
sensors

Article

Deep Convolutional Neural Network Optimization for Defect
Detection in Fabric Inspection

Chao-Ching Ho * , Wei-Chi Chou and Eugene Su

����������
�������

Citation: Ho, C.-C.; Chou, W.-C.; Su,

E. Deep Convolutional Neural

Network Optimization for Defect

Detection in Fabric Inspection.

Sensors 2021, 21, 7074. https://

doi.org/10.3390/s21217074

Academic Editors: Ada Fort and

Tommaso Addabbo

Received: 29 September 2021

Accepted: 23 October 2021

Published: 25 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Mechanical Engineering, Graduate Institute of Manufacturing Technology, National Taipei
University of Technology, Taipei 10608, Taiwan; t108408024@ntut.org.tw (W.-C.C.); su.eugene@gmail.com (E.S.)
* Correspondence: HoChao@mail.ntut.edu.tw

Abstract: This research is aimed to detect defects on the surface of the fabric and deep learning model
optimization. Since defect detection cannot effectively solve the fabric with complex background
by image processing, this research uses deep learning to identify defects. However, the current
network architecture mainly focuses on natural images rather than the defect detection. As a result,
the network architecture used for defect detection has more redundant neurons, which reduces the
inference speed. In order to solve the above problems, we propose network pruning with the Bayesian
optimization algorithm to automatically tune the network pruning parameters, and then retrain
the network after pruning. The training and detection process uses the above-mentioned pruning
network to predict the defect feature map, and then uses the image processing flow proposed in this
research for the final judgment during fabric defect detection. The proposed method is verified in the
two self-made datasets and the two public datasets. In the part of the proposed network optimization
results, the Intersection over Union (IoU) of four datasets are dropped by 1.26%, 1.13%, 1.21%, and
2.15% compared to the original network model, but the inference time is reduced to 20.84%, 40.52%,
23.02%, and 23.33% of the original network model using Geforce 2080 Ti. Furthermore, the inference
time is also reduced to 17.56%, 37.03%, 19.67%, and 22.26% using the embedded system AGX Xavier.
After the image processing part, the accuracy of the four datasets can reach 92.75%, 94.87%, 95.6%,
and 81.82%, respectively. In this research, Yolov4 is also trained with fabric defects, and the results
showed this model are not conducive to detecting long and narrow fabric defects.

Keywords: deep convolutional neural network; defect detection; machine vision; embedded inspec-
tion; deep learning network optimization; pruning parameter

1. Introduction

Fabric is a daily necessity for people. Based on the research proposed by Selvi et.al [1],
fabric with signs of defects tends to bring its selling price down by 45% to 65%, seriously
affecting the selling price. By implementing defect detection methods, defective items can
be easily eliminated beforehand in order to reduce the amount of defective fabric so as to
elevate the product quality and shape a stronger brand value. For this reason, fabric defect
detection plays an essential role in the modern textile manufacturing process.

Currently, fabric defect detection is mainly executed manually. However, tiny flaws
are neglected very easily, while inconsistent detection standards result from inspectors
making judgments according to their own experience; not to mention unbalanced detection
quality that might be caused by the emotions and fatigue of the inspector. According
to the [1], the inspecting accuracy of manual inspection is around 70% and below the
acceptable rate of 80%.

With rapid technological development in modern times, the automated optical in-
spection (AOI) has become a hot topic in industrial automation. In AOI, an automated
inspection model is used to improve the accuracy of fabric defect detection and set up con-
sistent standards so as to accelerate the detection speed for achieving higher manufacturing

Sensors 2021, 21, 7074. https://doi.org/10.3390/s21217074 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-7315-6116
https://doi.org/10.3390/s21217074
https://doi.org/10.3390/s21217074
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21217074
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21217074?type=check_update&version=2

Sensors 2021, 21, 7074 2 of 20

efficiency. In [2], an image pyramid and the direction template-based fabric defect detection
method were proposed, but the inference time was not reported. In [3], the automated
inspection system for raw and smooth knitted fabrics through different computer vision
techniques was developed and the detection rate of 93.33% was achieved. Furthermore, the
sparse dictionary learning is applied to detect fabric defects [4]. However, the performance
of defect detection is highly restricted to texture characteristics and the lightness of the
fabric. In [5], a defect detection model using two nested autoencoders to inspect a fabric
web in a real-time inspection system is proposed. Though, the real-time performance on
embedded devices was not presented.

Deep learning is already widely applied in automated optical detection [6–8]. It
features a set of algorithms that can be compiled without using the characteristics of the
available dataset. Considering deep learning requires more calculation data and memory,
it very much depends on the hardware equipment. When applied in real-time industrial
detection, the detection efficiency would be significantly degraded when the hardware
resources are too scarce, leading to lower production efficiency and an inability to physically
implement it in the industrial process. To apply deep learning in automated fabric optical
detection more efficiently, we need to reduce the hardware resources that are required
while maintaining model computation capability.

2. Defects Datasets

In this research, the datasets required for executing the detection can be divided into
self-made datasets and public datasets. The self-made datasets use personally installed
optical cameras for taking photos of two types of fabrics [9], and the public datasets are
datasets of knitting defects [10] and the nano fiber defects [11]. The sizes and numbers of
the images for training, validation, and testing are summarized in Table 1.

Table 1. Summary of defect datasets.

Dataset Image Size
(Pixels)

Crop Size
(Pixels)

Training Size
(Pixels)

Training
Images

Validation
Images Test Images

Fabric A 800 × 600 600 × 600 512 × 512 39 10 59
Fabric B 800 × 600 800 × 600 512 × 512 28 7 32

Knitting dataset 760 × 600 600 × 600 512 × 512 59 16 166
Nano fiber dataset 1024 × 696 256 × 232 256 × 256 151 44 60

2.1. Self-Made Dataset

Per Figure 1a, the defect of Fabric A refers to hooked yarn, and the width of the defect
is about 3 pixels in the image. In this research, something will be considered a defect if
the minimum area size of the hooked yarn reaches 25 pixels. The image resolution of
the dataset is 600 × 800 pixels and the images bearing the defects are also divided into a
training set and a validation set of 24 images and 6 images, respectively.

In Fabric B, the defect comprises tufted yarn and hooked yarn, as per Figure 1b, and
the hooked yarn is about 5 pixels in the image. This research considers something a if the
minimum area size of the hooked yarn and the tufted yarn reaches 25 pixels. The image
resolution of the dataset is 600 × 800 pixels and the images bearing the defects are also
divided into a training set and a validation set of 28 images and 7 images, respectively.

Sensors 2021, 21, 7074 3 of 20
Sensors 2021, 21, x FOR PEER REVIEW 3 of 20

(a)

(b)

Figure 1. Self-made dataset: (a) Self-made datasets: (a) Fabric A defect map, where the area highlighted in red is the hooked
yarn; (b) Fabric B defect map, where the area highlighted in red is the hooked yarn and the area in green is to the tufted
yarn.

2.2. Public Datasets
The knitting dataset [10] comprises 83 defect-free images and 38 defect-bearing

images and the size of all images is 760 × 600 pixels. Indicated in Figure 2a–e are images
bearing defects and they are divided into a training dataset of 30 images and a validation
dataset of 8 images. The nano fiber dataset [11] is to check if the network optimization
method proposed in this research can be sufficiently generalized. It is divided into a train-
ing dataset, validation dataset, and test dataset. These datasets consist of nano fiber close-
up maps of which 40 contain defects, and the images are all 1024 × 696 pixels. The defects
are presented in unnatural arrays or lumps detected in the fiber, as per Figure 2f,g. This
research divides the images bearing defects into a training dataset with 24 images, a vali-
dation dataset with 8 images, and a test dataset with 8 images.

(a) (b) (c) (d) (e)

Figure 1. Self-made dataset: (a) Self-made datasets: (a) Fabric A defect map, where the area high-
lighted in red is the hooked yarn; (b) Fabric B defect map, where the area highlighted in red is the
hooked yarn and the area in green is to the tufted yarn.

2.2. Public Datasets

The knitting dataset [10] comprises 83 defect-free images and 38 defect-bearing images
and the size of all images is 760 × 600 pixels. Indicated in Figure 2a–e are images bearing
defects and they are divided into a training dataset of 30 images and a validation dataset
of 8 images. The nano fiber dataset [11] is to check if the network optimization method
proposed in this research can be sufficiently generalized. It is divided into a training dataset,
validation dataset, and test dataset. These datasets consist of nano fiber close-up maps of
which 40 contain defects, and the images are all 1024× 696 pixels. The defects are presented
in unnatural arrays or lumps detected in the fiber, as per Figure 2f,g. This research divides
the images bearing defects into a training dataset with 24 images, a validation dataset with
8 images, and a test dataset with 8 images.

Sensors 2021, 21, x FOR PEER REVIEW 3 of 20

(a)

(b)

Figure 1. Self-made dataset: (a) Self-made datasets: (a) Fabric A defect map, where the area highlighted in red is the hooked
yarn; (b) Fabric B defect map, where the area highlighted in red is the hooked yarn and the area in green is to the tufted
yarn.

