
sensors

Review

Applicability of Physiological Monitoring Systems within
Occupational Groups: A Systematic Review

Denisse Bustos 1 , Joana C. Guedes 1 , João Santos Baptista 1,2,* , Mário P. Vaz 1,2 , José Torres Costa 3

and Ricardo J. Fernandes 2,4

����������
�������

Citation: Bustos, D.; Guedes, J.C.;

Baptista, J.S.; Vaz, M.P.; Costa, J.T.;

Fernandes, R.J. Applicability of

Physiological Monitoring Systems

within Occupational Groups: A

Systematic Review. Sensors 2021, 21,

7249. https://doi.org/10.3390/

s21217249

Academic Editor: Ki H. Chon

Received: 20 September 2021

Accepted: 25 October 2021

Published: 30 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Associated Laboratory for Energy, Transports and Aeronautics, LAETA (PROA), Faculty of Engineering,
University of Porto, 4200-465 Porto, Portugal; ldbs@fe.up.pt (D.B.); jccg@fe.up.pt (J.C.G.);
gmavaz@fe.up.pt (M.P.V.)

2 Porto Biomechanics Laboratory, Faculty of Sport, University of Porto, 4200-450 Porto, Portugal;
ricfer@fade.up.pt

3 Associated Laboratory for Energy, Transports and Aeronautics, LAETA (PROA), Faculty of Medicine,
University of Porto, 4200-319 Porto, Portugal; zecatoco@sapo.pt

4 Center of Research, Education, Innovation and Intervention in Sport, Faculty of Sport, University of Porto,
4200-450 Porto, Portugal

* Correspondence: jsbap@fe.up.pt

Abstract: The emergence of physiological monitoring technologies has produced exceptional oppor-
tunities for real-time collection and analysis of workers’ physiological information. To benefit from
these safety and health prognostic opportunities, research efforts have explored the applicability
of these devices to control workers’ wellbeing levels during occupational activities. A systematic
review is proposed to summarise up-to-date progress in applying physiological monitoring systems
for occupational groups. Adhering with the PRISMA Statement, five databases were searched from
2014 to 2021, and 12 keywords were combined, concluding with the selection of 38 articles. Sources
of risk of bias were assessed regarding randomisation procedures, selective outcome reporting and
generalisability of results. Assessment procedures involving non-invasive methods applied with
health and safety-related goals were filtered. Working-age participants from homogeneous occu-
pational groups were selected, with these groups primarily including firefighters and construction
workers. Research objectives were mainly directed to assess heat stress and physiological workload
demands. Heart rate related variables, thermal responses and motion tracking through accelerometry
were the most common approaches. Overall, wearable sensors proved to be valid tools for assessing
physiological status in working environments. Future research should focus on conducting sensor
fusion assessments, engaging wearables in real-time evaluation methods and giving continuous
feedback to workers and practitioners.

Keywords: wearable sensors; occupational activities; occupational physiology; performance; cardiac
reactivity; physical activity patterns; heat stress; physical exertion; fatigue

1. Introduction

Miners and steelworkers are regularly exposed to high heat conditions [1,2]. Police of-
ficers and other first responders are called with little to no notice into situations of extreme
danger and physiological stress [3]. Firefighters and soldiers often wear personal protective
equipment that imposes additional thermal burdens from insulation and additional carried
weight [4–6] and are exposed to high physical, mental and emotional stress levels for
prolonged periods [7]. In general, these high-risk professions are repeatedly subjected to
operations in austere environments and dysregulated sleep [3]. On the other hand, limited
by the natural environment factors (e.g., construction workers [8]) or indoors cold exposure
conditions (e.g., food industry workers [9]), some professions develop strenuous work
while regularly exposed to thermal stress. In any of these cases, the characteristics of occu-
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pational activities demand an additional physiological effort involving thermoregulatory
adaptation and physical endurance to cope with the load of their activities.

For example, heat stress is sometimes combined with physical activity, such as during
military or firefighting simulation training and in theatre operations. In that case, the
resulting struggle between muscle and skin (due to energetic demands and cooling ther-
moregulation, respectively) for a relatively limited cardiac output can become a significant
fatigue contributor and exercise inhibitor relative to a cooler or within limits condition [10].
Chronic exposure to some of these occupational factors threatens the body efforts to main-
tain homeostasis and a balanced state. Physiological and psychological responses may
begin to deteriorate, causing long-term adverse effects [11]. Literature has reported that
many health related risks (e.g., heat-related illness and cardiovascular disease) may be
higher than those in the general population [12], meaning that suitable prevention measures
(e.g., recovery periods and acclimation time) are essential to prevent it.

As a result, occupational physiology related research has become fundamental to
understand the physiological functions of the human body and its ability to cope with
the work associated stresses. By investigating and assessing work relevant procedures,
organisations can derive suggestions for modifying these processes focusing on health
complaints prevention [13]. Previously, work–rest cycles and training periods could only
be addressed using generalised models based on estimated inputs about individuals
in standard conditions. The advent of wearable physiological and health monitoring
devices might help overcome these limitations but needs the right questions in sourcing,
developing, validating and applying such technologies [14].

Wearable physiological monitoring systems can help evaluate individuals’ health and
performance from their real-time collection and analysis of physiological states [15,16].
This approach presents key improvements in population-based predictions derived from
ambient conditions and the general context of a working activity. Advances in computing
power and microelectronics enable these improvements in human performance assessment,
with real-time physiological measurement capabilities and data processing to provide
valuable information about the individual [17]. Currently available commercial systems in-
clude heart rate monitors [18], temperature sensors [19], accelerometers [20] and integrated
sensors [21]. However, these apparatuses usually do not satisfy the requirements for more
profound occupational research. When they offer something more than raw physiological
data, computed information is generally based on proprietary algorithms that cannot be
adequately validated, making the output unusable [17].

