presents the reward function of
the first learning level RTh (i.e., the reward for learning the best threshold level):

RTh(n) = NTh − the number o f nonzero elements o f (Threshold− Thc), (4)

where Threshold is a matrix of the learner’s experiences and Thc is the target threshold
matrix from Table 2. In addition, NTh is calculated via Equation (5) and provides the
number of threshold elements:

NTh = 2Thl ×
(

2Thl − 1
)

, (5)

where we equate the threshold length (Thl) to 2 because two bits are needed to represent
three levels

(
2Thl − 1

)
for the threshold (green, yellow, and orange). The algorithm of the

first fog node learning level is in Algorithm 1.

Algorithm 1: Learning the best threshold level in the first learning hierarchy level.

1. Input:
Initialize time step (n), α, γ,Thl , Thold, Threshold, and QTh matrices.
Make Thc matrix as the accurate threshold matrix based on the transition states.

2. While not converged, do
1. Generate two binary random values as zn and zm
2. Determine the accurate threshold, Th, based on Thc

3. With probability ε, randomly choose a value for the threshold from
(

2Thl − 1
)

levels.

4. Otherwise, Thnew = argmaxj∈ (2Thl−1) (Qth(Thold, j))
5. If Th = Thnew

RTh(n) =
NTh− the number of nonzero elements of (Threshold− Thc)

6. else
RTh(n) = 0

7. End
8. Update the QTh matrix

QTh(zn, zm, Thold, Thnew) =
(1− α)QTh(zn, zm, Thold, Thnew) + α (RTh + γ(max (QTh(zn, zm, Thold, Thnew))))

9. Threshold(zn, zm, Thold) = Thnew
10. Increase the time step n by 1

3. End while

Sensors 2021, 21, 7053 12 of 18

3.2. Second Learning Hierarchy Level: Learning the Best Helper

As discussed in [29], the threshold reveals a fog fragment allowed boundary of using
the neighbors’ helpers and feasible internal devices in emergencies (i.e., if a fragment does
not have a feasible device with a priority lower than the threshold, the fog node can receive
help from its neighbors). Therefore, in the second learning hierarchy level, the learner’s
problem is selecting the best device as an emergency helper from its own feasible devices
and neighbors’ feasible lowest priority devices in their help lists. In this part, we explain
features that are added or changed in this study to complete the model from [29] as the
second learning hierarchy level.

3.2.1. State

A Boolean array, flag, presents situations of nd connected devices to the learner, num-
bered from 1 to nd, in the time step n. When one of its elements is 0, the connected device is
in a normal situation, and when it is 1, an emergency occurs for that device. In every time
step, the flag is updated based on the device emergency reports. As an emergency situation
becomes normal, the related index of flag becomes 0. Due to implementation limitations
in large state spaces, unlike [29], the learner state is not its flag array. In this study, the
learner’s state space has four dimensions. The first dimension indicates the number of
devices that recently encountered emergencies, and the device number is the same as its
index in the flag array. The second and third dimensions are zn and zm, and the fourth
dimension is the current threshold, which is the result of the last learning hierarchy level
based on the second and third dimensions (i.e., the combination of part of the state and
selected action of the first learning hierarchy level (zn, zm, and Thnew) becomes a part of the
state of the second learning hierarchy level).

For emergency simulations in each time step, the uniformly distributed pseudo-
random integer function generates nd values randomly from {0, 1} for nd elements of
the flag to demonstrate the device situations in the learner fragment in [29]. Emergency
events do not occur uniformly for all fragment devices, as some devices are more exposed
to emergency events and have high assigned priorities at the beginning of their smart
environment life. Thus, in this study, we improved the method of generating 1 for flag
elements (emergencies) so that encountering emergencies increases based on the IoT device
priorities in a fragment. In the simulation, white priority devices never face emergencies,
and with probabilities of 20%, 40%, 60%, and 80%, the flag elements of green, yellow,
orange, and red priority devices become 1 to indicate emergencies.