2.2. Public Datasets
The knitting dataset [10] comprises 83 defect-free images and 38 defect-bearing

images and the size of all images is 760 × 600 pixels. Indicated in Figure 2a–e are images
bearing defects and they are divided into a training dataset of 30 images and a validation
dataset of 8 images. The nano fiber dataset [11] is to check if the network optimization
method proposed in this research can be sufficiently generalized. It is divided into a train-
ing dataset, validation dataset, and test dataset. These datasets consist of nano fiber close-
up maps of which 40 contain defects, and the images are all 1024 × 696 pixels. The defects
are presented in unnatural arrays or lumps detected in the fiber, as per Figure 2f,g. This
research divides the images bearing defects into a training dataset with 24 images, a vali-
dation dataset with 8 images, and a test dataset with 8 images.

(a) (b) (c) (d) (e)

Figure 2. Cont.

Sensors 2021, 21, 7074 4 of 20Sensors 2021, 21, x FOR PEER REVIEW 4 of 20

(f) (g)

Figure 2. Public Datasets: (a–e) are from the public knitting dataset [10]; (f) and (g) are from the public nano fiber dataset
[11]: (a) cross piece defect; (b) tearing defect; (c) broken warp; (d) hole; (e) broken weft; (f) thin film defect; (g) cross piece
defect.

3. Deep Learning-Based Defect Detection
During the deep learning, the defect identification comprises the following aspects:

defect classification, defect location, and defect segmentation. In defect classification, a
sliding window is used to roughly locate the defect position while restoring the shape of
the defect according to the feature map. The defect location uses a square frame to define
the location of the defect, but it is impossible to provide a more detailed description of the
defect features as only the rough size of the defect can be learned. In comparison, defect
segmentation is executed to classify all of the pixels in the image in order to predict the
shape of the defect more specifically.

When analyzing the defect location, this research uses Yolov4 [12] for carrying out
the discussion. This network architecture first uses the Backbone to retrieve relevant fea-
tures. After having retrieved the desired features, the network architecture proposed by
PANet [13] is employed in order to retain the shallow layer features of the network when
fusing the deep-layer features. As a final step, the output obtained from the architecture
is used to draft the feature maps showing 3 different kinds of resolutions. The Anchor is
also used in the feature map in order to predict the defect frame so that larger defects can
be predicted using the smaller-resolution feature map, whereas, the larger-resolution fea-
ture map is used to predict smaller defects. To provide a more accessible training network,
the feature Anchor initialization is defined manually. However, the concentrated cross piece
and the broken warp defects in the knitting data that this research will detect have long and
narrow shapes data and the number of pixels in the defect is also extremely small, while the
length of the defect is not certain. These phenomena will create difficulties for setting up the
Anchor. Based on the detection result using Yolov4 as indicated in Figure 3, it can be learned
that the prediction efficacy for long and narrow detects is poor. Therefore, the defect classi-
fication and the defect segmentation are only discussed in this section where the network
architecture in our previous work [14] and UNet network architecture [15] modified based
on ResNet-50 are used, respectively. The training is provided for both architectures with the
datasets mentioned in Section 2 and its result is also analyzed.

(a) (b) (c)

Figure 2. Public Datasets: (a–e) are from the public knitting dataset [10]; (f,g) are from the public nano fiber dataset [11]:
(a) cross piece defect; (b) tearing defect; (c) broken warp; (d) hole; (e) broken weft; (f) thin film defect; (g) cross piece defect.

3. Deep Learning-Based Defect Detection

During the deep learning, the defect identification comprises the following aspects:
defect classification, defect location, and defect segmentation. In defect classification, a
sliding window is used to roughly locate the defect position while restoring the shape of
the defect according to the feature map. The defect location uses a square frame to define
the location of the defect, but it is impossible to provide a more detailed description of the
defect features as only the rough size of the defect can be learned. In comparison, defect
segmentation is executed to classify all of the pixels in the image in order to predict the
shape of the defect more specifically.

When analyzing the defect location, this research uses Yolov4 [12] for carrying out
the discussion. This network architecture first uses the Backbone to retrieve relevant
features. After having retrieved the desired features, the network architecture proposed by
PANet [13] is employed in order to retain the shallow layer features of the network when
fusing the deep-layer features. As a final step, the output obtained from the architecture is
used to draft the feature maps showing 3 different kinds of resolutions. The Anchor is also
used in the feature map in order to predict the defect frame so that larger defects can be
predicted using the smaller-resolution feature map, whereas, the larger-resolution feature
map is used to predict smaller defects. To provide a more accessible training network, the
feature Anchor initialization is defined manually. However, the concentrated cross piece
and the broken warp defects in the knitting data that this research will detect have long and
narrow shapes data and the number of pixels in the defect is also extremely small, while
the length of the defect is not certain. These phenomena will create difficulties for setting
up the Anchor. Based on the detection result using Yolov4 as indicated in Figure 3, it can
be learned that the prediction efficacy for long and narrow detects is poor. Therefore, the
defect classification and the defect segmentation are only discussed in this section where
the network architecture in our previous work [14] and UNet network architecture [15]
modified based on ResNet-50 are used, respectively. The training is provided for both
architectures with the datasets mentioned in Section 2 and its result is also analyzed.

Sensors 2021, 21, x FOR PEER REVIEW 4 of 20

(f) (g)

Figure 2. Public Datasets: (a–e) are from the public knitting dataset [10]; (f) and (g) are from the public nano fiber dataset
[11]: (a) cross piece defect; (b) tearing defect; (c) broken warp; (d) hole; (e) broken weft; (f) thin film defect; (g) cross piece
defect.

3. Deep Learning-Based Defect Detection
During the deep learning, the defect identification comprises the following aspects:

defect classification, defect location, and defect segmentation. In defect classification, a
sliding window is used to roughly locate the defect position while restoring the shape of
the defect according to the feature map. The defect location uses a square frame to define
the location of the defect, but it is impossible to provide a more detailed description of the
defect features as only the rough size of the defect can be learned. In comparison, defect
segmentation is executed to classify all of the pixels in the image in order to predict the
shape of the defect more specifically.

When analyzing the defect location, this research uses Yolov4 [12] for carrying out
the discussion. This network architecture first uses the Backbone to retrieve relevant fea-
tures. After having retrieved the desired features, the network architecture proposed by
PANet [13] is employed in order to retain the shallow layer features of the network when
fusing the deep-layer features. As a final step, the output obtained from the architecture
is used to draft the feature maps showing 3 different kinds of resolutions. The Anchor is
also used in the feature map in order to predict the defect frame so that larger defects can
be predicted using the smaller-resolution feature map, whereas, the larger-resolution fea-
ture map is used to predict smaller defects. To provide a more accessible training network,
the feature Anchor initialization is defined manually. However, the concentrated cross piece
and the broken warp defects in the knitting data that this research will detect have long and
narrow shapes data and the number of pixels in the defect is also extremely small, while the
length of the defect is not certain. These phenomena will create difficulties for setting up the
Anchor. Based on the detection result using Yolov4 as indicated in Figure 3, it can be learned
that the prediction efficacy for long and narrow detects is poor. Therefore, the defect classi-
fication and the defect segmentation are only discussed in this section where the network
architecture in our previous work [14] and UNet network architecture [15] modified based
on ResNet-50 are used, respectively. The training is provided for both architectures with the
datasets mentioned in Section 2 and its result is also analyzed.

(a) (b) (c)

Figure 3. Cont.

Sensors 2021, 21, 7074 5 of 20Sensors 2021, 21, x FOR PEER REVIEW 5 of 20

(d) (e) (f)

Figure 3. Knitting dataset [10] detection results by implementing the Yolov4 from [12]: (a) tearing and broken weft defect;
(b,c) tearing defect; (d) cross piece defect; (e,f) broken warp detect.

3.1. Defect Classification
During the defect detection, a sliding window is normally used to classify the image.

Such a method is executed by setting the size of the map and then the window will be
moved from left to right and from top to bottom in order to create the dataset. Finally,
deep learning is used for classifying the map in order to detect the defect position in the
image. Indicated in Table 2 is the network architecture used in this section for the research.

Table 2. Network architecture modified based on ResNet-50.