Thus, the critical component of a real-time physiological monitoring system is the
process that transforms data into valuable knowledge for a worker or a small unit leader
to manage its operational elements. Research and reviews on the application of these
systems have increased [22], particularly in the sports and medical monitoring fields [23,24],
and some within specific professionals (e.g., construction workers [25,26]). However, no
comprehensive literature review gathering in-field physiological monitoring from a general
occupational perspective was identified; particularly, a comprehensive search on variables
selection and processing methods derived from regular working activities monitoring
has not been conducted. Investigations in real stressful scenarios are fundamental to
understand the effects of some working environments and have a clear perspective on the
applicability of available sensors since they differ significantly from controlled locations
regarding environment, activity and subject motivation.

To improve the quality and generalisability of research and overcome the limitations
associated with in-field measurements, it is essential to structure what has been done
within real-life occupational activities, among which occupational groups and with what
degree of success. Hence, the current work proposes to systematically review the literature
to: (i) summarise the physiological metrics that have the potential to be measured in real-
time among occupational groups; (ii) determine the general research objectives in which
these physiological variables have been measured and the occupational groups covered;
(iii) compile used physiological sensors and the corresponding extracted information;
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and (iv) discuss current trends and potential challenges of these systems applications,
identifying the research gaps that can be addressed in future works.

2. Methods

This systematic review was conducted following the Preferred Reporting Items for
Systematic reviews and Meta-Analyses (PRISMA) Statement [27]. Based on related method-
ology [28,29], a protocol [30] (registered in PROSPERO under CRD42019119787) was
prospectively elaborated to determine adequate guidelines for retrieving relevant results.

The search was developed firstly through electronic databases: Scopus, Science Direct,
Academic Search Ultimate, Web of Science and PubMed. The first four are among the largest
multidisciplinary abstract and citation databases of peer-reviewed literature. Furthermore,
since the goals and selected keywords are associated with health-related conditions within
occupational groups, PubMed (the most complete resource for literature in medicine and
biological sciences) was also consulted. The search was performed using relevant search
terms formed by two groups of keywords related to monitoring procedures and their
potential applicability: (i) “physiological monitoring”, “noninvasive monitoring”, “medical
monitoring” and “wearable sensors” and (ii) “assessment”, “occupational”, “model”,
“fatigue”, “algorithm”, “worker”, “training” and “physical exertion”.

Keywords from both groups were combined as follows: (((“physiolog*monitor*”)
OR (“noninvasive monitor*”) OR (“medical monitor*”) OR (“wearable sens*”)) AND
((assessment) OR (occupational) OR (model) OR (fatigue) OR (algorithm) OR (worker)
OR (training) OR (“physical exertion”))). The query was tested and adapted for each
database as presented in the protocol [30]. It was applied in the title, abstract and keywords
for Scopus and Science Direct. Title and Abstract were the search fields for PubMed
and Academic Search Ultimate, and Topic was selected in Web of Science. Later, the
search continued by checking reference lists of initially retrieved papers and applying
the snowballing technique [31] until no more relevant information was found. Finally,
additional sources found in citations were consulted.

The study selection was also based on three phases of exclusion. Initially, filters from
databases were applied, and studies were limited by date (2014–2021), document type
(research articles), source type (peer-reviewed journals) and language (English written
papers). The main goal of this stage was to gather the most relevant up-to-date information.
However, when looking through the first collected records’ references, the initially delim-
ited timeframe was no longer considered. Then, as a second exclusion phase, repeated
records were eliminated. Next, each article was analysed to remove those not fulfilling the
delimited inclusion criteria.

Studies were eligible if all the following conditions were verified: (1) they pursued any
prognostic or preventive health-related objective, (2) noninvasive objective physiological
assessment methods were applied, (3) physiological monitoring systems were used to
continuously collect physiological data, (4) procedures were developed within an active
working-age population from a specific occupational group and (5) physiological measure-
ments were developed during real-life activities, representative of a particular occupational
group. This process was carried out independently by two reviewers (D.B. and J.C.G.), and
a third (J.S.B.) resolved discrepancies.

Full-text was retrieved from the final studies to collect information of interest by using
a customised table. Compiled information mainly involved: reference and country, study
goals, measured variables and equipment, sample characteristics (size, gender distribution,
mean age range), occupational group, context and duration of experimental protocols, data
processing methods and respective conclusions.

Finally, to determine the strengths and weaknesses of every study’s design and
their influence on corresponding results, each article was assessed for risk of bias in two
phases. First, each study’s general characteristics were analysed following the sought
goals of this review and considered objectives, assessed variables, applied methods and
equipment, assessment procedure and measurement time. Later, referencing the Cochrane



Sensors 2021, 21, 7249 4 of 29

Collaboration’s Tool [32] and additional literature sources [33–36], methodological issues
were addressed: ethical standards fulfilment, sample justification, clear description of the
experimental procedure and practical difficulties. For this purpose, a customised table was
elaborated to examine each article according to 25 items referring to seven topics: study
design, participants, data sources, reporting bias, limitations, generalisability and potential
sources of additional bias. Criteria were determined to address methodological difficulties
and potential risks of bias of obtained results.