3.2.2. Action

As in [29], learning is performed in emergencies, and action is only selected if an IoT
device has an emergency; therefore, the learner should perform an appropriate action to
prepare the required bandwidth for the emergency device (di). Moreover, the ith element of
the flag array was recently changed to 1 at the beginning of the current time step because
the index of this emergency device is i. Therefore, the learner’s selected action is a device
(dk) from its own feasible device set or the neighbors’ feasible devices in their help lists to
assign the helper’s bandwidth to di as needed. Action ai determines k, demonstrating that
a device with index k is selected to help the emergency device with index i.

3.2.3. Policy

The policy of the second learning hierarchy level is selecting helpers among its own or
neighboring feasible devices so that the punishment value becomes the minimum, whereas
the reward value becomes the maximum.

3.2.4. Reward Function

As in [29], the Boolean array track includes nd elements, which become 1 when the
related devices receive help during an emergency. In the following, fnort is formulated
so that if the learner has helped an emergency device or both related elements of flag and

Sensors 2021, 21, 7053 13 of 18

track are 0, the related element of fnort becomes 1. When the learner cannot help a needy
device, the related element of fnort remains 0. The only modification of the reward function
compared to [29] is the part using fnort. The RnQ function providing the reward value of
the second-level algorithm of the learning hierarchy is defined in Equation (6):

RnQ = operation− punish(i)− penalty− blame, (6)

where operation is calculated via Equation (7):

operation = operation +
nd

∑
i
(f nort(i)× p(i)). (7)

If no device could help in the learner fragment due to the learner’s past poor operation,
the penalty decreases RnQ by the number of devices with lower priorities than the needy
device’s priority in the learner fragment, not just the number of devices in the feasible
device set. If the learner selects a helper for the current needy device (di) among its
own feasible devices, punish(i) is the number of devices in the feasible device set with
priorities lower than the threshold and the selected helper’s priority. If the learner chooses
a neighbor’s helper, the value of blame equals the number of owned feasible devices with
lower priorities than the threshold. Algorithm 2 summarizes the second-level algorithm
of the learning hierarchy in which successful bandwidth management (SBM) is the final
comparison criterion [29].

Algorithm 2: Second-level algorithm of the learning hierarchy.

1. Initialization
2. While not converged, do

1. For each element i of the learner’s flag, do
1. If flag(i) is converted from 1 to 0, do

Find device u that helped device i among all devices, including neighbors’ helpers, and
return the borrowed bandwidth from di to du

2. Else if flag(i) is converted from 0 to 1, do
a. Make a feasible device set, including the nodes’ own feasible devices and neighbors’

feasible help lists.
b. With probability ε, randomly choose device k among the feasible device set, otherwise:

ai = argmaxj∈ feasible(Q(i, zn, zm, Thnew, j)), where j is the index of the selected.
c. Increase the bandwidth of di and decrease the bandwidth of dj, as much as di needs.
d. Calculate penalty or punish(i) or blame(i) based on the learner’s action and then calculate

RnQ:
RnQ = operation− punish(i)− penalty− blame

e. Update Q matrix:
Qnew(i, zn, zm, Thnew, ai) = (1− α)Qold(i, zn, zm, Thnew, ai)+

α
(

RnQ + γ
(

maxk′ε f easible
(
Qold

(
i′, zn, zm, Thnew, a′i

))))
3. End if

2. End for
3. Make the next flag based on the learner’s device priorities.
4. Repeat lines 3 to 26 for neighboring fog nodes
5. Calculate SBMn using countpun considering all fragments
6. Calculate the average SBM
7. Increase the time step n by 1

3. End while

3.3. Results

Figure 4 presents the process results of the first learning hierarchy level. Figure 5
displays a better view of Figure 4 to gain a better perception of the learning process. The
vertical and horizontal axes denote the average of RTh and the time steps, respectively. Over
time, the learning process progresses, and the learner experience is reinforced. Therefore,

Sensors 2021, 21, 7053 14 of 18

the learner’s selections improve, and the average reward increases. Finally, the learner
converges to the highest possible average reward. The learning process becomes stable
after convergence. When the learning process is complete, the learner selects the best
threshold level based on its experiences according to the received rewards.