Layer Name Output Size Network 50-Layer
inputs 64 × 64 × 3
conv1 64 × 64 × 64 3 × 3, 64, 𝑠𝑡𝑟𝑖𝑑𝑒1

conv2.x 32 × 32 × 256 ൥ 1 × 1, 643 × 3, 641 × 1, 256൩ × 3, 𝑠𝑡𝑟𝑖𝑑𝑒2

conv3.x 16 × 16 × 512 ൥1 × 1, 1283 × 3, 1281 × 1, 512൩ × 4, 𝑠𝑡𝑟𝑖𝑑𝑒2

conv4.x 8 × 8 × 1024 ൥ 1 × 1, 2563 × 3, 2561 × 1, 1024൩ × 6, 𝑠𝑡𝑟𝑖𝑑𝑒2

conv5.x 8 × 8 × 2048 ൥ 1 × 1, 5123 × 3, 5121 × 1, 2048൩ × 3, 𝑠𝑡𝑟𝑖𝑑𝑒1

concat1 8 × 8 × 3904 (conv1, conv2.x, conv3.x, conv4.x, conv5.x)
conv6 8 × 8 × 𝑖 1 × 1, 𝑖, 𝑠𝑡𝑟𝑖𝑑𝑒1
pool5 1 × 𝑖 reduce mean

3.1.1. Fabric A
The map for Fabric A is set as 64 × 64 pixels and then the sliding window is used to

segment the training dataset into defect and defect-free datasets of 93 images and 1066
images, respectively. The validation dataset consists of 16 images with defects and 276
defect-free images. Indicated in Figure 4 is the network prediction result of Fabric A and
Table 3 is the confusion matrix drafted for the fabric validation dataset. Although only
two defect-free maps are predicted as defective, the dataset can reach 99.32% accuracy
because poorer accuracy is the result of a smaller number of the defect maps.

Figure 3. Knitting dataset [10] detection results by implementing the Yolov4 from [12]: (a) tearing and broken weft defect;
(b,c) tearing defect; (d) cross piece defect; (e,f) broken warp detect.

3.1. Defect Classification

During the defect detection, a sliding window is normally used to classify the image.
Such a method is executed by setting the size of the map and then the window will be
moved from left to right and from top to bottom in order to create the dataset. Finally, deep
learning is used for classifying the map in order to detect the defect position in the image.
Indicated in Table 2 is the network architecture used in this section for the research.

Table 2. Network architecture modified based on ResNet-50.

Layer Name Output Size Network 50-Layer

inputs 64× 64× 3
conv1 64× 64× 64 3×3, 64, stride1

conv2.x 32× 32× 256

 1× 1, 64
3× 3, 64

1× 1, 256

× 3, stride2

conv3.x 16× 16× 512

 1× 1, 128
3× 3, 128
1× 1, 512

× 4, stride2

conv4.x 8× 8× 1024

 1× 1, 256
3× 3, 256
1× 1, 1024

× 6, stride2

conv5.x 8× 8× 2048

 1× 1, 512
3× 3, 512
1× 1, 2048

× 3, stride1

concat1 8× 8× 3904 (conv1, conv2.x, conv3.x,
conv4.x, conv5.x)

conv6 8× 8× i 1× 1, i, stride1
pool5 1× i reduce mean

3.1.1. Fabric A

The map for Fabric A is set as 64 × 64 pixels and then the sliding window is used
to segment the training dataset into defect and defect-free datasets of 93 images and
1066 images, respectively. The validation dataset consists of 16 images with defects and
276 defect-free images. Indicated in Figure 4 is the network prediction result of Fabric A
and Table 3 is the confusion matrix drafted for the fabric validation dataset. Although
only two defect-free maps are predicted as defective, the dataset can reach 99.32% accuracy
because poorer accuracy is the result of a smaller number of the defect maps.

Sensors 2021, 21, 7074 6 of 20
Sensors 2021, 21, x FOR PEER REVIEW 6 of 20

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. Fabric A network prediction result: (a,e) original image; (b,f) prediction result by segmenting the map with the
sliding window; (c,g) network prediction confidence map, which is obtained by segmenting (b) and (f) through a binary
process; the red pixels are the defect areas determined on the network; (d,h) defect annotation map.

3.1.2. Fabric B
The map for Fabric B is set as 64 × 64 pixels and then the sliding window is used to

segment the training dataset into defect and defect-free datasets of 183 images and 1302
images, respectively. The validation dataset consists of 51 images with defects and 328
defect-free images. Indicated in Figure 5 is the network prediction result of Fabric B and
Table 3 is the confusion matrix drafted for the Fabric B validation dataset. Such as Fabric
A, fewer defect maps are provided for the fabric, resulting in a lower accuracy rate. The
dataset can reach an accuracy rate of 97.63%.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. Fabric A network prediction result: (a,e) original image; (b,f) prediction result by segmenting the map with the
sliding window; (c,g) network prediction confidence map, which is obtained by segmenting (b,f) through a binary process;
the red pixels are the defect areas determined on the network; (d,h) defect annotation map.

3.1.2. Fabric B

The map for Fabric B is set as 64 × 64 pixels and then the sliding window is used
to segment the training dataset into defect and defect-free datasets of 183 images and
1302 images, respectively. The validation dataset consists of 51 images with defects and
328 defect-free images. Indicated in Figure 5 is the network prediction result of Fabric B
and Table 3 is the confusion matrix drafted for the Fabric B validation dataset. Such as
Fabric A, fewer defect maps are provided for the fabric, resulting in a lower accuracy rate.
The dataset can reach an accuracy rate of 97.63%.

Sensors 2021, 21, x FOR PEER REVIEW 6 of 20

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. Fabric A network prediction result: (a,e) original image; (b,f) prediction result by segmenting the map with the
sliding window; (c,g) network prediction confidence map, which is obtained by segmenting (b) and (f) through a binary
process; the red pixels are the defect areas determined on the network; (d,h) defect annotation map.

3.1.2. Fabric B
The map for Fabric B is set as 64 × 64 pixels and then the sliding window is used to

segment the training dataset into defect and defect-free datasets of 183 images and 1302
images, respectively. The validation dataset consists of 51 images with defects and 328
defect-free images. Indicated in Figure 5 is the network prediction result of Fabric B and
Table 3 is the confusion matrix drafted for the Fabric B validation dataset. Such as Fabric
A, fewer defect maps are provided for the fabric, resulting in a lower accuracy rate. The
dataset can reach an accuracy rate of 97.63%.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. Fabric B network prediction result: (a,e) original image; (b,f) prediction result by segmenting the map with the
sliding window; (c,g) network prediction confidence map, which is obtained by segmenting Figure (b,f) through a binary
process; the red pixels are the defect areas determined on the network; (d,h) defect annotation map.

Sensors 2021, 21, 7074 7 of 20

3.1.3. Knitting Dataset

The map for the knitting dataset is set as 64 × 64 pixels and then the sliding window
is used to segment the training dataset into defect and defect-free datasets of 1115 images
and 1875 images, respectively. The validation dataset consists of 456 images with defects
and 430 defect-free images. Indicated in Figure 6 is the network prediction result of the
knitting dataset and Table 3 is the confusion matrix drafted for the validation dataset. The
result indicated that the accuracy rate, the precision rate, and the recall rate are 99.55%,
99.77%, and 99.3%, respectively.

Sensors 2021, 21, x FOR PEER REVIEW 7 of 20

Figure 5. Fabric B network prediction result: (a,e) original image; (b,f) prediction result by segmenting the map with the
sliding window; (c,g) network prediction confidence map, which is obtained by segmenting Figure (b) and (f) through a
binary process; the red pixels are the defect areas determined on the network; (d,h) defect annotation map.

3.1.3. Knitting Dataset
The map for the knitting dataset is set as 64 × 64 pixels and then the sliding window

is used to segment the training dataset into defect and defect-free datasets of 1115 images
and 1875 images, respectively. The validation dataset consists of 456 images with defects
and 430 defect-free images. Indicated in Figure 6 is the network prediction result of the
knitting dataset and Table 3 is the confusion matrix drafted for the validation dataset. The
result indicated that the accuracy rate, the precision rate, and the recall rate are 99.55%,
99.77%, and 99.3%, respectively.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. Knitting dataset network prediction result: (a,e) original image; (b,f) prediction result by segmenting the map
with the sliding window; (c,g) network prediction confidence map, which is obtained by segmenting Figure (b) and (f)
through a binary process; the red pixels are the defect areas determined on the network; (d,h) defect annotation map.

3.1.4. Nano Fiber Dataset
Considering that the quantity of the aforesaid 3 types of datasets (Fabric A, Fabric B,

and the knitting dataset) is insufficient for executing the prediction, they are divided into a
training set and a testing set. To evaluate the performance of the model more accurately, the
nano fiber is divided into a training set, validation set, and testing set. Indicated in Figure 7
is the nano fiber dataset network prediction result and in Table 3 is the confusion matrix of
the testing set. Nonetheless, it can still reach 94.23% accuracy despite the dataset showing
more difference in terms of the defect and defect-free quantity, causing issues of lower ac-
curacy. The result indicated that the network has a competent level of detection capability.

(a) (b) (c) (d)

Figure 6. Knitting dataset network prediction result: (a,e) original image; (b,f) prediction result by segmenting the map
with the sliding window; (c,g) network prediction confidence map, which is obtained by segmenting Figure (b,f) through a
binary process; the red pixels are the defect areas determined on the network; (d,h) defect annotation map.