The study design topic involved seven questions on the rationale and clearness of
defined objectives and outcome measures, the existence of a control group, the research
design, description of methods and equipment and reporting of statistical analysis. The
participants category was determined by five questions and verified if ethical standards
were met, if the sample size was justified and a randomisation method was performed.
It examined whether subjects were similar at baseline regarding the most significant
indicators and whether the number of subjects was representative to assure the study’s
statistical power. Regarding the data sources, two criteria checked the inclusion of real-life
working activities within the experimental protocols and assure all subjects completed
all testing.

Similarly, six questions in the reporting bias section determined if sample character-
istics were adequately provided and withdrawals and dropouts were registered. It also
verified if the available literature supported numerical data, if complete outcome data
were provided, tables and figures were clearly presented and if data supported the study
conclusions. Two additional criteria were added in the limitations and generalisability cate-
gories, determining if limitations were objectively defined and if the study allowed results
generalisation. Finally, potential sources of bias were determined by three questions and
identified additional causes of bias related to withdrawal or dropout rate of participants,
number of missing outcomes and practical difficulties.

Each item was marked with Y (yes), N (no) or U (unclear) for the cases in which there
was not enough information to define whether the criteria had been met. Then, rates were
calculated by averaging the number of positive answers from each category and adding
up their results. To simplify the interpretation process, obtained scores (0–7) were then
transformed and presented as percentage values (0–1), with studies with higher values
considered the most suitable for the objectives of the current review. Conversely, investi-
gations with a higher rate of negative answers (scores under 50%) would immediately be
considered for exclusion. This process was performed by two reviewers (D.B. and J.C.G.)
and was verified by a third (J.S.B.). Due to the differences in study protocols (assessed vari-
ables, recordings duration, occupational groups, experimental protocols and measurement
conditions) and the lack of a comparator, a meta-analysis could not be performed, with
results being tabulated and described narratively.

3. Results
3.1. Studies Selection

By following the PRISMA Statement, 10,490 first items were retrieved from the
databases searches and using the search engines’ filters, restrictions of date, article type,
source type and language were applied. The adapted query and filters for each database
are presented in Table 1. After concluding this phase, 5042 articles were identified, of which
1570 were duplicates, leaving a total of 3472 articles for a third phase. During this stage,
3352 articles were excluded for not being applied within a specific workers’ sample or
involving invasive or subjective measuring methods, and 120 articles were left for a final
full-text assessment. Lastly, following the eligibility criteria, 28 relevant publications were
identified, with the references from these 28 studies being retrieved and additional articles
found according to the inclusion criteria. This process was repeated in the newly selected
items as preconised by the snowballing technique [31], and 10 more articles were gathered,
leaving 38 articles for analysis in the current review. Figure 1 provides an overview of the
number of studies from each PRISMA methodology stage [37].
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Table 1. Summary of articles after databases filtering.

Database Adapted Query and Database Filters

Scopus

((TITLE-ABS-KEY(“physiolog* monitor*”) OR
TITLE-ABS-KEY(“noninvasive monitor*”) OR TITLE-ABS-KEY(“medical
monitor*”) OR TITLE-ABS-KEY (“wearable sens*”)) AND
(TITLE(assessment) OR TITLE-ABS-KEY(occupational) OR TITLE(model)
OR TITLE-ABS-KEY(fatigue) OR TITLE(algorithm) OR
TITLE-ABS-KEY(worker) OR TITLE-ABS-KEY(training) OR
TITLE-ABS-KEY(“physical exertion”)))
2014–2022/Article, Article in Press/Journals/English

PubMed

((“physiological monitoring”[All Fields]) OR (“noninvasive
monitoring”[All Fields]) OR (“wearable sensor”[All Fields]) OR (“medical
monitoring”[All Fields])) AND ((assessment[Title]) OR (occupational[All
Fields]) OR (model[Title]) OR (“fatigue”[All Fields]) OR (algorithm[Title])
OR (worker[All Fields]) OR (“training”[All Fields]) OR (“training”[All
Fields]) OR (“physical exertion”[All Fields]))
2014–2021/Journal Article/English/Humans

Science Direct

(“physiological monitoring” OR “noninvasive monitoring” OR “wearable
sensors”) AND (TITLE(assessment) OR occupational OR TITLE(model) OR
fatigue OR TITLE(algorithm) OR worker)
2014–2022/Research articles/Subscribed journals

Web of Science

(TS = (“physiolog* monitor*”) OR TS = (“noninvasive monitor*”) OR TS =
(“wearable sens*”) OR TS = (“medical monitor*”)) AND (TI = (assessment)
OR TS = (occupational) OR TI = (model) OR TS = (fatigue) OR TI =
(algorithm) OR TS = (worker) OR TS = (training) OR TS = (“physical
exertion”))
2014–2022/Article/English

Academic Search
Complete

(AB “physiolog* monitor*” OR AB “noninvasive monitor*” OR AB
“wearable sens*” OR AB “medical monitor*”) AND (TI assessment OR AB
occupational OR TI model OR AB fatigue OR TI algorithm OR AB worker
OR AB training OR AB “physical exertion”)
2014–2021/Academic journals/English

Figure 1. Summary of the research, based on PRISMA Statement flow diagram [38] and protocol [30].
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3.2. Characteristics of the Included Studies

Figure 2 shows the network visualisation of some controlled terms automatically
identified across studies. With data extracted directly from Scopus after inserting the criteria
outlined in Table 1, 54 relevant terms in six clusters were identified through VOSviewer [39].
These terms correspond to the authors’ keywords with at least 10 occurrences throughout
all retrieved studies. Regarding the final 38 articles included [40–77], Figure 3 provides an
overview of the evolution of the studies using physiological monitoring systems over the
years (until 11 October 2021). Research with these systems is growing among occupational
groups, and from 2019, the increasing trend is even more notorious.