Sensors 2021, 21, x FOR PEER REVIEW 16 of 20

vertical and horizontal axes denote the average of RTh and the time steps, respectively.
Over time, the learning process progresses, and the learner experience is reinforced.
Therefore, the learner’s selections improve, and the average reward increases. Finally, the
learner converges to the highest possible average reward. The learning process becomes
stable after convergence. When the learning process is complete, the learner selects the
best threshold level based on its experiences according to the received rewards.

Figure 4. Results of the first learning hierarchy level.

Figure 5. Initial part of first-level learning results before the process converges.

When the first learning hierarchy level is completed, the resulting matrix, Threshold,
is used by the second learning hierarchy level. Figure 6 illustrates the results in compari-
son to the scenario in [29]. The results reveal that making the threshold adaptive via HRL
results in better performance from the average reward and time perspectives, in contrast
to [29], which solved the cooperation problems using a fixed threshold with RL. Table 3
describes the final results of both scenario simulations.

Figure 4. Results of the first learning hierarchy level.

Sensors 2021, 21, x FOR PEER REVIEW 16 of 20

vertical and horizontal axes denote the average of RTh and the time steps, respectively.
Over time, the learning process progresses, and the learner experience is reinforced.
Therefore, the learner’s selections improve, and the average reward increases. Finally, the
learner converges to the highest possible average reward. The learning process becomes
stable after convergence. When the learning process is complete, the learner selects the
best threshold level based on its experiences according to the received rewards.

Figure 4. Results of the first learning hierarchy level.

Figure 5. Initial part of first-level learning results before the process converges.

When the first learning hierarchy level is completed, the resulting matrix, Threshold,
is used by the second learning hierarchy level. Figure 6 illustrates the results in compari-
son to the scenario in [29]. The results reveal that making the threshold adaptive via HRL
results in better performance from the average reward and time perspectives, in contrast
to [29], which solved the cooperation problems using a fixed threshold with RL. Table 3
describes the final results of both scenario simulations.

Figure 5. Initial part of first-level learning results before the process converges.

When the first learning hierarchy level is completed, the resulting matrix, Threshold, is
used by the second learning hierarchy level. Figure 6 illustrates the results in comparison
to the scenario in [29]. The results reveal that making the threshold adaptive via HRL
results in better performance from the average reward and time perspectives, in contrast
to [29], which solved the cooperation problems using a fixed threshold with RL. Table 3
describes the final results of both scenario simulations.

Sensors 2021, 21, 7053 15 of 18
Sensors 2021, 21, x FOR PEER REVIEW 17 of 20

Figure 6. Second learning hierarchy level results compared to learning with a fixed threshold.

Table 3. Simulation results.

 Fixed Threshold Learning
with Neighbor Cooperation

Adaptive Threshold Learning
with Neighbor Cooperation

Final SBM convergence: 275.89 275.95
Total time steps: 864 s 358 s

4. Conclusions
Due to the network complexity and uncertainty of emergency distribution parame-

ters, we propose RL as a powerful machine learning approach without a trainer or super-
visor to meet various needs in constantly expanding smart networks with limited band-
width. In this study, we continued our previous work on fog fragment cooperation in
bandwidth management under a predefined threshold constraint in a smart environment
with limited shared bandwidth among several fog fragments. The IoT devices of these
smart fragments may experience uncertain emergencies regarding the time and sequence
needed for more bandwidth for further higher-level communication. We promote fog
fragment cooperation by completing the cooperation qualification and using an HRL ap-
proach to the adaptive threshold. Although equipping the method to the adaptive thresh-
old and restricting the fog fragment cooperation make the learning procedure more diffi-
cult, the HRL approach increases the network performance. Moreover, despite two levels
of learning, the proposed approach has less total convergence time in the second hierarchy
level.