3.1.4. Nano Fiber Dataset

Considering that the quantity of the aforesaid 3 types of datasets (Fabric A, Fabric B,
and the knitting dataset) is insufficient for executing the prediction, they are divided into a
training set and a testing set. To evaluate the performance of the model more accurately, the
nano fiber is divided into a training set, validation set, and testing set. Indicated in Figure 7
is the nano fiber dataset network prediction result and in Table 3 is the confusion matrix of
the testing set. Nonetheless, it can still reach 94.23% accuracy despite the dataset showing
more difference in terms of the defect and defect-free quantity, causing issues of lower
accuracy. The result indicated that the network has a competent level of detection capability.

Sensors 2021, 21, x FOR PEER REVIEW 7 of 20

Figure 5. Fabric B network prediction result: (a,e) original image; (b,f) prediction result by segmenting the map with the
sliding window; (c,g) network prediction confidence map, which is obtained by segmenting Figure (b) and (f) through a
binary process; the red pixels are the defect areas determined on the network; (d,h) defect annotation map.

3.1.3. Knitting Dataset
The map for the knitting dataset is set as 64 × 64 pixels and then the sliding window

is used to segment the training dataset into defect and defect-free datasets of 1115 images
and 1875 images, respectively. The validation dataset consists of 456 images with defects
and 430 defect-free images. Indicated in Figure 6 is the network prediction result of the
knitting dataset and Table 3 is the confusion matrix drafted for the validation dataset. The
result indicated that the accuracy rate, the precision rate, and the recall rate are 99.55%,
99.77%, and 99.3%, respectively.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. Knitting dataset network prediction result: (a,e) original image; (b,f) prediction result by segmenting the map
with the sliding window; (c,g) network prediction confidence map, which is obtained by segmenting Figure (b) and (f)
through a binary process; the red pixels are the defect areas determined on the network; (d,h) defect annotation map.

3.1.4. Nano Fiber Dataset
Considering that the quantity of the aforesaid 3 types of datasets (Fabric A, Fabric B,

and the knitting dataset) is insufficient for executing the prediction, they are divided into a
training set and a testing set. To evaluate the performance of the model more accurately, the
nano fiber is divided into a training set, validation set, and testing set. Indicated in Figure 7
is the nano fiber dataset network prediction result and in Table 3 is the confusion matrix of
the testing set. Nonetheless, it can still reach 94.23% accuracy despite the dataset showing
more difference in terms of the defect and defect-free quantity, causing issues of lower ac-
curacy. The result indicated that the network has a competent level of detection capability.

(a) (b) (c) (d)

Figure 7. Cont.

Sensors 2021, 21, 7074 8 of 20Sensors 2021, 21, x FOR PEER REVIEW 8 of 20

(e) (f) (g) (h)

Figure 7. Nano fiber dataset network prediction result: (a,e) original image; (b,f) prediction result by segmenting the map
with the sliding window; (c,g) network prediction confidence map, which is obtained by segmenting Figure (b) and (f)
through a binary process; the red pixels are the defect areas determined on the network; (d,h) defect annotation map.

Table 3. Network architecture defect detection results modified based on ResNet-50.

Dataset TP FP FN TN Accuracy
Rate

Precision
Rate Recall Rate

Fabric A 16 images 2 images 0 images 274 images 99.32% 88.89% 100%
Fabric B 47 images 5 images 4 images 322 images 97.63% 90.39% 92.16%

Knitting dataset 472 images 1 image 0 images 455 images 99.55% 99.77% 99.3%
Nano fiber dataset 255 images 40 images 26 images 822 images 94.23% 86.44% 90.75%

3.2. Defect Segmentation
In this section, network architecture UNet is employed to carry out the defect seg-

mentation. Through such a network, the transmitted map is converted to a defect confi-
dence map which is then segmented through a binary process in order to execute the final
defect prediction on the network. Figure 8 illustrates the segmentation results of different
dataset cases.

(a)

Figure 7. Nano fiber dataset network prediction result: (a,e) original image; (b,f) prediction result by segmenting the map
with the sliding window; (c,g) network prediction confidence map, which is obtained by segmenting Figure (b,f) through a
binary process; the red pixels are the defect areas determined on the network; (d,h) defect annotation map.

Table 3. Network architecture defect detection results modified based on ResNet-50.

Dataset TP FP FN TN Accuracy
Rate

Precision
Rate Recall Rate

Fabric A 16 images 2 images 0 images 274 images 99.32% 88.89% 100%
Fabric B 47 images 5 images 4 images 322 images 97.63% 90.39% 92.16%

Knitting dataset 472 images 1 image 0 images 455 images 99.55% 99.77% 99.3%
Nano fiber dataset 255 images 40 images 26 images 822 images 94.23% 86.44% 90.75%

3.2. Defect Segmentation

In this section, network architecture UNet is employed to carry out the defect segmen-
tation. Through such a network, the transmitted map is converted to a defect confidence
map which is then segmented through a binary process in order to execute the final de-
fect prediction on the network. Figure 8 illustrates the segmentation results of different
dataset cases.

Sensors 2021, 21, x FOR PEER REVIEW 8 of 20

(e) (f) (g) (h)

Figure 7. Nano fiber dataset network prediction result: (a,e) original image; (b,f) prediction result by segmenting the map
with the sliding window; (c,g) network prediction confidence map, which is obtained by segmenting Figure (b) and (f)
through a binary process; the red pixels are the defect areas determined on the network; (d,h) defect annotation map.

Table 3. Network architecture defect detection results modified based on ResNet-50.

Dataset TP FP FN TN Accuracy
Rate

Precision
Rate Recall Rate

Fabric A 16 images 2 images 0 images 274 images 99.32% 88.89% 100%
Fabric B 47 images 5 images 4 images 322 images 97.63% 90.39% 92.16%

Knitting dataset 472 images 1 image 0 images 455 images 99.55% 99.77% 99.3%
Nano fiber dataset 255 images 40 images 26 images 822 images 94.23% 86.44% 90.75%

3.2. Defect Segmentation
In this section, network architecture UNet is employed to carry out the defect seg-

mentation. Through such a network, the transmitted map is converted to a defect confi-
dence map which is then segmented through a binary process in order to execute the final
defect prediction on the network. Figure 8 illustrates the segmentation results of different
dataset cases.

(a)

Figure 8. Cont.

Sensors 2021, 21, 7074 9 of 20Sensors 2021, 21, x FOR PEER REVIEW 9 of 20

(b)

(c)

(d)

Figure 8. Object segmentation prediction result: (yellow: true positive, red: false positive, green: false negative) (a) Fabric
A; (b) Fabric B; (c) Knitting dataset; and (d) Nano fiber.

3.2.1. Fabric A
The image size of the dataset is 800 × 600 pixels. For the research, the original image

is segmented into two 600 × 600 pixel maps for the subsequent network training. The train-
ing set and validation set consist of 39 images and 10 images, respectively. Indicated in
Figure 8a is the network prediction result for Fabric A. In this dataset, the Intersection

Figure 8. Object segmentation prediction result: (yellow: true positive, red: false positive, green: false negative) (a) Fabric A;
(b) Fabric B; (c) Knitting dataset; and (d) Nano fiber.

3.2.1. Fabric A

The image size of the dataset is 800 × 600 pixels. For the research, the original image
is segmented into two 600 × 600 pixel maps for the subsequent network training. The
training set and validation set consist of 39 images and 10 images, respectively. Indicated
in Figure 8a is the network prediction result for Fabric A. In this dataset, the Intersec-

Sensors 2021, 21, 7074 10 of 20

tion over Union (IoU) ratios for the training set and the validation set are 70.91% and
61.85%, respectively.

3.2.2. Fabric B

The image size of the dataset is 800 × 600 pixels. In this dataset, the number of images
for the training set and the validation set is 28 and 7, respectively. Indicated in Figure 8b is
the network prediction result for Fabric B. The IoU ratios predicted for the training set and
the validation set are 70.28% and 69.71%, respectively.

3.2.3. Knitting Dataset

The image size of the dataset is 760 × 600 pixels. For the research, the original image
is segmented into two of 600 × 600 pixel maps for the subsequent network training. The
number of images for the training set and the validation set is 59 and 16, respectively.
Indicated in Figure 8c is the network prediction result for the knitting dataset. In this
dataset, the IoU ratios predicted for the training set and the validation set are 80.56% and
75.85%, respectively.

3.2.4. Nano Fiber Dataset

The image size of the dataset is 1024 × 696 pixels. For the research, the original
image is segmented into several 256 × 232 pixel maps. The dataset is also segmented
into a training set, validation set, and testing set of 151 images, 44 images, and 50 images,
respectively. Indicated in Figure 8d is the network prediction result for the nano fiber
dataset. In this dataset, the IoU ratios predicted for the training set, the validation set, and
the testing set are 78.22%, 61.81%, and 64.71%, respectively. The result indicates that the
training results do not show overfitting with the validation set.

