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Abstract: Analysis of kinematic features related to clinical assessment scales may qualitatively
improve the evaluation of upper extremity movements of stroke patients. We aimed to investigate
kinematic features that could correlate the change in the Fugl-Meyer Assessment (FMA) score
of stroke survivors through upper extremity robotic rehabilitation. We also analyzed whether
changes in kinematic features by active and active-assisted robotic rehabilitation correlated differently
with changes in FMA scores. Fifteen stroke patients participated in the upper extremity robotic
rehabilitation program, and nine kinematic features were calculated from reach tasks for assessment.
Simple and multiple linear regression analyses were used to characterize correlations. Features
representing movement speed were associated with changes in FMA scores for the group that used
an active rehabilitation robot. In contrast, in the group that used an active-assisted rehabilitation
robot, features representing movement smoothness were associated with changes in the FMA score.
These estimates can be an important basis for kinematic analysis to complement clinical scales.
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1. Introduction

Approximately 30–60% of stroke survivors suffer from upper extremity dysfunction [1].
They experience limited activities of daily living (ADLs) and social participation [1,2].
During stroke rehabilitation, repetitive and intense treatment tasks are important factors to
promote neuroplasticity and improve functional outcomes [3,4]. Robotic rehabilitation can
encourage active participation with highly repetitive tasks that interact with specific motor
functions [5]. Recently, the use of robots for upper extremity rehabilitation has increased
to provide high-intensity rehabilitation training [2,3]. According to a recent systematic
review, the beneficial effects of robotic rehabilitation on motor function recovery for upper
extremity dysfunction in stroke patients have been established [6–8]. Moreover, some
reports suggest that the active robotic device (ACT) can be used to evaluate the therapeutic
effect on motor learning by analyzing the post-stroke patients’ kinematics for motor and
functional impairment [9]. However, its effectiveness remains controversial [10,11].

Rehabilitation robots that users actively use can be classified as active and active-
assistive robot devices according to the type of manipulation. ACT provides only gravity
compensation power for the user’s rehabilitation body segments and the robot [12]. ACT
should be operated by the user during the training, whereas the active assistive robotic
device (ACAS) actively aids in the user’s movement. ACAS provides assistive force for the
user’s movement and helps the user to reach a target point even if he/she is not able to
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move at all [13–15]. The provision of active assisted force of the robot may benefit patients
who struggle with spontaneous movement, as the robot can be trained for a desired path
or speed. Conversely, an active robot could induce voluntary participation in the patient,
thereby unleashing the patient’s motor potential.

Clinical scales [16], such as the Fugl-Meyer Assessment (FMA) [17] and Wolf Motor
Function Test (WMFT) are frequently used to assess motor functionality in patients after
stroke. However, clinical scales are not sensitive enough to capture the quality of sensory
and motor performance. Kinematic assessments can increasingly be used as motor outcome
measures during upper extremity robot-assisted training, in addition to clinical scales [18].
Therefore, it is necessary to use kinematic features for the sensitive and objective evaluations
of patients with post-stroke dysfunction [19,20]. Previous studies on robotic rehabilitation
and clinical assessments have already identified the relationship between FMA scores and
kinematic features in stroke patients. Lee et al. and Bertani et al. considered changes in the
clinical variables of different robotic rehabilitation systems but did not consider various
kinematic features [21,22]. Since robotic rehabilitation has a characteristic of heterogeneity,
it may be helpful to analyze the properties according to the type of each robot, as done in
this study.

We hypothesized that rehabilitation using two different robots would result in different
kinematic changes. Recently, we demonstrated discrepant changes in kinematics between
ACT and ACAS, although clinical measurements, including FMA and WMFT, did not find
any difference [15]. The purpose of this study was to determine whether the kinematic
features that cause changes in FMA differ during rehabilitation with ACT and ACAS
robotic rehabilitation. Therefore, we performed a regression analysis of the change in
FMA, a clinical assessment indicating impairment using changes in the kinematic data of a
patient’s reaching task during rehabilitation.

2. Materials and Methods
2.1. Participants

This study enrolled 20 patients with upper extremity dysfunction due to stroke who
were admitted to the National Rehabilitation Center, Republic of Korea, between March
2017 and December 2017. The study was approved by the institutional review board
of the Rehabilitation Hospital (approval no. NRC-2017-01-007). Informed consent was
obtained from all the subjects involved in the study. The inclusion criteria were as follows:
(1) 19 years of age or older, (2) the presence of hemiplegia due to ischemic or hemorrhagic
stroke, (3) stroke duration greater than 3 months, (4) hemiplegic shoulder and elbow
flexion/extension with a score of 3 or 4 based on the Medical Research Council scale
for strength, (5) a Fugl-Meyer assessment score (FMA) of 21–50 for the affected upper
extremity, (6) shoulder and elbow flexor spasticity with a modified Ashworth scale score of
≤1+, (7) cognitive function sufficient to understand and obey the protocol of this study,
and (8) the absence of limits in the range of motion of the shoulder and elbow joints
as determined by the neutral zero method [23]. The exclusion criteria were as follows:
(1) a history of surgical treatment of the affected upper extremity; (2) upper extremity
musculoskeletal problems, such as fracture, contracture, and shoulder subluxation of more
than two finger breadths; and (3) cybersickness, that is, nausea or vomiting while viewing
the screen.

2.2. Study Design

Participants were randomly divided into the ACT and ACAS intervention groups.
Each participant received 20 sessions of robotic rehabilitation (five times a week for 4 weeks).
Participants were trained in a game-based virtual reality environment that focused on
proximal upper limb movements provided by Hocoma Inc. Each treatment lasted for
30 min. We obtained FMA and kinematic features at baseline before intervention (T0),
immediately after intervention at two weeks (T1), and at four weeks (T2). The participants
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performed reaching tasks to generate three-dimensional trajectory data used for calculating
the features. Specific details on rehabilitation training are described by Park et al. [15].