Figure 2. Keywords connections extracted from Scopus and VOSViewer.

Figure 3. Selected articles grouped by year (until 11 October 2021).

Concerning the included professions, since there were no restrictions applied in this
regard, various occupational groups (based on the minor groups level from the Interna-
tional Standard Classification of Occupations ISCO–08) were retrieved and, as Figure 4
illustrates, there is an evident focus on firefighters and construction workers. In terms of
gender distribution, a more considerable percentage of male subjects was observed since
23 out of the 38 selected papers recruited only male workers (only one study focused on a
female sample). Sample sizes were diverse, ranging from six roofers to 134 office workers.
All participants were part of the healthy active working population and their mean age
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values ranged from 20 to 46 years old. All used comparisons with previous or basal levels
of the same subjects. Most studies (n = 34) considered real working scenarios only, while
four performed measurements combining real and controlled laboratory conditions.

Figure 4. Number of included studies categorised by occupational groups.

Despite the diversity of the 38 included studies, six research goals areas could be
identified, including examining the effects of heat stress exposure, measuring the physio-
logical demands and workload associated with specific working activities, determining the
stress levels experienced by workers, evaluating heart rate-derived variables, addressing
fatigue levels and its methods of assessment, and monitoring working postures and activity
patterns (sleep disorders and physical activities classification). As Figure 5 shows, a clear
tendency of assessing physiological demands and workload, as well as heat stress from
particular occupational activities and environments, was observed. In some cases, studies
could be associated with more than one of these groups and were placed in the group
considered closest to its objective.

Figure 5. Included studies based on their health and safety-related objective.

Selected studies are presented in Table 2, grouped by their general research objective
and covered professions. Measured physiological variables (continuously or not) and
the other data collection approaches divided into biochemical, subjective, cognitive and
environmental variables are also summarised. First, the aim was to identify the trends
and applications when monitoring physiological variables and the addressed occupational
groups. Subsequently, the sensors used to measure the physiological responses were
analysed, with their list being presented in Appendix A (indicating available information
on the sampling frequency, sensor’s accuracy and location).
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Table 2. Studies characteristics grouped by their general research objective and covered professions.

Research Objective Occupational Groups
Physiological Variables Secondary Variables

ReferencesContinuously Measured
(Main Variables)

Uncontinuously
Measured Biochemical Subjective and

Cognitive Environmental

Cardiovascular
activity

Construction workers HR N/A N/A N/A N/A [49]

Firefighters HR, HRV, ECG N/A N/A N/A N/A [41,64]

Retail store employees HR, HRV N/A N/A N/A N/A [55]

Fatigue

Operators from drillship HR, accelerometer counts N/A N/A Fatigue subjective
scales N/A [57]

Professional
long-distance bus drivers

EEG, EMG, respiration
signals N/A N/A Self-reported fatigue

states N/A [47]

Nurses

From accelerometry counts:
sleep duration, number of
awakenings and sleep
latency at night; number and
distribution of steps taken
during the work shift

N/A N/A
Fatigue levels using
the Brief Fatigue
Inventory

N/A [74]

Heat stress

Bakers HR Tympanic body
temperature N/A N/A

Natural wet temperature
Tnw and globe
temperature Tg

[40]

Construction workers

HR, energy expenditure,
oxygen consumption,
physical work activity, fluid
intake

Resting blood
pressure

Pre- and
post-shift urine
specific gravity
(USG)

RPE

Dry-bulb temperature, wet
bulb temperature, globe
temperature, Indoor and
outdoor heat exposures
(WBGT)

[66,67,70]

Custodial staff
HR, physical activity
patterns from accelerometer
counts

N/A N/A N/A Ambient temperature and
humidity [59]

Farmworkers

BR, HR, skin temperature,
core body temperature
(estimated from skin
temperature), kilocalories
burned per hour

Baseline blood
pressure

Serum glucose
and serum
osmolarity

Heat-related illness
symptoms WBGT [45]
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Table 2. Cont.

Research Objective Occupational Groups
Physiological Variables Secondary Variables

ReferencesContinuously Measured
(Main Variables)

Uncontinuously
Measured Biochemical Subjective and

Cognitive Environmental

Heat stress

Grounds management
workers HR, activity patterns N/A N/A N/A Individually experienced

temperature [61]

Law enforcement
personnel

HR, core temperature
(estimated), physiological
strain index

N/A N/A Self-reported thermal
discomfort N/A [63]

Mine rescue workers

HR, BR, energy expenditure,
oxygen consumption, core
temperature and skin
temperature

N/A N/A N/A Mining environmental
conditions [51]

Rebar workers

HR, energy expenditure, BR,
METs, minute ventilation,
oxygen consumption, and
respiratory exchange ratio

Ear temperature N/A RPE N/A [68]

Physiological
demands and
workload

Construction workers

ECG (smart clothing), HR,
electrodermal activity,
photoplethysmogram (PPG),
skin temperature, 3-axis
acceleration, oxygen
consumption

N/A N/A N/A Air temperature, relative
humidity, WBGT [48,71,76]

Firefighters

HR, air consumption, core
temperature, activity-based
accelerometry counts,
maximum oxygen uptake,
ECG, speed and elevation
gain

N/A

Complete blood
count and
differential cell
count;
electrolyte,
muscle and
liver enzymes;
blood glucose,
creatinine,
partial
thromboplastin
and urine
osmolarity

Body part discomfort,
self-perceived
conditions, RPE,
perception of
respiratory distress,
thermal Sensation
Scale, overall
wellbeing (feeling
scale)

N/A [46,65,72,73,
77]
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Table 2. Cont.