3.3. Analysis of Experiment Results

In this section, the datasets mentioned in Section 2 are detected by means of the
network (image classification) and UNet (object segmentation) modified based on ResNet-
50. The network modified based on ResNet-50 presents relatively higher accuracy on
the map. However, compared to UNet, the network modified based on ResNet-50 fails
to achieve satisfactory results when determining the pixel-wise defects using the feature
map. The main reason for this phenomenon is because the training method is only used
to indicate whether defects are shown on the map, which is different from UNet which
marks the maps based on pixels. Obviously, the network will be able to retrieve more pixel
information when using the maps marked by UNet using pixels in the training. When
using pixels to determine the network prediction result, more satisfactory results can be
achieved with the UNet approach. As for the network prediction speed, UNet requires
working with an encoder and decoder, whereas the network modified based on ResNet-
50 only needs an encoder to perform classification, so longer computation time will be
required for the object segmentation when the same type of network model is used by the
encoder. However, since this research uses different encoders, no direct comparison has
been carried out.

In summary, the following conclusions can be drawn according to the results of
the experiment. The advantage of image classification (the network modified based on
ResNet-50) is faster prediction time, higher accuracy of map prediction, and the function
of locating defect positions with the sliding window; the disadvantage is that it cannot
accurately depict the defect topography. The advantage of object segmentation (UNet)
is that it can predict the defect topography, but the disadvantage is a slower prediction
time. When using automated optical detection in industrial applications, the prediction
map obtained from object segmentation will include the defect topography and more
of the defect information required for process optimization, but its computation time is
slower. For this reason, the object segmentation method will be used in the subsequent

Sensors 2021, 21, 7074 11 of 20

section while shortening the prediction speed in order to execute the fabric defect detection
more quickly.

4. Optimization for Fabric Defect Detection

In this research, deep learning will be used to detect fabric defects and to shorten the
network prediction time through a proposed network optimization approach. This section
will also describe the network optimization approach and the post-treatment process in
order to determine whether there were any defects.

4.1. Research Method for Network Optimization

In this thesis, architecture based on UNet++ [16] is employed for executing the network
optimization. The research also uses deep supervision [17] in conjunction with the loss
function cross entropy and the dice loss training network. After the training, the Bayesian
hyperparameter optimization is employed to find the optimal pruning parameter for
proposing the network architecture. The aforesaid approaches will be separately described
in this section.

4.2. Network Optimization Approaches
4.2.1. UNet++

In 2018, the UNet++ network was proposed by Zongwei Zhou et.al. This network is
an improved architecture based on UNet [15]. The UNet network architecture comprises
4 layers of down-sampling structure, but not all datasets are suitable for such design.
Therefore, deep supervision and the network architecture design were incorporated in
the UNet++ network in order to solve the aforesaid issue so that four kinds of network
architectures with different depths can be obtained with one training cycle. Considering
that a model with a shallower depth can shorten the prediction time in order to raise the
detection efficiency, the appropriate architecture can be chosen according to the prediction
results obtained from the models with different depths.

4.2.2. Network Pruning and Retraining

In this research, the L1 norm is selected for use as the pruning judgment criteria [18].
Considering that the convolution core of the L1 norm is smaller, it poses less impact when
calculating the convolution and, therefore, such pruning criteria is considered redundant
and should be pruned. At the same time, to shorten the network inference time, structural
pruning is used as per Figure 9a. To restore the accuracy lost after network pruning,
retraining is required after pruning. In this article, retraining is executed according to the
“learning rate rewinding” proposed by Alex Renda et al. [19] in 2020, as per Figure 9b.
Based on this method, pruning will be executed for the network after T epochs, followed
by rewinding for t epochs until reaching a learning rate of T-t. This learning rate is used
to train for t epochs in order to obtain the final model. The research indicates that when
t reaches 25% to 90% of T, the method will be superior to the existing retraining method.
In view of this, 50% of the original training epoch is selected to execute the learning rate
rewinding for retraining the pruned network.

Sensors 2021, 21, 7074 12 of 20Sensors 2021, 21, x FOR PEER REVIEW 12 of 20

(a)

(b)

Figure 9. Pruning and retraining schematic: (a) structural pruning; (b) learning rate rewinding.

4.2.3. Bayesian Hyperparameter Optimization
In this research, the L1 norm is applied to execute the pruning for the model archi-

tecture after the training. However, since there are no criteria to adhere to for determining
the pruning sparsity for the respective network layers, more complicated parameters are
adjusted manually. For this reason, this research employs the automated parameter ad-
justing method for searching the sparsity of each network layer, followed by pruning in
order to obtain a better network architecture. Bayesian optimization (Tree-structured Par-
zen Estimator, TPE) is also used for the hyperparameter search in order to adjust the pa-
rameters automatically. Since such an algorithm is used to establish the distribution for
the hyperparameters and the evaluation indicator according to previous iteration results,
it can optimize the evaluation indicator in less iterations compared to random search (RS).
This algorithm first uses RS to find out the initialization distribution status and then di-
vide the better and poorer values being observed into two distribution modes, as per For-
mula (1). Finally, the maximum expected improvement (EI) ௟(ఏ)௚(ఏ) is utilized to calculate
the pruning parameters of each layer until the iteration process is completed.

Feature map

Weight
(pruning ratio: 25%)

Feature map
(pruning ratio: 25%)

Weight
(pruning ratio: 40%

Feature map
(pruning ratio: 40%

Feature map removed due to the pruning

Weight removed due to the pruning

initial train(T epochs) retrain(t epochs)

t epochs
(rewind learning rate)

prune and rewind

, , ,

Network weight of training for the i-th epochLearning rate for the i-th epoch

Figure 9. Pruning and retraining schematic: (a) structural pruning; (b) learning rate rewinding.

4.2.3. Bayesian Hyperparameter Optimization

In this research, the L1 norm is applied to execute the pruning for the model architec-
ture after the training. However, since there are no criteria to adhere to for determining
the pruning sparsity for the respective network layers, more complicated parameters are
adjusted manually. For this reason, this research employs the automated parameter adjust-
ing method for searching the sparsity of each network layer, followed by pruning in order
to obtain a better network architecture. Bayesian optimization (Tree-structured Parzen
Estimator, TPE) is also used for the hyperparameter search in order to adjust the param-
eters automatically. Since such an algorithm is used to establish the distribution for the
hyperparameters and the evaluation indicator according to previous iteration results, it can
optimize the evaluation indicator in less iterations compared to random search (RS). This
algorithm first uses RS to find out the initialization distribution status and then divide the
better and poorer values being observed into two distribution modes, as per Formula (1).

Sensors 2021, 21, 7074 13 of 20

Finally, the maximum expected improvement (EI) l(θ)
g(θ) is utilized to calculate the pruning

parameters of each layer until the iteration process is completed.

p(θ|y) =
{

l(θ) i f y < y∗

g(θ) i f y > y∗
(1)

In this formula, y refers to the observation value (IoU), y* refers to the threshold which
is 15% of the observation value y, and θ refers to the pruning parameter.

4.3. Post-Treatment Method

In this research, deep learning is employed to segment the defects in the images. After
retrieving the defect and the background images, the proposed post-treatment process
is used to carry out the final defect judgment, as per the process indicated in Figure 10.
This process can be divided into image segmentation, image post-treatment, and defect
judgment, in which x and y respectively represent the binary threshold value and the
minimum defect pixels; they can be set according to different situations. The inspection
process is described below:

1. Image segmentation: Input the image into the proposed model in order to obtain
the defect confidence map. Next, put the defect confidence map through the binary
process in order to obtain the segmented images of the defect and the background.

2. Image post-treatment: Execute the opening in the defect map obtained above in order to
remove the noise from the image to facilitate the subsequent interconnection marking.

3. Defect judgment: Isolate the defects in the image with the interconnection marking
and then set the threshold value to see if it is a defect. The threshold value y can be
set according to the minimum pixels of the detected defect.

Sensors 2021, 21, x FOR PEER REVIEW 13 of 20

𝑝(𝜃|𝑦) = ൜ 𝑙(𝜃) 𝑖𝑓 𝑦 < 𝑦∗ 𝑔(𝜃) 𝑖𝑓 𝑦 > 𝑦∗ (1)

In this formula, y refers to the observation value (IoU), y* refers to the threshold
which is 15% of the observation value y, and θ refers to the pruning parameter.

4.3. Post-Treatment Method
In this research, deep learning is employed to segment the defects in the images. Af-

ter retrieving the defect and the background images, the proposed post-treatment process
is used to carry out the final defect judgment, as per the process indicated in Figure 10.
This process can be divided into image segmentation, image post-treatment, and defect
judgment, in which x and y respectively represent the binary threshold value and the min-
imum defect pixels; they can be set according to different situations. The inspection pro-
cess is described below:
1. Image segmentation: Input the image into the proposed model in order to obtain the

defect confidence map. Next, put the defect confidence map through the binary pro-
cess in order to obtain the segmented images of the defect and the background.

2. Image post-treatment: Execute the opening in the defect map obtained above in order
to remove the noise from the image to facilitate the subsequent interconnection mark-
ing.