To compare the correlation between changes in the FMA through upper extremity
rehabilitation of active and active-assistive rehabilitation robots and changes in kinematic
features, the active rehabilitation robot Armeo®Spring (Hocoma Inc., Zurich, Switzerland)
was used, and the active-assistive rehabilitation robot used Armeo®Power (Hocoma Inc.,
Zurich, Switzerland). The ACT group used the exoskeleton-activated robot Armeo®Spring
for three-dimensional upper extremity rehabilitation. The Armeo®Spring provides only the
force to counteract the gravity of the upper extremity and the robot using a spring and not
a robot actuator. The ACAS group used the Armeo®Power, which is also an exoskeleton-
activated robot for three-dimensional upper extremity rehabilitation. Armeo®Power pro-
vides force through the actuator to support the affected arm movement according to a set
range. Participants were trained on the same virtual reality environment as those included
in the ACT group.

At the first visit, each patient was classified into ACT or ACAS groups, and the robotic
device was adjusted so as not to restrict the movement of the patient’s upper extremities in
a three-dimensional workspace. Each patient underwent the prepared robotic rehabilitation
training program. During the subsequent visits, the patient was placed on the device in the
same manner and performed the same exercises.

2.3. Outcome Measure

We obtained the FMA and the kinematic outcomes. Outcome measures were checked
at baseline (T0) as well as two (T1) and four weeks after the intervention (T2).

2.3.1. Clinical Assessment

We evaluated the FMA score to measure motor impairment according to the Interna-
tional Classification of Functioning, Disability, and Health (ICF) concept [24]. We assessed
the FMA score, which is a quantitative indicator of movement impairment after stroke A
higher FMA score indicates a lower impairment [25]. We used FMA-UE (shoulder, elbow,
forearm, wrist, and hand; 33 items, 0–66) and FMA-prox (shoulder, elbow, and forearm;
18 items, 0–36) to confirm upper extremity dysfunction.

2.3.2. Kinematic Assessment

The kinematic features were evaluated using the three-dimensional trajectory of the
reaching task. The patient performed a reaching task toward three targets (Figure 1A)
in the lateral, middle, and medial orientations (Figure 1B) at a distance equal to 75% of
the patient’s arm length. The task was performed three times in one trial. The reach
task sequence was as follows: (1) start point (on table), (2) lateral target, (3) start point,
(4) middle target, (5) start point, (6) medial target, and (7) start point. The patient clicked
the button at the starting and target points. The movement between the two coordinates of
the start and target points was defined as a single movement. Upper extremity trajectories
were recorded to quantify detailed information about motor impairment. The movement
was captured using trakSTARTM (Ascension Technology Corp, Street Louis, MO, USA),
which records three-dimensional coordinates at a frame rate of 200 Hz (Figure 2). It was
recorded by attaching a sensor to the tip of the index finger. The collected data were filtered
using a 6 Hz second-order Butterworth low-pass filter.
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Figure 1. (A) A participant performing the reaching task. (B) Point-to-point reaching task evaluation table configuration.

In this study, nine kinematic features were calculated with reference to previous
studies, as listed in Table 1. The filtered trajectory data were calculated as kinematic
features through custom code using MATLAB (R2019b, Mathworks Inc, Natick, MA, USA).
The features can be classified into five types in terms of movement speed, efficiency,
accuracy, smoothness, and control strategy.

Table 1. Descriptions of kinematic features.

Kinematic
Features Abbreviation Unit Description Characteristic

Max Speed MaxSp mm/s

the fastest speed in each speed profile
during each movement

the higher values are related to a
faster movement

Movement Speed

Mean Speed MeanSp mm/s

the average of the motion speeds of each
speed profile during each movement

the higher values are related to a
faster movement

Hand Path Ratio HPR dimensionless

the ratio between the actual distance to the
desired distance in a single movement

between the starting point and the target
point [26,27]

the higher values are related to a longer
hand trajectory during the movement.

Movement
Efficiency

Movement
Deviation MD mm

the mean absolute value of the vertical
distance from the theoretical path to each

point on the real path [28]
※ the lower values indicate that the real

path is similar to the desired path Movement
Accuracy

Target Error TEr mm

the minimum distance from the index finger
to the target location at the end of the

movement as intended by the subject [26]
※ the lower values indicate that the target

has been reached
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Table 1. Cont.

Kinematic
Features Abbreviation Unit Description Characteristic

Ration between
Mean and

Maximum Speed
RMMS %

the ratio of the mean to the maximum speed
the value of a healthy subject should be

close to one

Movement
Smoothness

Mean Arrest
Period Ratio MAPR %

the ratio of the movement time in which the
hand stopped to the total movement time.

The arrested hand was defined to have less
than 20% of the average speed during each

movement [29]
the lower values are related to a more

continuous movement

SPARC SPARC dimensionless

the amplitude and Fourier magnitude
spectrum from the velocity profile of the

hand movement [30]
the lower values indicate that there is more

sub-movement in the movement

Time to Peak
Speed TPeakSp s

the time from the start of the movement to
the maximum speed during the

movement [31]
the lower values indicate that the maximum

speed of movement is reached faster

Movement
Control
Strategy

2.4. Data Analysis

Statistical analyses were performed using the SPSS software (version 20.0, IBM Corp,
Armonk, NY, USA). The significance threshold for the p-value was set to 0.05. Repeat mea-
sures of analysis of variance (RM-ANOVA) for group (ACAS and ACT) and time (T0, T1,
or T2) were performed to compare the effect of each intervention over time and to evaluate
time × group interactions with a post hoc Tukey test. When the sphericity assumption was
not satisfied, the Greenhouse–Geiser correction was applied [32]. Wilcoxon signed-rank
tests were performed for intergroup comparisons of kinematic features. Outliers were
detected and removed from statistical analysis using Tukey’s method [33].