Research
Objective Occupational Groups

Physiological Variables Secondary Variables

ReferencesContinuously Measured (Main
Variables)

Uncontinuously
Measured Biochemical Subjective and

Cognitive Environmental

Grounds maintenance
crew workers HR N/A N/A N/A Ambient temperature,

ultraviolet exposure [58]

Recruits from Marine
training course

HR, activity-based accelerometry
counts, and skin temperature
measurements

N/A N/A Vigilance and
memory evaluations N/A [42]

Roofers

HR, HRV, activity through
accelerometry data, energy
expenditure, metabolic
equivalents (METs), sleep quality

N/A N/A Self-reported
productivity loss N/A [53]

Physiological
responses and
Stress levels

Construction workers
cardiac reactivity (HR, IBI, HRV,
HRR), electrodermal level and
response (from skin temperature)

N/A Cortisol levels
in saliva N/A N/A [50]

Firefighters
HR, activity based on tri-axial
acceleration counts, skin
temperature, BR

N/A N/A Self-assessed stress N/A [69]

Office workers Cardiac reactivity, physical
activity, sleep quality N/A N/A Perceived stress Relative humidity [54,60]

Police officers HR, HRV, BR N/A N/A Self-reported stress N/A [56]

Physical activity
patterns
assessment

Nurses

Activity, posture and sleep
patterns from acceleration counts,
circadian rhythm parameters and
sleep quantity; angular
displacement waveforms of upper
arm elevation and trunk
flexion/extension; HR

N/A N/A

Emotional and
physical wellbeing;
behavioural variables
(sleep quality, affect,
anxiety, life
satisfaction,
personality)

N/A [44,52,62,
75]

Office workers Activity based on accelerometer
counts N/A N/A N/A N/A [43]

Heart rate (HR), electrocardiogram signals (ECG), heart rate variability (HRV), photoplethysmography (PPG), oxygen uptake (VO2), ratings of perceived exertion (RPE), electroencephalogram signals (EEG),
electromyogram (EMG) and breathing rate (BR).
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From the extracted information, the most notable outcome is related to cardiovascular
activity monitoring, with only six [43,44,47,52,62,74] from the 38 studies not including one
or more heart rate derived variables in their analyses. For this purpose, the chosen equip-
ment consisted mainly of Polar and Garmin heart rate monitors and Equivital, Zephyr and
Ecgmove multivariable signals monitors. On the other hand, thermal responses (skin or core
body temperature) were identified in 11 of the 38 publications [40,42,45,50,51,65,68,69,72,73,76].
Core temperature was measured with ingestible thermometric pills and skin temperature
from various body parts was mainly collected using Equivital LifeMonitors and E4 Empat-
ica wristband-type sensors.

Respiratory rate was examined in six works [45,47,51,56,68,69] through Equivital and
Zephyr monitors, among others. Similarly, physical activity patterns were monitored
in 14 studies [42–44,52,53,57,59,61,62,69,70,73–75] by using tri-axial accelerometers from
ActiGraph, Fitbit and GeneActiv. Concerning the processing and analysis of these variables,
traditional methods were the most recurrent approach. Most of the articles recurred to
statistical tests to examine the data and present outcomes. Less observed was the use of
customised algorithms and machine learning methods [47,50,62,76].

3.3. Risk of Bias Assessment and Quality of Results

A customised table was used to assess the risk of bias and results quality, with each
article being analysed according to 25 items from seven categories. Criteria aimed to
address methodological difficulties and potential risks of bias of obtained results. Results
per category are compiled in Figure 6 and detailed in Appendix B. Overall, studies were
rated as positive in quality since they presented scores above 50% and, no article was
considered for exclusion. Still, methodological weaknesses were observed in all of them
and no article reached the highest score. Some of these weaknesses were related to the
studies design, with no study including control groups, and two not providing details on
the performed statistical analysis. Both factors do not necessarily mean biased results, but
they would certainly enrich their quality and generalisability.

Figure 6. Risk of bias assessment overall results.

In addition, only three investigations [40–42] declared randomisation procedures
in the participants category, and none described power adjustment or consideration to
account for the adequacy of sample size. For four cases [48,53,65,76], with samples un-
der 10 participants, the number of subjects was not considered representative to assure
statistical power in the study. As part of the data sources evaluation, nearly half of the
papers [42–46,48,49,51,52,54,56,58,60,63,72,73,77]) indicated that not all subjects homoge-
neously completed all parts of the protocols. Concerning any form of reporting bias, most
of the criteria were fulfilled and, weaknesses were found when verifying the description of
withdrawals and dropouts in six studies [40,41,44,66,67,70]. Finally, the limitations assess-
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ment revealed that 16 out of the 38 studies [40–42,44,47,49,50,55,57,59,63,67,68,71–73] did
not describe the limitations and opportunities to improve their developed investigations.