3. Defect judgment: Isolate the defects in the image with the interconnection marking
and then set the threshold value to see if it is a defect. The threshold value y can be
set according to the minimum pixels of the detected defect.

Figure 10. Post-treatment flow chart.

Proposed model

Threshold
value x

Dilation

Erosion

8 interconnection marking

Is the
interconnection
pixel larger than

the threshold
value y?

Defect-free

n

Defect detected

y

Defect
confidence map

Defect
segmentation map

Image
retrieving

Binary
threshold

Model
inference

Defect segmentation map
(removing the segmentation noise)

Defect segmentation map
(restoring the eroded area)

Defect segmentation map
(interconnection marking map)

Image segmentation Image post-treatment

Defect judgment

Figure 10. Post-treatment flow chart.

Sensors 2021, 21, 7074 14 of 20

5. Experiment Results and Discussion
5.1. Network Optimization Result and Discussion

This section also uses the GeForce RTX 2080 Ti and the AGX Xavier embedded version
for testing the prediction time required by the proposed optimization method. Table 4
shows the UNet++ parameters for the experiment.

Table 4. UNet++ parameters.

Dataset Fabric A Fabric B Knitting Dataset Nano Fiber Dataset

Epoch 100 50 100 50 80 40 100 50
Batch size 2 2 2 2 2 2 6 6

Learning rate 8 × 10−3 3.5 × 10−3 7 × 10−3 3.5 × 10−3 5 × 10−3 2.5 × 10−3 1.1 × 10−2 5.5 × 10−3

Weight decay 2 × 10−4 2 × 10−4 2 × 10−4 2 × 10−4

5.1.1. Fabric A

After completing the stage 1 training of the dataset, the IoU of UNet++ L4, L3, L2, and
L1 is 62.71%, 62.45%, 53.94%, and 39.55%, respectively. This result explains that the IoU
of UNet++ L3 is 0.26% lower than UNet++ L4.0.26%. This shows that the training can be
executed for the dataset with a UNet++ architecture with only 3 layers of down-sampling.
Therefore, UNet++ L3 is used in the subsequent training for this dataset during stage 2
and stage 3. In Figure 11a, the black line refers to the training result of Fabric A for stage 2
and stage 3. With a pruning percentage of 80%, UNet++ L3 drops from 1.29% to 61.16%
without too much loss in accuracy. With a pruning percentage of 90%, however, it can no
longer maintain the original IoU and drops by 4.88%. For this reason, the lower limit of
the pruning percentage for each layer in such fabric is set at 80%, after which the network
optimization method proposed by this research is applied so that stage 3 will be trained to
find the optimal pruning parameters for each layer. In the figure, the UNet++ L3 AutoML
refers to the network optimization result where its IoU simply drops 1.26% compared to
the original UNet++ L3 architecture. Table 3 shows the prediction time required for the
network after pruning. After the model optimization, the network prediction time when
using the GeForce RTS 2080 Ti and AGX Xavier is 7.67 ms and 44.57 ms, respectively, which
represents 20.84% and 17% of the time predicted for the original UNet++ L3 architecture.

5.1.2. Fabric B

After completing the stage 1 training for the dataset, the IoU of UNet++ L4, L3, L2,
and L1 is 72.3%, 70.34%, 62.7%, and 51.91%, respectively. This result explains that the IoU
of UNet++ L4 is 1.96% higher than that of UNet++ L3. To achieve a higher inspection
efficiency, UNet++ L3 is used for stage 2 and stage 3 of the dataset in order to facilitate the
subsequent training. In Figure 11a, the red line represents the training result of Fabric B for
stage 2 and stage 3. With a pruning percentage of 50%, the IoU of UNet++ L3 drops from
3.64% to 66.7% without excessive loss in accuracy; however, with a pruning percentage
of 60%, the IoU drops 8.86%. For this reason, the lower limit of the pruning percentage
is set at 50% for each layer of such fabric, after which the network optimization method
proposed for this research is applied so that stage 3 will be trained to find the optimal
pruning parameters for each layer. In the figure, the UNet++ L3 AutoML pruning is the
result after optimization and its IoU has dropped 1.13% compared to the original UNet++
L3 architecture. Indicated in Table 3 is the prediction speed. After the model optimization,
the network prediction time, when using the GeForce RTX 2080 Ti and AGX Xavier, is 14.91
ms and 93.99 ms, respectively, which represents 40.52% and 37% of the prediction time for
the original UNet++ L3 architecture.

5.1.3. Knitting Dataset

After completing the stage 1 training for the dataset, the IoU of UNet++ L4, L3, L2,
and L1 is 76.31%, 75.28%, 73.16%, and 67.07%, respectively. This result explains that the

Sensors 2021, 21, 7074 15 of 20

IoU of UNet++ L4 is only 1.03% higher than that of UNet++ L3. To achieve a higher
inspection efficiency, UNet++ L3 is used for stage 2 and stage 3 of the dataset in order
to facilitate the subsequent training. In Figure 11a, the blue line represents the training
result of Fabric B for stage 2 and stage 3. With a pruning percentage of 80%, the IoU of
UNet++ L3 drops from 1.76% to 73.52% without excessive loss in accuracy; however, with
a pruning percentage of 90% the IoU drops 3.32%. For this reason, the lower limit of the
pruning percentage is set at 80% for each layer of such fabric, after which the network
optimization method proposed for this research is applied so that stage 3 will be trained to
find the optimal pruning parameters for each layer. In the figure, the UNet++ L3 AutoML
pruning is the result after optimization and its IoU has dropped 1.21% compared to the
original UNet++ L3 architecture. Indicated in Table 3 is the prediction speed. After the
model optimization, the network prediction time when using the GeForce RTX 2080 Ti and
AGX Xavier is 8.47 ms and 49.92 ms, respectively, which represents 23.02% and 20% of the
prediction time for the original UNet++ L3 architecture.

5.1.4. Nano Fiber Dataset

To verify if the model optimization method proposed by this research causes the
overfitting phenomenon with the validation set, this dataset is divided into a training set,
validation set, and testing set. After completing the stage 1 training, the IoU of UNet++
L4, L3, L2, and L1 is 63.58%, 63.03%, 62.95%, and 49.03%, respectively, where the IoU of
UNet++ L4 is only 0.63% higher than that of UNet++ L2. This result explains that the
accuracy of the original model can be achieved for the nano fiber dataset with only two
layers of down-sampling UNet++. Therefore, to achieve a higher inspection efficiency,
UNet++ L2 is used for stage 2 and stage 3 of the dataset in order to facilitate the subsequent
training. Indicated in Figure 11b is the training result for stage 2 and stage 3. It reveals
that the IoU of the validation set for the original UNet++ L2 is 62.95%, only dropping
0.06% to 62.89% with a pruning percentage of 70%, and dropping 2.88% with a pruning
percentage of 80%. For this reason, the lower limit of the pruning percentage is set at 70%
for each layer of such fabric, after which the network optimization method proposed for
this research is applied so as to find out the optimal pruning parameters for each layer. As
indicated in Figure 11b, the IoU of the validation set for the optimized model is 63.06%,
which is even 0.11% higher than the original UNet++ L2. The IoU variation between the
validation set and the testing set is also very small, and the IoU of the testing set has
only dropped 2.15% compared to the original model. After the model optimization, the
network prediction time when using the GeForce RTX 2080 Ti and AGX Xavier is 10.6 ms
and 74.25 ms, respectively, which represents 23.33% and 22% of the prediction time for the
original UNet++ L2 architecture.

5.1.5. Network Optimization for the Embedded System

In this section, the research uses the embedded-version AGX XAVIER to test the
prediction time required by the proposed optimization method. As indicated in Table 5, a
duration of 253.82 ms will be required in predicting an image with a size of 2 × 512 × 512
pixels when using UNet++ L3 under the Pytorch framework [20]. After completing the
network optimization for Fabric A, Fabric B, and the knitting dataset, it only requires 0.17,
0.37, and 0.2 times the time of the original model, i.e., 44.57 ms, 93.99 ms, and 49.92 ms,
respectively. This result is closer to the prediction time shortened by the deep learning PC
host. It suggests that a certain level of acceleration effect can be achieved when applying
the network optimization process in the embedded version.

Sensors 2021, 21, 7074 16 of 20Sensors 2021, 21, x FOR PEER REVIEW 16 of 20

(a) (b)

Figure 11. This UNet++ result can be achieved after completing the stage 2 training, and the pruning percentage of each
layer of the network is the same. After completing the stage 3 training, the UNet++ AutoML pruning result indicated in
the figure can be obtained. As the pruning percentages differ for each respective network layer, the percentage represents
the mean value of each layer for the following: (a) the IoU of Fabric A, Fabric B, and the knitting dataset after the network
pruning; (b) the IoU after the pruning of the nano fiber dataset.

Table 5. UNet++ prediction speed comparison table.