Simple linear regression was performed (with changes in each kinematic feature) on
the change in FMA. Then, multivariable linear regression was performed (with changes
in the kinematic features) on the change in FMA. Proper features for multivariable linear
regression were selected using the forward method [34]. Model assumptions were validated
through residual analysis, coefficient of variance inflation (VIF), and predicted probability
plots. We selected features for the regression model when VIF was less than two, and the
predicted probability plots of the standardized residuals were found to be close to the
normal values for all regression models.
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Figure 2. Example of 3D trajectory according to the reaching task of stroke patients in (A) the ACT group and (B) the ACAS
group. This plot represents the actual trajectory in reaching the target. The asterisk represents the actual position of the
target, the cross represents the hand position when the patient reaches the target. The red, cyan, and blue colors represent
the medial, middle, and lateral directions, respectively.

3. Results

Of the 20 participants, one participant from the ACT group dropped out due to
transfer to another hospital. Two participants from the ACT group and two from the ACAS
group were excluded from the analysis because of signal loss in some sessions during
the evaluation; thus, 15 participants (seven in the ACT group, eight in the ACAS group)
completed all four assessment sessions (Table 2).

Table 2. Baseline characteristics of the participants.

Demographic Data and Clinical
Characteristics

ACT Group
(n = 7)

ACAS Group
(n = 8)

Age 51.11 ± 14.85 53.60 ± 11.23
Time after stroke onset (months) 9.38 ± 5.79 9.60 ± 5.79

Stroke type (infarction/hemorrhage) 3/4 3/5
Hemiplegic side, right 4 4

Sex, male 6 6
FMA-prox 22.71 ± 5.94 21.00 ± 4.96
FMA-UE 31.29 ± 10.00 28.63 ± 11.44
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3.1. Comparison of Clinical Assessment

There was a significant effect of time on both FMA-UE (p = 0.025) and FMA-prox
(p = 0.003) without the time × group interaction on FMA-UE (p = 0.907) or FMA-prox
(p = 0.921) (Table 3).

Table 3. Comparison of performance between the ACT and ACAS groups at T0, T1, and T2.

Variable
ACT Group (n = 7) ACAS Group (n = 8) Time Time × Group

T0 T1 T2 T0 T1 T2 F p-Value F p-Value

FMA-UE 31.30 ± 10.00 34.10 ± 11.60 35.30 ± 9.00 24.70 ± 3.10 27.40 ± 4.80 27.70 ± 2.10 4.383 0.025 0.094 0.907
FMA-prox 22.70 ± 5.90 24.30 ± 6.80 26.00 ± 6.00 19.40 ± 2.40 21.00 ± 3.00 22.30 ± 1.90 8.475 0.003 0.055 0.921

MaxSp
(mm/s) 3.55 ± 1.60 3.85 ± 1.92 3.59 ± 1.50 2.94 ± 1.03 3.51 ± 0.87 4.25 ± 1.07 †,‡ 9.369 0.001 9.163 0.001

MeanSp
(mm/s) 1.13 ± 0.60 1.41 ± 0.78 1.46 ± 0.63 † 1.06 ± 0.51 1.21 ± 0.34 1.62 ± 0.46 †,‡ 33.842 <0.001 5.516 0.022

HPR 0.92 ± 0.23 0.89 ± 0.25 0.95 ± 0.16 0.93 ± 0.15 0.87 ± 0.13 0.88 ± 0.10 0.916 0.407 0.646 0.521
MD (mm) 81.61 ± 7.20 76.84 ± 20.69 71.29 ± 19.46 80.80 ± 21.96 77.61 ± 11.91 76.43 ± 13.58 1.956 0.188 0.741 0.499
TEr (mm) 30.72 ± 14.83 29.56 ± 18.21 30.89 ± 20.59 37.22 ± 12.77 33.14 ± 10.70 28.42 ± 7.30 1.1013 0.364 1.120 0.343

RMMS (%) 0.31 ± 0.05 0.35 ± 0.08 0.41 ± 0.08 †,‡ 0.36 ± 0.06 0.36 ± 0.06 0.39 ± 0.04 7.793 0.004 2.340 0.128
MAPR (%) 0.10 ± 0.06 0.10 ± 0.07 0.09 ± 0.07 0.08 ± 0.04 0.07 ± 0.04 0.07 ± 0.04 0.721 0.475 0.440 0.615

SPARC −8.57 ± 1.01 −8.63 ± 1.88 −7.26 ± 1.06 † −9.91 ± 2.21 −8.84 ± 1.87 −7.91 ± 1.70 †,‡ 15.177 0.001 0.371 0.699
TPeakSp (s) 0.60 ± 0.22 0.60 ± 0.23 0.53 ± 0.23 0.67 ± 0.25 0.59 ± 0.21 0.50 ± 0.16 ‡ 2.125 0.154 0.398 0.630

Values are presented as mean ± standard deviation. ACT, active; ACAS, active-assistive; FMA-UE, Fugl-Meyer assessment upper extremity;
FMA-prox: Fugl-Meyer assessment proximal upper extremity; MaxSp: maximum speed; MeanSp: mean speed; HPR: hand path ratio; MD:
movement detection; TEr: target error; RMMS: ratio of mean and maximum speeds; MAPR: mean arrest period ratio; SPARC, TPeakSp:
time-to-peak speed. † Wilcoxon signed-rank test t0–t2 (p < 0.05); ‡ Wilcoxon signed-rank test t1–t2 (p < 0.05).

3.2. Comparison of Kinematic Assessment

There was a significant effect of time on MaxSp (p = 0.001), MeanSp (p < 0.001),
RMMS (p = 0.004), and SPARC (p = 0.001) in the comparison of the ACT and ACAS groups
(Table 3). The movement speed indicated that there was a significant effect of time × group
interaction. The ACAS group showed a better improvement than the ACT group with
regard to MaxSp from 0 to 4 weeks (p = 0.018) and from 2 to 4 weeks (p = 0.028), with
regard to MeanSp from 2 to 4 weeks (p = 0.018) and TPeakSp from 2 to 4 weeks (p = 0.018).
In contrast, the ACT group exhibited better RMMS progression than the ACAS group from
0 to 4 weeks (p = 0.018) and from 2 to 4 weeks (p = 0.028).