4. Discussion

This review focused on assessing continuous physiological responses during working
activities to systematise the evidence of physiological monitoring applications for occu-
pational settings through noninvasive procedures. Studies goals were mainly to quantify
the impact of specific physically demanding tasks and examine the heat stress associated
with some occupational environments. The analysis from VOSviewer (Figure 2) gave a
first glance at the results and studies tendencies. However, no strong connection between
the terms was found, and only six clusters were formed among them. Still, the main term
“wearable sensors” was related with “heart rate” (including “heart rate variability” and
“cardiac output”), “physical activity” and “motion tracking”, their respective measurement
methods “accelerometer”, “electrocardiogram”, “photoplethysmography” and potential
examined conditions “performance”, “fatigue” and “stress”. Within the 38 articles, these
terms were relevant and consistent with the investigation line and identified goals.

4.1. Monitored Physiological Variables
4.1.1. Cardiac and Thermal Responses

Results revealed the cardiac responses to specific occupational activities as the most
considered monitoring approach. Consistently, a vast amount of available literature has ev-
idenced heart rate as the most widely used form of physiological information for personal
health conditions [78,79]. Based on current occupational physiology research, this goal
can be explained since this variable is sensitive to various work-related conditions such
as changes in physical and mental fatigue [80,81] and sleep and circadian issues [82,83].
Furthermore, heart rate variability has been identified as a valid measurement of autonomic
nervous system regulation [84] and is influenced by other physiological systems, particu-
larly the respiratory, endocrinological and immunological [85]. Authors also stated that
these variables (heart rate and heart rate variability) have both time and cost advantages
over other methods, such as biomarker testing, being also noninvasive [12]. Specifically,
heart rate variability has been previously concluded to be the most useful physiological
metric for fatigue measurement among some occupational groups [85]. However, in this
regard and despite its proven usefulness, other authors indicated that further studies are
still needed to prove that this variable can improve fatigue monitoring [26,86].

Studies also monitored thermoregulatory responses and physical activity patterns
based on accelerometry to improve heart rate evaluation accuracy. Authors proved the
relevance of combining thermal and cardiac responses since their results together were
more accurate than individually [87,88]. According to normative guidelines [89] and avail-
able literature [90,91], cardiac and thermal measurements are not conclusive indicators
by separate since the interaction among environment, physical demands, personal pro-
tective equipment, anthropometrics and other individual and contextualised factors are
multifaceted [92]. However, these variables combined are reliable markers of various occu-
pational risks (e.g., acute stress, physical exertion and heat strain) and health associated
effects. During intense physical activity (as in most referred professions), the human core
body temperature rises and, through thermoregulatory changes, the body tries to maintain
its core body temperature. Hence, by exploring the patterns of this variable, comprehension
of physical demands could be advanced [88].

4.1.2. Other Monitored Variables

Occupational physical activity or work-related physical activity (generally measured
from tri-axial accelerometers) was found of particular and ongoing interest since it can
be related to various health risks for workers if completed improperly, repetitively or in
the absence of remedial measures [93]. According to retrieved results, physical activity
monitoring is an effective approach in the work environment, especially when combined
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with physiological data collection, with the selection of the most suitable physiological
parameters for monitoring depending on the specific research objective.

Alternatively, respiratory variables also provided useful information about physical
exertion and fatigue during occupational activities. Among the analysed studies, they
were used for measuring the physiological cost of working activities [51,67], although none
utilised them for physical exertion modelling. The respiratory rate has relevant implications
for different fields (from survivor identification in civil and military scenarios to examining
outdoor activities’ physical effort and, even, as an indicator of emotional or cognitive
load [94]), with recent studies relating it more to physical effort than heart rate and oxygen
consumption under various experimental conditions that affect fatigue development (e.g.,
hypoxia, muscle fatigue and heat exposure) [95,96]. The use of respiratory rate information
combined with heart rate variability has been previously addressed for stress detection
and management [97]. Studies that monitored this variable have proven its usefulness,
but further research is needed to deeply explore the reported previous outcomes within
occupational environments.

In general, the included studies’ findings described how physiological monitoring
could report diverse occupational health risks and how these variables respond differently
based on individual differences. Monitoring physiological responses in real-time would
allow for the possibility of adaptations to optimise an individual’s performance in the face
of the developed task and according to his capabilities [98]. Combined with contextual
data, physiological variables provide valuable tools for enhancing assessment procedures
adapted to tasks’ characteristics. As literature shows, a generalised approach is insufficient
to assess occupational stress on an individual level [99], meaning that wearable technology
might be a good alternative since it increasingly allows obtaining continuous physiological
data from individuals during training or working conditions. However, data must be
combined with the subjects’ and contextual characteristics, and translated into simple and
actionable information for both workers and leaders.

4.2. Physiological Monitoring Systems and Processing Methods

Several methods for continuous physiological monitoring have been developed, ac-
cepted among various research fields and used or feasible in the workplace to reduce the
risk of work-related health impairments. Observing the selected articles, the simultaneous
use of sensors for multivariable continuous measurements was a clear tendency. A variety
of devices were identified, and, as Appendix A details, most of them referred to integrated
physiological monitors able to capture multivariable signals simultaneously. These devices
included the Equivital LifeMonitor [21] (a multivariable signal device with ECG and respi-
ratory monitor, inbuilt medical-grade thermometer and tri-axis accelerometer), identified
in seven studies [42,51,57,63,69,73,77], and the Zephyr status monitor (including ECG,
skin temperature, breathing rate and tri-axis inertial signals) observed in three [45,53,56].
Wristband-type devices such as the E4 from Empatica (including PPG, electrodermal activ-
ity, skin temperature and tri-axis signals) and the Basis Fitness (PPG and tri-axial signals)
were also used in two studies each [49,50,59,76].