Dataset Model Framework IoU
Inference

Deep Learning PC
Host

Inference
AGX XAVIER

Fabric A

Input size: 2 × 512 × 512

UNet++ L3 Pytorch
(FP32)

62.45% 36.8 ms 253.82 ms

UNet++ L3
(Pruning percentage:

50%)

Pytorch
(FP32)

63.94% 17.38 ms
(0.47×)

111.46 ms
(0.44×)

UNet++
(proposed)

Pytorch
(FP32)

61.19% 7.67 ms
(0.21×)

44.57 ms
(0.17×)

TensorRT
(FP32)

55.43% - 39.81 ms
(0.16×)

TensorRT
(FP16) 55.38% -

34.28 ms
(0.13×)

Fabric B

Input size: 2 × 512 × 512

UNet++ L3 Pytorch
(FP32)

70.34% 36.8 ms 253.82 ms

UNet++ L3
(Pruning percentage:

50%)

Pytorch
(FP32) 66.7%

17.38 ms
(0.47×)

111.46 ms
(0.44×)

UNet++
(proposed)

Pytorch
(FP32) 69.21%

14.92 ms
(0.41×)

93.99 ms
(0.37×)

TensorRT
(FP32)

68.36% - 80.44 ms
(0.32×)

TensorRT
(FP16)

68.38% - 60.38 ms
(0.24×)

Input size: 2 × 512 × 512

Figure 11. This UNet++ result can be achieved after completing the stage 2 training, and the pruning percentage of each
layer of the network is the same. After completing the stage 3 training, the UNet++ AutoML pruning result indicated in
the figure can be obtained. As the pruning percentages differ for each respective network layer, the percentage represents
the mean value of each layer for the following: (a) the IoU of Fabric A, Fabric B, and the knitting dataset after the network
pruning; (b) the IoU after the pruning of the nano fiber dataset.

Table 5. UNet++ prediction speed comparison table.

Dataset Model Framework IoU
Inference

Deep Learning PC
Host

Inference
AGX XAVIER

Fabric A

Input size: 2 × 512 × 512

UNet++ L3 Pytorch
(FP32) 62.45% 36.8 ms 253.82 ms

UNet++ L3
(Pruning percentage:

50%)

Pytorch
(FP32) 63.94% 17.38 ms

(0.47×)
111.46 ms

(0.44×)

UNet++
(proposed)

Pytorch
(FP32) 61.19% 7.67 ms

(0.21×)
44.57 ms
(0.17×)

TensorRT
(FP32) 55.43% - 39.81 ms

(0.16×)
TensorRT

(FP16) 55.38% - 34.28 ms
(0.13×)

Fabric B

Input size: 2 × 512 × 512

UNet++ L3 Pytorch
(FP32) 70.34% 36.8 ms 253.82 ms

UNet++ L3
(Pruning percentage:

50%)

Pytorch
(FP32) 66.7% 17.38 ms

(0.47×)
111.46 ms

(0.44×)

UNet++
(proposed)

Pytorch
(FP32) 69.21% 14.92 ms

(0.41×)
93.99 ms
(0.37×)

TensorRT
(FP32) 68.36% - 80.44 ms

(0.32×)
TensorRT

(FP16) 68.38% - 60.38 ms
(0.24×)

Sensors 2021, 21, 7074 17 of 20

Table 5. Cont.

Dataset Model Framework IoU
Inference

Deep Learning PC
Host

Inference
AGX XAVIER

Knitting dataset

Input size: 2 × 512 × 512

UNet++ L3 Pytorch
(FP32) 75.28% 36.8 ms 253.82 ms

UNet++ L3
(Pruning percentage:

50%)

Pytorch
(FP32) 75.2% 17.38 ms

(0.47×)
111.46 ms

(0.44×)

UNet++
(proposed)

Pytorch
(FP32) 74.07% 8.47 ms

(0.23×)
49.92 ms

(0.2×)
TensorRT

(FP32) 68.63% - 42.82 ms
(0.17×)

TensorRT
(FP16) 68.25% - 33.06 ms

(0.13×)

Nano fiber
dataset

Input size: 16 × 256 × 256

UNet++ L2 Pytorch
(FP32) 66.99% 45.44 ms 333.54 ms

UNet++ L2
(Pruning percentage:

50%)

Pytorch
(FP32) 63.84% 21.48 ms

(0.47×)
131.99 ms

(0.4×)

UNet++
(proposed)

Pytorch
(FP32) 64.84% 10.6 ms

(0.23×)
74.25 ms
(0.22×)

TensorRT
(FP32) 62.26% - 62.17 ms

(0.18×)
TensorRT

(FP16) 62.26% - 48.86 ms
(0.14×)

5.2. Post-Treatment Result

In this research, the network is used to predict pixel-wise defects in the images, and
the network prediction results may have less noise. If directly judging a predicted image
containing a defect as defect, it may lead to an incorrect image-wise judgment. Therefore,
two types of network models will be used in this section, the original model and the UNet++
obtained from the optimization method. The models will then be used in conjunction with
the proposed post-treatment process in order to determine if the input image belongs to
a defect in terms of the image-wise aspect. Recognizing that the network optimization
process proposed for this research is trained by using defect-containing images, this section
can validate the feasibility of using such a model for the defect-free images.

5.2.1. Fabric A

During the post-treatment process, the binary threshold value is set for the dataset
and the minimum pixels of the defect are set at 127 and 25 pixels, respectively. Indicated in
Table 4 is the result of Fabric A where the accuracy rate, precision rate, and recall rate of the
optimized network proposed by the research after treatment are 92.75%, 66.67%, and 100%,
respectively. Of these, the recall rate of the defect-containing images has been successfully
predicted as 100%. Although only 8.74% of the defect-free images have been judged as
defect, the precision rate is only 66.67% due to the excessive variation in the quantity of
defect and defect-free images.

5.2.2. Fabric B

During the post-treatment process, the binary threshold value is set for the dataset
and the minimum pixels of the defect are set at 127 and 25 pixels, respectively. Indicated in
Table 6 is the result of Fabric B where the accuracy rate, precision rate, and recall rate being
of the optimized network proposed by the research after treatment are 94.87%, 77.78%,
and 100%, respectively. This result is similar to Fabric A where the recall rate of the defect-

Sensors 2021, 21, 7074 18 of 20

containing images has been successfully predicted as 100%. However, the precision rate
is only 77.78% due to excessive variation in the quantity of defect and defect-free images.
Based on the table, it can also learned that the architecture obtained through the network
optimization process does not show any decline in accuracy and recall rate compared to
the original UNet++ L3.

5.2.3. Knitting Dataset

In this research, the binary threshold is set at 127 for the knitting dataset. Recognizing
that the bigger defect pixels are presented in this dataset, the minimum pixel quantity of
the defects is set at 100 pixels. Indicated in Table 4 is the result of the knitting dataset where
the accuracy rate, precision rate, and recall rate of the optimized network proposed by the
research after treatment are 95.6%, 66.67%, and 100%, respectively. The recall rate of the
defect-containing image has been successfully predicted as 100%. However, the precision
rate is only 66.67% due to excessive variation in the quantity of defect and defect-free
images. The inspecting accuracy of the proposed method was 95.60% for the knitted fabric
dataset and outperformed the state-of-the-art techniques [3] with a detection rate of 93.33%.

5.2.4. Nano Fiber Dataset

In this research, the binary threshold is set at 127 for the nano fiber dataset and the
minimum pixels of the defect-containing images are set at 50 pixels. Indicated in Table 6
is the result of the nano fiber dataset where the accuracy rate, precision rate, and recall
rate are 81.82%, 72.06%, and 98%, respectively. Of the defect-containing images, only one
image has an incorrect prediction, resulting in a recall rate of 98%. Based on the table,
it can also learned that the proposed network optimization process does not show any
decline in recall rate. However, the prediction effect is less satisfactory for the defect-free
images of this dataset, with a prediction error of 31.67% for the defect-free images. The
defects of this dataset were labelled as unnatural arrays or lumps in the fiber [21]; however,
the unnatural arrays or lumps are evident in each image of the figure. As such, it can be
concluded that the prediction error of the defect-free image is mainly due to the incorrect
marking of the dataset.

Table 6. Image-level defect judgment result.