The proposed approach applies to smart environments where fixed priorities and
bandwidths are assigned to the devices. If these setups are changed, the learning must be
restarted. Moreover, it is assumed that all fragments of this study are the same in terms of
priority (i.e., no fragment has a higher priority than the others, whereas the importance of
different fragments of a smart environment is not the same). It would be valuable to assign
different priorities to fragments and add another learning level to consider the fragment
priorities in future work.

Author Contributions: Conceptualization, M.M. and W.K.; methodology and software, M.M.; vali-
dation, M.M., W.K., and Y.K.; formal analysis, investigation, resources, and data curation, M.M.;
writing—original draft preparation, M.M.; writing—review and editing, M.M. and W.K.; visualiza-
tion, M.M.; supervision, W.K. and Y.K.; project administration and funding acquisition, Y.K. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Ministry of Science and ICT (MSIT), Korea, under the
Information Technology Research Center (ITRC) support program (IITP-2021-2016-0-00465) super-
vised by the Institute for Information & Communications Technology Planning & Evaluation (IITP).

Figure 6. Second learning hierarchy level results compared to learning with a fixed threshold.

Table 3. Simulation results.

Fixed Threshold Learning with
Neighbor Cooperation

Adaptive Threshold Learning with
Neighbor Cooperation

Final SBM convergence: 275.89 275.95

Total time steps: 864 s 358 s

4. Conclusions

Due to the network complexity and uncertainty of emergency distribution parameters,
we propose RL as a powerful machine learning approach without a trainer or supervisor
to meet various needs in constantly expanding smart networks with limited bandwidth. In
this study, we continued our previous work on fog fragment cooperation in bandwidth
management under a predefined threshold constraint in a smart environment with limited
shared bandwidth among several fog fragments. The IoT devices of these smart fragments
may experience uncertain emergencies regarding the time and sequence needed for more
bandwidth for further higher-level communication. We promote fog fragment cooperation
by completing the cooperation qualification and using an HRL approach to the adaptive
threshold. Although equipping the method to the adaptive threshold and restricting the
fog fragment cooperation make the learning procedure more difficult, the HRL approach
increases the network performance. Moreover, despite two levels of learning, the proposed
approach has less total convergence time in the second hierarchy level.

The proposed approach applies to smart environments where fixed priorities and
bandwidths are assigned to the devices. If these setups are changed, the learning must be
restarted. Moreover, it is assumed that all fragments of this study are the same in terms of
priority (i.e., no fragment has a higher priority than the others, whereas the importance of
different fragments of a smart environment is not the same). It would be valuable to assign
different priorities to fragments and add another learning level to consider the fragment
priorities in future work.

Author Contributions: Conceptualization, M.M. and W.K.; methodology and software, M.M.; val-
idation, M.M., W.K. and Y.K.; formal analysis, investigation, resources, and data curation, M.M.;
writing—original draft preparation, M.M.; writing—review and editing, M.M. and W.K.; visualiza-
tion, M.M.; supervision, W.K. and Y.K.; project administration and funding acquisition, Y.K. All
authors have read and agreed to the published version of the manuscript.

Sensors 2021, 21, 7053 16 of 18

Funding: This research was supported by the Ministry of Science and ICT (MSIT), Korea, under the
Information Technology Research Center (ITRC) support program (IITP-2021-2016-0-00465) super-
vised by the Institute for Information & Communications Technology Planning & Evaluation (IITP).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Abbreviations
Parameters Meaning
n Entire system time steps
nd Number of connected Internet of Things devices to the fog node in each fragment
nb Number of neighboring fragments
nQ Learning time steps
ε Probability of random selection
α Learning coefficient
γ Constant discount factor
p Predefined device priorities
zm Determines the situation of the fragment
zn Average of zm of all neighbors
Thl Threshold length
Thold Last threshold level
Thnew New selected threshold level
Threshold Contains Thnew based on zn, zm, and Thold and is continuously updated while learning

the best threshold level
NTh Number of Threshold elements
Thc Correct threshold levels, based on the internal and external situations, as the target