Cardiac signals were mostly measured with different versions of the Polar heart rate
monitor [100] (eight studies [40,49,65,67,68,70–72]), while ActiGraph [101] and Fitbit [102]
accelerometers were found in three studies each ([53,62,73] and [70,74,75], respectively) to
report physical activity characteristics. Regarding core temperature monitoring, ingestible
thermometer pills were used in three studies [51,65,73]. Furthermore, e.g., for heat stress
assessment, additional equipment such as portable weather meters were used.

Most of the physiology data were computed through posterior statistical analysis,
an approach that makes its applicability for real-time prediction unfeasible. The most
recent approaches included customised and supervised machine learning algorithms
(such as Hidden Markov models and Gaussian support vector machine algorithms) to
classify different fatigue levels, heat stress and physical activities intensity. Regarding
how data are presented, some studies used personalised mobile applications to summarise
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outcomes and alerts from health monitoring [59] and provide real-time feedback. One
study even addressed the positive health effect of periodically reporting this information
to workers [58]. These examples help evidence the evolution in data management. The
trend continues in assessing traditional fatigue and physiological workload indicators
(heart rate, thermal responses, respiration signals). The difference lies in using the new
available computational techniques, giving rise to a new generation of effective non-
intrusive mechanisms to monitor health variables.

4.3. Safety and Health Applications

Six general research areas were identified, and Figure 7 provides an overview of the
number of studies related to each, categorised by the occupational groups assessed. The size
of each bubble is proportional to the number of studies found within each specific objective
and occupational group. The green colour scale represents the scores (0–1) obtained from
the risk of bias assessment, increasing the colour intensity as it approximates to 1. The
average score and number of studies are presented inside each bubble.

Figure 7. Map of reviewed articles based on research goals and occupational groups. Each bubble represents the number of
studies under each category (size) and the results from the risk of bias assessment (colour scale).

4.3.1. Thermal Stress

Within studies one common goal was to examine the physiological responses of heat
stress exposure among various professions (e.g., construction [66,67,70], mining rescue
workers [51] and farmworkers [45]). Results reported that when workers develop activities
outdoors (as in most examined cases), the combined application of environmental and
physiological measurements is the best alternative for evaluating heat stress and strain in
hot climates. These measurements are essential not only for hot climates exposure but also
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for extremely cold temperatures faced by these same occupational groups [103]. However,
studies from this review did not address cold assessment in the field context.

Nevertheless, literature has demonstrated the growing interest in cold exposure assess-
ment focusing on controlled-laboratory conditions evaluation [104]. Working in outdoors
arctic conditions, for example, requires protection against cold and high wind speed,
while the varying ambient conditions and workload create problems in the adjustment
of the thermal insulation of clothing during work. Recent studies have addressed these
issues [105], but there is a current gap in physiological assessments in the field because
studies examining real-life conditions usually focus on environmental or subjective evalua-
tions [106,107]. As a result, studies express the current need for occupational heat and cold
exposure real-time assessment methods, being required to examine not only subjective
scales or weather station data to characterise the effects of climate-related changes but also
using physiologic endpoints at the individual level. Given the usefulness and limitations
from subjective and objective (through physiological monitoring) assessments, an optimal
evaluation approach would combine both to be able to have a deeper understanding on
the impact of occupational demanding activities on the individual.

Research perspectives in occupational settings should always consider performing
individually based assessments. For this purpose, the inclusion of both cardiac and
thermal responses appears essential, but how to best measure them differs. Even if core
body temperature provides the most accurate estimate of heat or cold stress effects, its
continuous monitoring is not always feasible and, sometimes, not recommended (e.g.,
mining rescue work [51]). Alternatively, combining skin temperature with heart rate
is the best proxy measure for field use in first responders at this time since the skin
transfers heat from the body core to the atmosphere guided by complex thermoregulation
and other physiological adaptation mechanisms. Complementarily, recent laboratory
studies [108] have also addressed the potential of heart rate and skin temperature along
with electrodermal response to assess work-related heat stress since this variable can be a
useful indicator of bodily response to humidity, high temperatures and physical activity.
However, further work is needed to determine this applicability during regular working
conditions.

4.3.2. Physiological Workload

Additionally, what was common among 11 publications [42,46,48,53,58,65,71–73,76,77]
was the assessment of the physiological workload resulting from specific activities that was
defined in several ways depending on the monitoring goal. However, all studies agreed on
how continuous monitoring of physical load in workers can increase an understanding of
their health conditions and performance effects [48,53]. In the referred 11 studies, target
groups were mainly firefighters and variables such as maximal heart rate, physical activity-
related variables, age and environmental variables (e.g., WBGT) were found as essential
metrics for workload estimation. Some also included measurements of core temperature.
Similar to what happens when assessing the effects of extreme temperatures, this variable
gives an accurate representation of the internal body reactions to physically demanding
activities but is not feasible to be continuously measured in all occupational environments.

Furthermore, within one of the most recent studies [76], variables such as electroder-
mal activity and skin temperature were also evidenced as highly informative signals to
assess the effects of different workloads. Research on the applicability of these variables has
increased, particularly among construction workers [25,87,108]. However, while promising,
most of these investigations have been developed in controlled conditions, which indicates
that their in-field application can be a short-term research perspective.