Dataset
Network
Architec-

ture
TP FP FN TN Accuracy

Rate
Precision

Rate Recall Rate

Fabric A
UNet++ L3 10 images 3 images 0 images 56 images 95.65% 76.92% 100%

UNet++
(proposed) 10 images 5 images 0 images 54 images 92.75% 66.67% 100%

Fabric B
UNet++ L3 7 images 3 images 0 images 29 images 92.31% 70% 100%

UNet++
(proposed) 7 images 2 images 0 images 30 images 94.87% 77.78% 100%

Knitting
dataset

UNet++ L3 16 images 6 images 0 images 160 images 96.70% 72.73% 100%
UNet++

(proposed) 16 images 8 images 0 images 158 images 95.60% 66.67% 100%

Nano fiber
dataset

UNet++L2 49 images 24 images 1 image 36 images 77.27% 67.12% 98%
UNet++

(proposed) 49 images 19 images 1 image 41 images 81.82% 72.06% 98%

6. Conclusions

The automated optical inspection in fabric manufacturing was developed to achieve
the accuracy in defect detection, and hence reduce the cost of inspection and improve
the product quality. In this research, deep learning is used to segment defects and then
determine the inspection results through the post-treatment process. During the training
process, UNet++ is selected in conjunction with deep supervision in order to detect the

Sensors 2021, 21, 7074 19 of 20

depth required for the network, after which the optimal network is obtained through
network pruning. Through the above process, redundant neurons are removed under
the expected IoU conditions so as to shorten the network prediction time. The method
obtained is then applied to self-made Fabric A and Fabric B and the public knitting and
nano fiber datasets for verification. For the deep learning results, although the IoU of
Fabric A, Fabric B, the knitting dataset, and the nano fiber dataset have dropped 1.26%,
1.13%, 1.21%, and 2.15%, respectively, it was still possible to shorten the prediction time to
20.84%, 40.52%, 23.02%, and 23.33% of the original architecture. When using the original
model with the post-treatment process, the recall rate achieved for Fabric A, Fabric B, the
knitting dataset, and the nano fiber dataset was 100%, 100%, 100%, and 98%, respectively,
and the accuracy rate was 95.65%, 92.31%, 96.70%, and 77.27%, respectively. When using
post-treatment process with the UNet++ obtained through the network training method
proposed for this research, the recall rate achieved for Fabric A, Fabric B, the knitting
dataset, and the nano fiber dataset was 100%, 100%, 100%, and 98%, respectively, and the
accuracy rate was 92.75%, 94.87%, 95.6%, and 81.82%, respectively. Of these, the lower
nano fiber accuracy rate was due to incorrect marking. Based on the experiment results
obtained from the above datasets, the network training process proposed by this research
does not lead to a dropping of the recall rate even though fewer layers are configured in
the network; furthermore, the maximum accuracy loss has also only dropped 2.9%. This
proves that the computation time required for the inspection can be greatly shortened with
the methodology proposed in this research in order to achieve real-time detection effects.

Author Contributions: Conceptualization, C.-C.H. and E.S.; methodology, C.-C.H.; software, W.-
C.C.; validation, C.-C.H., W.-C.C. and E.S.; formal analysis, W.-C.C.; investigation, C.-C.H.; re-
sources, C.-C.H.; data curation, W.-C.C.; writing—original draft preparation, C.-C.H. and W.-C.C.;
writing—review and editing, C.-C.H.; visualization, W.-C.C.; supervision, C.-C.H.; project admin-
istration, C.-C.H.; funding acquisition, C.-C.H. All authors have read and agreed to the published
version of the manuscript.

Funding: This article is for the Ministry of Education and Ministry of Science and Technology
program number 110-2221-E-027-079-MY2, thanks to the support of the Ministry of Education and
Ministry of Science and Technology.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available dataset was analyzed in this study. This data
can be found here: https://sites.google.com/view/smartrobot/datasets?authuser=0 (accessed
on 20 October 2021), http://fabricdataset.gaspar.ifsc.edu.br (accessed on 20 October 2021) and
http://www.mi.imati.cnr.it/ettore/NanoTWICE/ (accessed on 20 October 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Selvi, S.S.T.; Nasira, G. An effective automatic fabric defect detection system using digital image processing. J. Environ. Nanotechnol.

2017, 6, 79–85.
2. Xie, H.; Zhang, Y.; Wu, Z. Fabric defect detection method combing image pyramid and direction template. IEEE Access 2019, 7,

182320–182334. [CrossRef]
3. Vargas, S.; Stivanello, M.E.; Roloff, M.L.; Stiegelmaier, É.; Stemmer, M.R. Development of an online automated fabric inspection

system. J. Control Autom. Electr. Syst. 2020, 31, 73–83. [CrossRef]
4. Kang, X.; Zhang, E. A universal and adaptive fabric defect detection algorithm based on sparse dictionary learning. IEEE Access

2020, 8, 221808–221830.
5. Oz, M.A.N.; Kaymakci, O.T.; Mercimek, M. A Nested Autoencoder Approach to Automated Defect Inspection on Textured

Surfaces. Int. J. Appl. Math. Comput. Sci. 2021, 31, 515–523.
6. Liu, J.; Wang, C.; Su, H.; Du, B.; Tao, D. Multistage GAN for fabric defect detection. IEEE Trans. Image Process. 2019, 29, 3388–3400.

[CrossRef] [PubMed]
7. Jing, J.F.; Ma, H.; Zhang, H.H. Automatic fabric defect detection using a deep convolutional neural network. Coloration Technol.

2019, 135, 213–223. [CrossRef]

https://sites.google.com/view/smartrobot/datasets?authuser=0
http://fabricdataset.gaspar.ifsc.edu.br
http://www.mi.imati.cnr.it/ettore/NanoTWICE/
http://doi.org/10.1109/ACCESS.2019.2959880
http://doi.org/10.1007/s40313-019-00514-6
http://doi.org/10.1109/TIP.2019.2959741
http://www.ncbi.nlm.nih.gov/pubmed/31870985
http://doi.org/10.1111/cote.12394

Sensors 2021, 21, 7074 20 of 20

8. Jing, J.; Wang, Z.; Rätsch, M.; Zhang, H. Mobile-Unet: An efficient convolutional neural network for fabric defect detection. Text.
Res. J. 2020, 1–13. [CrossRef]

9. Fabric Projects. Available online: https://sites.google.com/view/smartrobot/datasets?authuser=0 (accessed on 20 October 2021).
10. Knitted Fabric Dataset. Available online: http://fabricdataset.gaspar.ifsc.edu.br (accessed on 20 October 2021).
11. NanoTWICE Dataset. Available online: http://www.mi.imati.cnr.it/ettore/NanoTWICE/ (accessed on 20 October 2021).
12. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020,

arXiv:2004.10934.
13. Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path Aggregation Network for Instance Segmentation. In Proceedings of the 2018 IEEE/CVF

Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 8759–8768.
14. Chen, Y.-F.; Yang, F.-S.; Su, E.; Ho, C.-C. Automatic defect detection system based on deep convolutional neural networks. In

Proceedings of the 2019 International Conference on Engineering, Science, and Industrial Applications (ICESI), Tokyo, Japan,
22–24 August 2019.

15. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings
of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany,
5–9 October 2015; pp. 234–241.

16. Zhou, Z.; Siddiquee, M.M.R.; Tajbakhsh, N.; Liang, J. Unet++: A nested u-net architecture for medical image segmentation.
In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support; Springer: Berlin/Heidelberg,
Germany, 2018; pp. 3–11.

17. Lee, C.-Y.; Xie, S.; Gallagher, P.; Zhang, Z.; Tu, Z. Deeply-supervised nets. In Proceedings of the Eighteenth International
Conference on Artificial Intelligence and Statistics, San Diego, CA, USA, 9–12 May 2015; pp. 562–570.

18. Li, H.; Samet, H.; Kadav, A.; Durdanovic, I.; Graf, H.P. Pruning filters for efficient convnets. In Proceedings of the 5th International
Conference on Learning Representations (ICLR 2017)—Conference Track Proceedings, Toulon, France, 24–26 April 2017; pp. 1–13.

19. Renda, A.; Frankle, J.; Carbin, M. Comparing Rewinding and Fine-tuning in Neural Network Pruning. arXiv 2020,
arXiv:2003.02389.

20. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L. Pytorch: An
imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 2019, 32, 8026–8037.

21. Carrera, D.; Manganini, F.; Boracchi, G.; Lanzarone, E. Defect Detection in SEM Images of Nanofibrous Materials. IEEE Trans. Ind.
Inform. 2017, 13, 551–561. [CrossRef]

http://doi.org/10.1177/0040517520928604
https://sites.google.com/view/smartrobot/datasets?authuser=0
http://fabricdataset.gaspar.ifsc.edu.br
http://www.mi.imati.cnr.it/ettore/NanoTWICE/
http://doi.org/10.1109/TII.2016.2641472

	Introduction
	Defects Datasets
	Self-Made Dataset
	Public Datasets

	Deep Learning-Based Defect Detection
	Defect Classification
	Fabric A
	Fabric B
	Knitting Dataset
	Nano Fiber Dataset

	Defect Segmentation
	Fabric A
	Fabric B
	Knitting Dataset
	Nano Fiber Dataset

	Analysis of Experiment Results

	Optimization for Fabric Defect Detection
	Research Method for Network Optimization
	Network Optimization Approaches
	UNet++
	Network Pruning and Retraining
	Bayesian Hyperparameter Optimization

	Post-Treatment Method

	Experiment Results and Discussion
	Network Optimization Result and Discussion
	Fabric A
	Fabric B
	Knitting Dataset
	Nano Fiber Dataset
	Network Optimization for the Embedded System

	Post-Treatment Result
	Fabric A
	Fabric B
	Knitting Dataset
	Nano Fiber Dataset

	Conclusions
	References