3.3. Regression Performance

In the ACT group, the change in FMA-UE could be explained by MaxSp (p < 0.001),
MeanSp (p < 0.001), HPR (p < 0.001), TEr (p < 0.001), MAPR (p = 0.002), and TPeakSp
(p = 0.002). In the ACAS group, the change in FMA-UE could be explained by MaxSp
(p < 0.001), TEr (p < 0.001), RMMS (p < 0.001), MAPR (p < 0.001), and TPeakSp (p < 0.001).
The results of the simple linear regression analysis of the kinematic features against FMA-
UE and FMA-prox are listed in Tables 4 and 5.

Table 4. Comparison of simple linear regression analysis of independent kinematic features for FMA-UE in the ACT and
ACAS groups.

ACT Group (n = 7) ACAS Group (n = 8)

Independent
Variables Unstandardized B Adjusted R2 p-Value Unstandardized B Adjusted R2 p-Value

MaxSp 3.664 0.337 <0.001 3.278 0.173 <0.001
MeanSp 8.232 0.290 <0.001 0.638 −0.005 0.721

HPR −21.655 0.166 <0.001 −7.203 0.008 0.119
MD 0.008 −0.006 0.800 0.016 −0.004 0.612
TEr −0.494 0.522 <0.001 −0.538 0.364 <0.001

RMMS 12.629 0.011 0.104 −39.030 0.134 <0.001
MAPR 22.386 0.058 0.002 59.103 0.228 <0.001
SPARC 0.430 0.008 0.136 0.066 −0.006 0.832

TPeakSp −6.459 0.058 0.002 −10.652 0.123 <0.001
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Table 5. Comparison of simple linear regression analysis of independent kinematic features for FMA-prox in the ACT and
ACAS groups.

ACT Group (n = 7) ACAS Group (n = 8)

Independent
Variables Unstandardized B Adjusted R2 p-Value Unstandardized B Adjusted R2 p-Value

MaxSp 2.486 0.495 <0.001 1.106 0.124 <0.001
MeanSp 6.126 0.514 <0.001 −0.039 −0.006 0.956

HPR −12.488 0.176 <0.001 −2.099 0.002 0.247
MD 0.001 −0.007 0.973 −0.003 −0.005 0.805
TEr −0.200 0.268 <0.001 −0.204 0.340 <0.001

RMMS 12.345 0.046 0.004 −13.161 0.098 <0.001
MAPR 9.107 0.027 0.023 20.227 0.172 <0.001
SPARC 0.226 0.006 0.164 0.111 −0.001 0.834

TPeakSp −3.425 0.051 0.003 −4.796 0.164 <0.001

Multiple regression analysis models for FMA-UE and FMA-prox of the ACT and
ACAS groups were derived. For the ACT group, the combined TEr and MaxSp regression
model estimated the change in FMA-UE (adjusted R2 = 0.648), and the combined MeanSp,
MAPR, TEr, and HPR regression models showed higher estimates of change in FMA-prox
(adjusted R2 = 0.677). For the ACAS group, TE, MAPR, TPeakSp, RMMS, SPARC, and
MaxSp combined regression models estimated changes in FMA-UE (adjusted R2 = 0.599),
and the combined TEr, TPeakSp, MAPR, and RMMS regression models yielded lower
estimates of change in FMA-prox (adjusted R2 = 0.542). The results of the multiple linear
regression analysis of the kinematic features against FMA-UE and FMA-prox are listed in
Tables 6 and 7.

Table 6. Multivariable linear regression analysis of kinematic features for FMA-UE in the ACT and ACAS groups.

ACT Group (n = 7) ACAS Group (n = 8)

Kinematic
Characteristic

Selected
Variables

Unstandardized
B

Adjusted
R2 p-Value Kinematic

Characteristic
Selected
Variables

Unstandardized
B

Adjusted
R2 p-Value

Speed MaxSp 2.384

0.648 <0.001

Speed MaxSp 1.107

0.599 <0.001

Efficiency - - Efficiency - -
Accuracy TEr −0.405 Accuracy TEr −0.360

Smoothness - - Smoothness
RMMS −14.479
MAPR 35.345
SPARC −0.532

Control
strategy - - Control

strategy TPeakSp −8.889

Table 7. Multivariable linear regression analysis of kinematic features for FMA-prox in the ACT and ACAS groups.

ACT Group (n = 7) ACAS Group (n = 8)

Kinematic
Characteristic

Selected
Variables

Unstandardized
B

Adjusted
R2 p-Value Kinematic

Characteristic
Selected
Variables

Unstandardized
B

Adjusted
R2 p-Value

Speed MeanSp 5.663

0.677 <0.001

Speed - -

0.542 <0.001

Efficiency HPR −3.551 Efficiency - -
Accuracy TEr −0.073 Accuracy TEr −0.127

Smoothness MAPR 12.874 Smoothness RMMS −8.773
MAPR 11.550

Control
strategy

Control
strategy TPeakSp −1.173

4. Discussion

We demonstrated discrepancies in the kinematic estimates of impairment changes
for the two types of rehabilitation robots. In the ACT group, significant changes were
confirmed pre- and post-rehabilitation of MeanSp, RMMS, and SPARC. In the ACAS group,
significant changes were confirmed pre- and post-rehabilitation of MaxSp, MeanSp, and
SPARC. However, we did not confirm any significant pre- and post-rehabilitation change
in FMA-UE and FMA-prox. Many studies using the reaching task of robotic rehabilitation
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have used FMA as an evaluation tool. However, it can be suggested that FMA is an
insufficient evaluation tool to detect changes in patient’s motor function owing to the
reaching task of robotic rehabilitation [35].