threshold matrix
RTh Received reward of learning the best threshold level through reinforced learning
QTh Represents the Q-value of the selected threshold level
punish Number of feasible helpers with lower priority than the emergency device priority
countpun Total feasible helpers with lower priority than the selected helpers for all needy devices

in time step n
penalty Number of all devices with lower priority than the current needy device priority
blame Punishment when choosing a neighboring device when feasible devices have lower

priority than the threshold
flag flag(i) = 0 indicates that device i is in a normal situation, and flag(i) = 1 indicates

an emergency
track track(i) = 1 indicates that device i has received extra bandwidth
fnort fnort(i) = 0 indicates that needy device i has not received extra bandwidth
a Selected action (helper)
RnQ Received reward for the fog node
Qnew Represents the Q-value of the selected device k for helping device i
SBM Successful bandwidth management

References
1. Khan, M.A.; Karim, M.; Kim, Y. A two-stage big data analytics framework with real world applications using spark machine

learning and long short-term memory network. Symmetry 2018, 10, 485. [CrossRef]
2. Barnaghi, P.; Bermudez-Edo, M.; Tönjes, R. Challenges for quality of data in smart cities. J. Data Inf. Qual. 2015, 6, 1–4. [CrossRef]
3. Alam, M.R.; Reaz, M.B.I.; Ali, M.A.M. A review of smart homes—Past, present, and future. IEEE Trans. Syst. Man Cybern. Part C

Appl. Rev. 2012, 42, 1190–1203. [CrossRef]
4. Chan, M.; Campo, E.; Estève, D.; Fourniols, J.Y. Smart homes—Current features and future perspectives. Maturitas 2009, 64, 90–97.

[CrossRef]
5. De Silva, L.C.; Morikawa, C.; Petra, I.M. State of the art of smart homes. Eng. App. Artif. Intell. 2012, 25, 1313–1321. [CrossRef]
6. Kim, H.; Choi, H.; Kang, H.; An, J.; Yeom, S.; Hong, T. A systematic review of the smart energy conservation system: From smart

homes to sustainable smart cities. Renew. Sustain. Energy Rev. 2021, 140, 110755. [CrossRef]
7. Su, K.; Li, J.; Fu, H. Smart city and the applications. In Proceedings of the 2011 International Conference on Electronics,

Communications and Control (ICECC), Ningbo, China, 9–11 September 2011; pp. 1028–1031.

http://doi.org/10.3390/sym10100485
http://doi.org/10.1145/2747881
http://doi.org/10.1109/TSMCC.2012.2189204
http://doi.org/10.1016/j.maturitas.2009.07.014
http://doi.org/10.1016/j.engappai.2012.05.002
http://doi.org/10.1016/j.rser.2021.110755

Sensors 2021, 21, 7053 17 of 18

8. Chen, B.; Wan, J.; Shu, L.; Li, P.; Mukherjee, M.; Yin, B. Smart factory of industry 4.0: Key technologies, application case, and
challenges. IEEE Access 2017, 6, 6505–6519. [CrossRef]

9. Wang, S.; Wan, J.; Li, D.; Zhang, C. Implementing smart factory of industry 4.0: An Outlook. Int. J. Distrib. Sens. Netw. 2016,
12, 3159805. [CrossRef]

10. Lucke, D.; Constantinescu, C.; Westkämper, E. Smart factory-A step towards the next generation of manufacturing. In Man-
ufacturing Systems and Technologies for the New Frontier; Mitsuishi, M., Ueda, K., Kimura, F., Eds.; Springer: London, UK,
2008; pp. 115–118.

11. Ansari, S.; Aslam, T.; Poncela, J.; Otero, P.; Ansari, A. Internet of things-based healthcare applications. In IoT Architectures, Models,
and Platforms for Smart City Applications; Chowdhry, B.S., Shaikh, F.K., Mahoto, N.A., Eds.; IGI Global: Hershey, PA, USA, 2020;
pp. 1–28.