TEr and MaxSp were correlated to upper extremity impairment in the ACT group
and could explain the FMA-UE score (adjusted R2 = 0.648). The MeanSp, MAPR, TEr,
and HPR were related to FMA-prox and could explain it (adjusted R2 = 0.677) SPARC,
TPeakSp, and MaxSp were related to FMA-UE in the ACAS group and could explain it
(adjusted R2 = 0.599). TEr, TPeakSp, MAPR, and RMMS were related to FMA-prox and
could explain it (adjusted R2 = 0.542). The kinematic features that account for the FMA
are different between the two robot groups. In other words, it can be said that the cause
of the motor function recovery due to the ACT and ACAS is different. The ACT group
seems to be accelerated by voluntary training to perform the task on its own, and the ACAS
group had a faster TPeakSp (Table 3), which can be said to have improved the continuous
and uninterrupted control strategy when reaching the target by the assistive force of the
robot [36–38].

Additionally, active and active-assisted robotic rehabilitation are manifested as im-
provements in different kinematic characteristics. In both types of rehabilitation, speed,
accuracy, and smoothness could explain the changes in FMA and FMA-prox. The control
strategy highly correlated the change in FMA in the ACAS group (Tables 6 and 7), and the
training to correct the trajectory during rehabilitation could be affected by the intervention
of the active supporting force of the robot. In addition, the kinematic features of movement
efficiency were highly correlated with changes in FMA in the ACT group, which may be
affected by the patient’s voluntary-effort-induced movement. The movement speed was
related to the FMA of the ACT group, and the motion control strategy was related to the
change in the FMA of the ACAS group, which was consistent with the results presented in
this study. Kinematic features showed higher correlation in the ACT group compared to
that in the ACAS group, and changes in the FMA-UE and FMA-prox scores were slightly
better explained in the ACT group. This suggests that the change in FMA in the ACT group
with voluntary rehabilitation motivation could have a higher correlation with the change
in kinematic features.

In a previous study, the changes in clinical scale were estimated by varying the kine-
matic characteristics by providing ACAS. In particular, it was shown that the number of
velocity peaks, a feature indicating smoothness, was correlated with FMA-UE (adjusted
R2 = 0.625) [39]. These results are partly consistent with those of the ACAS group. However,
rehabilitation was provided by only the InMotion2 robot (Interactive Motion Technologies,
Inc.), which is an end effector rehabilitation robot that achieves two-dimensional motion.
A comparison of the ACT group was not made. Despite not considering various kinematic
features, its high estimation could be attributed to the limited movement in the planar
movement. Hussain et al. confirmed that kinematic features calculated from the point-to-
point reaching task were related to FMA-UE and the action research arm test (ARAT) in
end-effector robot rehabilitation with the use of a virtual environment. They suggested
that clinical evaluation can be improved using kinematic features, as understanding the
association between clinical and kinematic features could identify factors affecting move-
ment impairment and activity limitations [40]. Movement speed and smoothness were
confirmed to correlate with the FMA. In addition, Park et al. confirmed that the change
in smoothness was correlated with the change in FMA in upper extremity active robot
rehabilitation [41], and the results were similar to our ACT group results. However, the
task to reach the goal was performed in a small workspace that did not induce shoulder
movement, which explains its low correlation with FMA. It can be said that voluntary
movement with ACT improves movement quality, such as speed and efficiency, and as-
sisted movement with ACAS limits the patient’s incorrect movement path and improves
movement quality, such as smoothness and control strategy. In the ACT group, we assumed
that movement impairment could be estimated by kinematic features, because assistive
forces are not provided during robotic rehabilitation; however, in the ACAS group, because
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assistive forces are provided, kinetic data may be needed to explain movement impairment.
In the ACT group, FMA-prox demonstrated a higher correlation with the smoothness
index than that of FMA-UE, which was consistent with the results of a previous study [41].
These results suggest that the rehabilitation of the ACT group could be related to shoulder
movement [40], and the proximal movement could have been more active than the distal
movement during rehabilitation. Smoothness can be a good indicator of impairment re-
covery [42]. In contrast, in the ACAS group, FMA-UE showed a higher correlation with
smoothness. This could indicate that the distal and proximal parts of the upper extremity
were activated and moved together in a desired stretching way with the degree of freedom
of the joint constrained by the robot; however, additional research is needed to confirm
this hypothesis.

The results of our study indicate the relationship of FMA, a clinical scale of impair-
ments, with nine kinematic features of five characteristics. In particular, we confirmed
that the change in FMA in the ACT group demonstrated a correlation with MaxSp, TEr,
and MAPR, and the change in FMA in the ACAS group demonstrated a correlation with
MaxSp, TEr, RMMS, MAPR, SPARC, and TPeakSp. These results indicate that FMA can
be estimated from kinematic features, thereby providing a basis for standardization as an
index to complement the clinical scales.

5. Conclusions

Our findings suggest that changes in different kinematic features using active and
active-assisted robotic rehabilitation correlated with changes in FMA-UE and FMA-prox,
which is an impairment indicator. Thus, the kinematic features of active and active-assisted
robotic rehabilitation can be used to objectively and quantitatively assess upper extremity
dysfunction. However, these results confirm correlation, and not causation. Further
studies are needed to establish a causal relationship. Common features such as movement
speed, accuracy, and smoothness can estimate the change in upper extremity impairment
during both active and active-assistive robotic rehabilitation, whereas control strategy and
efficiency can be estimated using active robotic rehabilitation and active assistive robotic
rehabilitation, respectively. Nevertheless, these kinematic features can only explain part of
the upper extremity impairment. Kinetic data may be needed as a complementary means
to indicate impairment, and we intend to analyze the relationship between kinetic data
and clinical scales of impairment. In addition, to use the kinematic feature as an index to
complement the clinical scales, further research on the estimation of the other clinical scales
of impairment as the kinematic features must be performed.