12. Catarinucci, L.; De Donno, D.; Mainetti, L.; Palano, L.; Patrono, L.; Stefanizzi, M.L.; Tarricone, L. An IoT-aware architecture for
smart healthcare systems. IEEE Internet Things J. 2015, 2, 515–526. [CrossRef]

13. Leonardi, L.; Lo Bello, L.; Battaglia, F.; Patti, G. Comparative assessment of the LoRaWAN medium access control protocols for
IoT: Does listen before talk perform better than ALOHA? Electronics 2020, 9, 553. [CrossRef]

14. Kabalci, Y.; Kabalci, E.; Padmanaban, S.; Holm-Nielsen, J.B.; Blaabjerg, F. Internet of things applications as energy internet in
smart grids and smart environments. Electronics 2019, 8, 972. [CrossRef]

15. Simoens, P.; Dragone, M.; Saffiotti, A. The internet of robotic things: A review of concept, added value and applications. Int. J.
Adv. Robot. Syst. 2018, 15, 1729881418759424. [CrossRef]

16. Patti, G.; Leonardi, L.; Lo Bello, L. A novel MAC protocol for low datarate cooperative mobile robot teams. Electronics 2020, 9, 235.
[CrossRef]

17. Pasetti, M.; Ferrari, P.; Silva, D.R.C.; Silva, I.; Sisinni, E. On the use of LoRaWAN for the monitoring and control of distributed
energy resources in a smart campus. Appl. Sci. 2020, 10, 320. [CrossRef]

18. Wan, J.; Tang, S.; Shu, Z.; Li, D.; Wang, S.; Imran, M.; Vasilakos, A.V. Software-defined industrial internet of things in the context
of industry 4.0. IEEE Sens. J. 2016, 16, 7373–7380. [CrossRef]

19. Sisinni, E.; Ferrari, P.; Carvalho, D.F.; Rinaldi, S.; Marco, P.; Flammini, A.; Depari, A. LoRaWAN range extender for industrial IoT.
IEEE Trans. Ind. Inform. 2019, 16, 5607–5616. [CrossRef]

20. Luvisotto, M.; Tramarin, F.; Vangelista, L.; Vitturi, S. On the use of LoRaWAN for indoor industrial IoT applications. Wirel.
Commun. Mob. Comput. 2018, 2018, 3982646. [CrossRef]

21. Leonardi, L.; Ashjaei, M.; Fotouhi, H.; Bello, L.L. A proposal towards software-defined management of heterogeneous virtualized
industrial networks. In Proceedings of the 2019 IEEE 17th International Conference on Industrial Informatics, Helsinki, Finland,
22–25 July 2019; Volume 1, pp. 1741–1746.

22. Lucas-Estañ, M.C.; Raptis, T.P.; Sepulcre, M.; Passarella, A.; Regueiro, C.; Lazaro, O. A software defined hierarchical commu-
nication and data management architecture for industry 4.0. In Proceedings of the 2018 14th Annual Conference on Wireless
On-demand Network Systems and Services 2018, Isola, France, 6–8 February 2018; pp. 37–44.

23. Leonardi, L.; Lo Bello, L.; Aglianò, S. Priority-based bandwidth management in virtualized software-defined networks. Electronics
2020, 9, 1009. [CrossRef]

24. Velasco, M.; Fuertes, J.M.; Lin, C.; Marti, P.; Brandt, S. A control approach to bandwidth management in networked control
systems. In Proceedings of the 30th Annual Conference IEEE Industrial Electronics Society, Busan, Korea, 2–6 November 2004;
Volume 3, pp. 2343–2348.

25. Fazio, P.; Tropea, M.; Veltri, F.; Marano, S. A novel rate adaptation scheme for dynamic bandwidth management in wireless
networks. In Proceedings of the 2012 IEEE 75th Vehicular Technology Conference (VTC Spring), Yokohama, Japan, 6–9 May 2012;
pp. 1–5.

26. Chang, Y.C.; Chen, Y.C.; Chen, T.H.; Chen, J.L.; Chiu, S.P.; Chang, W.H. Software-defined dynamic bandwidth management. In
Proceedings of the 2019 21st International Conference on Advanced Communication Technology, PyeongChang, Korea, 17–20
February 2019; pp. 201–205.

27. Paredes, R.K.; Hernandez, A.A. Designing an adaptive bandwidth management for higher education institutions. arXiv 2020,
arXiv:2012.12362. [CrossRef]

28. Jhaveri, R.; Sagar, R.; Srivastava, G.; Gadekallu, T.R.; Aggarwal, V. Fault-resilience for bandwidth management in industrial
software-defined networks. IEEE Trans. Netw. Sci. Eng. 2021, 1. [CrossRef]

29. Mobasheri, M.; Kim, Y.; Kim, W. Fog fragment cooperation on bandwidth management based on reinforcement learning. Sensors
2020, 20, 6942. [CrossRef] [PubMed]

30. Thrun, S.; Littman, M.L. Reinforcement learning: An introduction. AI Mag. 2000, 21, 103.
31. Steccanella, L.; Totaro, S.; Allonsius, D.; Jonsson, A. Hierarchical reinforcement learning for efficient exploration and transfer.

arXiv 2020, arXiv:2011.06335.
32. Nachum, O.; Gu, S.; Lee, H.; Levine, S. Data-efficient hierarchical reinforcement learning. arXiv 2018, arXiv:1805.08296.
33. Vezhnevets, A.S.; Osindero, S.; Schaul, T.; Heess, N.; Jaderberg, M.; Silver, D.; Kavukcuoglu, K. Feudal networks for hierarchical

reinforcement learning. In Proceedings of the International Conference on Machine Learning, Sydney, Australia, 6–11 August
2017; pp. 3540–3549.

34. Levy, A.; Platt, R.; Saenko, K. Hierarchical actor-critic. arXiv 2017, arXiv:1712.00948.

http://doi.org/10.1109/ACCESS.2017.2783682
http://doi.org/10.1155/2016/3159805
http://doi.org/10.1109/JIOT.2015.2417684
http://doi.org/10.3390/electronics9040553
http://doi.org/10.3390/electronics8090972
http://doi.org/10.1177/1729881418759424
http://doi.org/10.3390/electronics9020235
http://doi.org/10.3390/app10010320
http://doi.org/10.1109/JSEN.2016.2565621
http://doi.org/10.1109/TII.2019.2958620
http://doi.org/10.1155/2018/3982646
http://doi.org/10.3390/electronics9061009
http://doi.org/10.25147/ijcsr.2017.001.1.22
http://doi.org/10.1109/TNSE.2021.3104499
http://doi.org/10.3390/s20236942
http://www.ncbi.nlm.nih.gov/pubmed/33291695

Sensors 2021, 21, 7053 18 of 18

35. Kreidieh, A.R.; Berseth, G.; Trabucco, B.; Parajuli, S.; Levine, S.; Bayen, A.M. Inter-level cooperation in hierarchical reinforcement
learning. arXiv 2019, arXiv:1912.02368.

36. Flet-Berliac, Y. The promise of hierarchical reinforcement learning. The Gradient, 09 March 2019.
37. Barto, A.G.; Mahadevan, S. Recent advances in hierarchical reinforcement learning. Discret. Event Dyn. Syst. 2003, 13, 41–77.

[CrossRef]
38. Mobasheri, M.; Kim, Y.; Kim, W. Toward developing fog decision making on the transmission rate of various IoT devices based

on reinforcement learning. IEEE Internet Things Mag. 2020, 3, 38–42. [CrossRef]

http://doi.org/10.1023/A:1022140919877
http://doi.org/10.1109/IOTM.0001.1900070

	Introduction
	Materials and Methods
	Modeling and Results
	First Learning Hierarchy Level: Learning the Best Threshold Value
	State
	Action
	Policy
	Reward Function

	Second Learning Hierarchy Level: Learning the Best Helper
	State
	Action
	Policy
	Reward Function

	Results

	Conclusions
	References