Author Contributions: D.H. implemented data analysis and interpretation and wrote and edited the
manuscript. J.-H.S. contributed to the study design, prepared study protocols, participated in data
collection and interpretation, and wrote and edited the manuscript. S.K. contributed to the study
design, prepared the study protocol, interpreted the data, and wrote and edited the manuscript. All
authors have read and agreed to the published version of the manuscript.

Funding: This study was supported by a grant (NRCTR-IN17002, NRCTR-IN18001) of the Trans-
lational Research Program for Rehabilitation Robots, National Rehabilitation Center, Ministry of
Health & Welfare, Korea.

Institutional Review Board Statement: This study was approved by the National Rehabilitation
Center, Republic of Korea (approval IRB No. NRC-2017-01-007).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are not available because of reasons
concerning the privacy of the subjects.

Acknowledgments: The authors are grateful to the collaborators Gyulee Park and Ha Yeon Kim for
conducting the clinical trial.

Conflicts of Interest: Donghwan Hwang, Joon-Ho Shin, and Suncheol Kwon declare no conflicts
of interest.



Sensors 2021, 21, 7055 11 of 12

References
1. Kwakkel, G.; Kollen, B.J.; Van Der Grond, J.; Prevo, A.J. Probability of Regaining Dexterity in the Flaccid Upper Limb. Stroke 2003,

34, 2181–2186. [CrossRef] [PubMed]
2. Klamroth-Marganska, V.; Blanco, J.; Campen, K.; Curt, A.; Dietz, V.; Ettlin, T.; Felder, M.; Fellinghauer, B.; Guidali, M.; Kollmar,

A.; et al. Three-dimensional, task-specific robot therapy of the arm after stroke: A multicentre, parallel-group randomised trial.
Lancet Neurol. 2014, 13, 159–166. [CrossRef]

3. Lo, A.C.; Guarino, P.D.; Richards, L.G.; Haselkorn, J.K.; Wittenberg, G.F.; Federman, D.G.; Ringer, R.J.; Wagner, T.; Krebs, H.I.;
Volpe, B.; et al. Robot-Assisted Therapy for Long-Term Upper-Limb Impairment after Stroke. N. Engl. J. Med. 2010, 362, 1772–1783.
[CrossRef]

4. Babaiasl, M.; Mahdioun, S.H.; Jaryani, P.; Yazdani, M. A review of technological and clinical aspects of robot-aided rehabilitation
of upper-extremity after stroke. Disabil. Rehabil. Assist. Technol. 2015, 11, 1–18. [CrossRef]

5. Aprile, I.; Cruciani, A.; Germanotta, M.; Gower, V.; Pecchioli, C.; Cattaneo, D.; Vannetti, F.; Padua, L.; Gramatica, F. Upper Limb
Robotics in Rehabilitation: An Approach to Select the Devices, Based on Rehabilitation Aims, and Their Evaluation in a Feasibility
Study. Appl. Sci. 2019, 9, 3920. [CrossRef]

6. Kwakkel, G.; Kollen, B.J.; Krebs, H.I. Effects of Robot-Assisted Therapy on Upper Limb Recovery After Stroke: A Systematic
Review. Neurorehabilit. Neural Repair 2007, 22, 111–121. [CrossRef] [PubMed]

7. Mehrholz, J.; Pohl, M.; Platz, T.; Kugler, J.; Elsner, B. Electromechanical and robot-assisted arm training for improving activities of
daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst. Rev. 2015, 11, CD006876. [CrossRef]

8. Rech, K.D.; Salazar, A.P.; Marchese, R.; Schifino, G.; Cimolin, V.; Pagnussat, A.S. Fugl-Meyer Assessment Scores Are Related With
Kinematic Measures in People with Chronic Hemiparesis after Stroke. J. Stroke Cerebrovasc. Dis. 2020, 29, 104463. [CrossRef]
[PubMed]

9. Brihmat, N.; Loubinoux, I.; Castel-Lacanal, E.; Marque, P.; Gasq, D. Kinematic parameters obtained with the ArmeoSpring for
upper-limb assessment after stroke: A reliability and learning effect study for guiding parameter use. J. Neuroeng. Rehabil. 2020,
17, 1–12. [CrossRef] [PubMed]

10. Wu, J.; Cheng, H.; Zhang, J.; Yang, S.; Cai, S. Robot-Assisted Therapy for Upper Extremity Motor Impairment After Stroke: A
Systematic Review and Meta-Analysis. Phys. Ther. 2021, 101, pzab010. [CrossRef] [PubMed]

11. Chien, W.; Chong, Y.; Tse, M.; Chien, C.; Cheng, H. Robot-assisted therapy for upper-limb rehabilitation in subacute stroke
patients: A systematic review and meta-analysis. Brain Behav. 2020, 10, e01742. [CrossRef] [PubMed]

12. Gijbels, D.; Lamers, I.; Kerkhofs, L.; Alders, G.; Knippenberg, E.; Feys, P. The Armeo Spring as training tool to improve upper
limb functionality in multiple sclerosis: A pilot study. J. Neuroeng. Rehabil. 2011, 8, 5. [CrossRef] [PubMed]

13. Lo, H.S.; Xie, S.Q. Exoskeleton robots for upper-limb rehabilitation: State of the art and future prospects. Med. Eng. Phys. 2012, 34,
261–268. [CrossRef] [PubMed]

14. Luna, C.O.; Rahman, M.H.; Saad, M.; Archambault, P.S.; Ferrer, S.B. Admittance-Based Upper Limb Robotic Active and
Active-Assistive Movements. Int. J. Adv. Robot. Syst. 2015, 12, 117. [CrossRef]

15. Park, J.H.; Park, G.; Kim, H.Y.; Lee, J.-Y.; Ham, Y.; Hwang, D.; Kwon, S.; Shin, J.-H. A comparison of the effects and usability
of two exoskeletal robots with and without robotic actuation for upper extremity rehabilitation among patients with stroke: A
single-blinded randomised controlled pilot study. J. Neuroeng. Rehabil. 2020, 17, 137. [CrossRef]

16. Tran, V.D.; Dario, P.; Mazzoleni, S. Kinematic measures for upper limb robot-assisted therapy following stroke and correlations
with clinical outcome measures: A review. Med Eng. Phys. 2018, 53, 13–31. [CrossRef] [PubMed]

17. Fugl-Meyer, A.R.; Jääskö, L.; Leyman, I.; Olsson, S.; Steglind, S. The post-stroke hemiplegic patient. 1. A method for evaluation of
physical performance. Scand. J. Rehabil. Med. 1975, 7, 13–31.

18. Duret, C.; Courtial, O.; Grosmaire, A.G. Kinematic measures for upper limb motor assessment during robot-mediated training in
patients with severe sub-acute stroke. Restor. Neurol. Neurosci. 2016, 34, 237–245. [CrossRef]

19. Schwarz, A.; Kanzler, C.M.; Lambercy, O.; Luft, A.R.; Veerbeek, J. Systematic Review on Kinematic Assessments of Upper Limb
Movements After Stroke. Stroke 2019, 50, 718–727. [CrossRef]

20. Nordin, N.; Xie, S.Q.; Wuensche, B. Assessment of movement quality in robot- assisted upper limb rehabilitation after stroke: A
review. J. Neuroeng. Rehabil. 2014, 11, 137. [CrossRef]

21. Lee, S.H.; Park, G.; Cho, D.Y.; Kim, H.Y.; Lee, J.-Y.; Kim, S.; Park, S.-B.; Shin, J.-H. Comparisons between end-effector and
exoskeleton rehabilitation robots regarding upper extremity function among chronic stroke patients with moderate-to-severe
upper limb impairment. Sci. Rep. 2020, 10, 1806–1808. [CrossRef] [PubMed]

22. Bertani, R.; Melegari, C.; Maria, C.; Bramanti, A.; Bramanti, P.; Calabrò, R.S. Effects of robot-assisted upper limb rehabilitation in
stroke patients: A systematic review with meta-analysis. Neurol. Sci. 2017, 38, 1561–1569. [CrossRef] [PubMed]

23. Ryf, C.; Weymann, A. The neutral zero method–A principle of measuring joint function. Injury 1995, 26, 1–11. [CrossRef]
24. Sivan, M.; O’Connor, R.; Makower, S.; Levesley, M.; Bhakta, B. Systematic review of outcome measures used in the evaluation of

robot-assisted upper limb exercise in stroke. J. Rehabil. Med. 2011, 43, 181–189. [CrossRef] [PubMed]
25. Gladstone, D.; Danells, C.J.; Black, S. The Fugl-Meyer Assessment of Motor Recovery after Stroke: A Critical Review of Its

Measurement Properties. Neurorehabilit. Neural Repair 2002, 16, 232–240. [CrossRef]
26. Lang, C.E.; Wagner, J.M.; Bastian, A.J.; Hu, Q.; Edwards, D.F.; Sahrmann, S.A.; Dromerick, A.W. Deficits in grasp versus reach

during acute hemiparesis. Exp. Brain Res. 2005, 166, 126–136. [CrossRef]

http://doi.org/10.1161/01.STR.0000087172.16305.CD
http://www.ncbi.nlm.nih.gov/pubmed/12907818
http://doi.org/10.1016/S1474-4422(13)70305-3
http://doi.org/10.1056/NEJMoa0911341
http://doi.org/10.3109/17483107.2014.1002539
http://doi.org/10.3390/app9183920
http://doi.org/10.1177/1545968307305457
http://www.ncbi.nlm.nih.gov/pubmed/17876068
http://doi.org/10.1002/14651858.CD006876.pub4
http://doi.org/10.1016/j.jstrokecerebrovasdis.2019.104463
http://www.ncbi.nlm.nih.gov/pubmed/31740027
http://doi.org/10.1186/s12984-020-00759-2
http://www.ncbi.nlm.nih.gov/pubmed/32993695
http://doi.org/10.1093/ptj/pzab010
http://www.ncbi.nlm.nih.gov/pubmed/33454787
http://doi.org/10.1002/brb3.1742
http://www.ncbi.nlm.nih.gov/pubmed/32592282
http://doi.org/10.1186/1743-0003-8-5
http://www.ncbi.nlm.nih.gov/pubmed/21261965
http://doi.org/10.1016/j.medengphy.2011.10.004
http://www.ncbi.nlm.nih.gov/pubmed/22051085
http://doi.org/10.5772/60784
http://doi.org/10.1186/s12984-020-00763-6
http://doi.org/10.1016/j.medengphy.2017.12.005
http://www.ncbi.nlm.nih.gov/pubmed/29361407
http://doi.org/10.3233/RNN-150565
http://doi.org/10.1161/STROKEAHA.118.023531
http://doi.org/10.1186/1743-0003-11-137
http://doi.org/10.1038/s41598-020-58630-2
http://www.ncbi.nlm.nih.gov/pubmed/32019981
http://doi.org/10.1007/s10072-017-2995-5
http://www.ncbi.nlm.nih.gov/pubmed/28540536
http://doi.org/10.1016/0020-1383(95)90116-7
http://doi.org/10.2340/16501977-0674
http://www.ncbi.nlm.nih.gov/pubmed/21305232
http://doi.org/10.1177/154596802401105171
http://doi.org/10.1007/s00221-005-2350-6


Sensors 2021, 21, 7055 12 of 12

27. Osu, R.; Ota, K.; Fujiwara, T.; Otaka, Y.; Kawato, M.; Liu, M. Quantifying the quality of hand movement in stroke patients through
three-dimensional curvature. J. Neuroeng. Rehabil. 2011, 8, 62. [CrossRef]

28. Colombo, R.; Pisano, F.; Micera, S.; Mazzone, A.; Delconte, C.; Carrozza, M.; Dario, P.; Minuco, G. Assessing Mechanisms of
Recovery During Robot-Aided Neurorehabilitation of the Upper Limb. Neurorehabilit. Neural Repair 2008, 22, 50–63. [CrossRef]
[PubMed]

29. Vergaro, E.; Casadio, M.; Squeri, V.; Giannoni, P.; Morasso, P.; Sanguineti, V. Self-adaptive robot training of stroke survivors for
continuous tracking movements. J. Neuroeng. Rehabil. 2010, 7, 13. [CrossRef]

30. Balasubramanian, S.; Melendez-Calderon, A.; Roby-Brami, A.; Burdet, E. On the analysis of movement smoothness. J. Neuroeng.
Rehabil. 2015, 12, 112. [CrossRef]

31. Culmer, P.R.; Levesley, M.C.; Mon-Williams, M.; Williams, J.H. A new tool for assessing human movement: The Kinematic
Assessment Tool. J. Neurosci. Methods 2009, 184, 184–192. [CrossRef]

32. Field, A. A bluffer’s guide to sphericity. Br. Psychol. Soc. Math. Stat. Comput. Sect. Newsletter 1998, 6, 13–22.
33. Tukey, J.W. Exploratory Data Analysis; Addison-Wesley: Boston, MA, USA, 1977; Volume 2.
34. Hocking, R.R. A Biometrics Invited Paper. The Analysis and Selection of Variables in Linear Regression. Biometrics 1976, 32, 1–49.

[CrossRef]
35. Pila, O.; Duret, C.; Gracies, J.-M.; Francisco, G.E.; Bayle, N.; Hutin, E. Evolution of upper limb kinematics four years after subacute

robot-assisted rehabilitation in stroke patients. Int. J. Neurosci. 2018, 128, 1030–1039. [CrossRef] [PubMed]
36. Trombly, C.A.; Wu, C.-Y. Effect of Rehabilitation Tasks on Organization of Movement After Stroke. Am. J. Occup. Ther. 1999, 53,

333–344. [CrossRef] [PubMed]
37. Reyes-Guzmán, A.D.L.; Gil-Agudo, A.; Peñasco-Martín, B.; Solís-Mozos, M.; Del Ama-Espinosa, A.; Pérez-Rizo, E. Kinematic

analysis of the daily activity of drinking from a glass in a population with cervical spinal cord injury. J. Neuroeng. Rehabil. 2010, 7,
41–52. [CrossRef]

38. Reyes-Guzmán, A.D.L.; Dimbwadyo-Terrer, I.; Trincado-Alonso, F.; Monasterio-Huelin, F.; Torricelli, D.; Gil-Agudo, A. Quantita-
tive assessment based on kinematic measures of functional impairments during upper extremity movements: A review. Clin.
Biomech. 2014, 29, 719–727. [CrossRef]

39. van Dokkum, L.; Hauret, I.; Mottet, D.; Froger, J.; Métrot, J.; Laffont, I. The Contribution of Kinematics in the Assessment of
Upper Limb Motor Recovery Early After Stroke. Neurorehabilit. Neural Repair 2014, 28, 4–12. [CrossRef]

40. Hussain, N.; Sunnerhagen, K.S.; Murphy, M.A. End-point kinematics using virtual reality explaining upper limb impairment and
activity capacity in stroke. J. Neuroeng. Rehabil. 2019, 16, 82. [CrossRef]

41. Park, M.; Ko, M.-H.; Oh, S.-W.; Lee, J.-Y.; Ham, Y.; Yi, H.; Choi, Y.; Ha, D.; Shin, J.-H. Effects of virtual reality-based planar
motion exercises on upper extremity function, range of motion, and health-related quality of life: A multicenter, single-blinded,
randomized, controlled pilot study. J. Neuroeng. Rehabil. 2019, 16, 122. [CrossRef] [PubMed]

42. Rohrer, B.; Fasoli, S.; Krebs, H.I.; Hughes, R.; Volpe, B.; Frontera, W.R.; Stein, J.; Hogan, N. Movement Smoothness Changes
during Stroke Recovery. J. Neurosci. 2002, 22, 8297–8304. [CrossRef] [PubMed]

http://doi.org/10.1186/1743-0003-8-62
http://doi.org/10.1177/1545968307303401
http://www.ncbi.nlm.nih.gov/pubmed/17626223
http://doi.org/10.1186/1743-0003-7-13
http://doi.org/10.1186/s12984-015-0090-9
http://doi.org/10.1016/j.jneumeth.2009.07.025
http://doi.org/10.2307/2529336
http://doi.org/10.1080/00207454.2018.1461626
http://www.ncbi.nlm.nih.gov/pubmed/29619890
http://doi.org/10.5014/ajot.53.4.333
http://www.ncbi.nlm.nih.gov/pubmed/10427675
http://doi.org/10.1186/1743-0003-7-41
http://doi.org/10.1016/j.clinbiomech.2014.06.013
http://doi.org/10.1177/1545968313498514
http://doi.org/10.1186/s12984-019-0551-7
http://doi.org/10.1186/s12984-019-0595-8
http://www.ncbi.nlm.nih.gov/pubmed/31651335
http://doi.org/10.1523/JNEUROSCI.22-18-08297.2002
http://www.ncbi.nlm.nih.gov/pubmed/12223584

	Introduction 
	Materials and Methods 
	Participants 
	Study Design 
	Outcome Measure 
	Clinical Assessment 
	Kinematic Assessment 

	Data Analysis 

	Results 
	Comparison of Clinical Assessment 
	Comparison of Kinematic Assessment 
	Regression Performance 

	Discussion 
	Conclusions 
	References