4.3.3. Stress Detection

Within studies, stress monitoring was a clear assessment interest among diverse
occupations (construction workers [50], police officers [56], firefighters [69] and office
workers [54,60]), with five papers [50,54,56,60,69] presenting goals directly oriented in this



Sensors 2021, 21, 7249 16 of 29

regard. The impact of stress on health conditions is well recognised [109], and literature
has evidenced how stress perceptions activate physiological responses [110], with reviews
gathering findings on this topic also being developed [111–113]. Considering the low-cost
and availability of good quality sensors, it was demonstrated that, in general, collecting
data in a real environment and highly stressful occupations is feasible. Real-time psy-
chophysiological monitoring can serve as an early screening for chronic stress symptoms
and the basis for further contact with professional care. The outcomes from the current
review suggest that a proper evaluation of chronic occupational stress would undoubtedly
improve the prevention of stress-related disorders, enhance job satisfaction and quality of
life of the employees, and decrease errors inflicted by the human factor [69].

For this aim, examined variables included mainly cardiac reactivity (heart rate, heart
rate variability, percentage of heart rate reserve) and accelerometry data combined with
perceived stress scales. Stress assessment using this multivariable psychophysiological
approach was indeed concluded as a more reliable alternative for monitoring and even
early screening of chronic stress than using any of the variables by separate. Consistently,
literature from the current and other related reviews showed that, despite its undeniable
merits, stress assessment based solely on heart rate metrics (the most common method
to assess the impact of stress and various related conditions) is not accurate enough
since several factors affect it, like the circadian rhythms, physical activities and body
position [110]. Combining these measurements with data from other sensors could explain
differences in heart rate measures among various psychophysiological states. The inclusion
of accelerometric data helps control physical activity by assessing the type of motion [69].

Other identified variables included noninvasive variables: electrodermal activity [50],
skin temperature [50,69] and respiratory rate [56,69]; biochemical markers such as cortisol
levels [50]; and environmental conditions [60] (this last when stress may be associated with
environmental factors, specifically hot or cold exposure). Finally, regarding processing
methods, Jebelli et al. [50] proved that the application of supervised learning machine
algorithms could be a feasible option for translating the multivariable measurements
(cardiac reactivity variables, electrodermal level and response through skin temperature)
into stress levels, which can contribute to assessing workers in real-time during their
regular activities.

4.3.4. Physical Activity Patterns

Examining activity patterns through accelerometry was observed as another important
measurement goal, with five studies (four including nurses [44,52,62,75] and one with office
workers [43]) focused on assessing any of these variables. Two papers monitored working
postures [44,62], one examined the sedentary profiles of office workers [43], another one
analysed sleep disorders while working in rotative shifts [52] and the last one addressed
sleep patterns and their correlates with physical activity [75]. Actigraphs located in various
body parts were the most used method. However, articles evidenced that estimates of
physical activity measured solely with one or two (waist or wrist-worn) physical activity
monitors may insufficiently capture physical work demands for nursing personnel and
professionals with similar work characteristics. Changes in temperature, humidity and
emotional stress (among other factors) may cause an increase in e.g., heart rate (observed
as one reliable indicator of autonomic activity) without an increase in physical activity [62].

Furthermore, activity classification based only on counts per min may not be enough
in some cases to distinguish activities with similar physical intensity. Studies have previ-
ously shown that it is possible to classify specific behaviours based on a single wearable
sensor [114] and even estimate the energy requirements through various prediction meth-
ods [115]. However, more detailed sensor information is needed for accurate activity
classification than one value per min, such as high-frequency data or additional sensors
such as gyroscopes [14]. These more complex sensing and analysis methods often need
calibration for groups or individual subjects, which hinders the comparability of reported
behaviour patterns [43]. Therefore, activity monitors provide valuable information to
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understand rhythms and predict active and sedentary behaviours. However, they require
additional physiological or contextual variables to make the outcome useful in innovative
physical activity interventions towards healthy behaviours.

4.3.5. Cardiac Activity

Most articles used at least one heart rate derived variable in their assessments and four
had goals directed mainly to examine their responses. Heart rate is an essential indicator
of physical activity and overload [116,117], with its rate variability being demonstrated as
an effective health and performance tool in tactical environments [12,118]. Electrocardiog-
raphy and photoplethysmography were the applied methods, and, various metrics from
both signals (heart rate, heart rate variability and percentage of heart rate reserve) were
extracted to provide information on subjects’ physical and mental health. Several studies
proved that continuous heart rate monitoring can be used to detect any abnormal value
that could result from a worker’s health problems such as fatigue, cardiovascular disease
(e.g., heart valve problems, arrhythmia, heart attack and stroke), or heat-related injuries
(e.g., heat stroke and heat exhaustion) [49].

In addition, it was demonstrated the feasibility of obtaining high-resolution elec-
trocardiogram signals during physically intense activities such as firefighting [64]. The
continuous field monitoring strategy of these groups could provide new insight into the
association between their particular professional lifestyle and high cardiac risks. Given the
characteristics of their duties, future research trends should develop algorithmic guidelines
designed to route at-risk professionals for optimal cardiac care to reduce their modifiable
cardiovascular risk factors.

4.3.6. Fatigue

Human fatigue reduces physical activities’ capability because of preceding physical
exertion or excessive physical overload [25]. It degrades performance and health, causing
errors, incidents and accidents in operational contexts, and has been extensively studied
through both subjective and objective methods [1,26,118]. However, despite its prevalence
and well-studied consequences, a fatigue objective physical manifestation has not been
well documented in occupational settings [119]. Occupational fatigue research has almost
exclusively implemented subjective assessments in questionnaires, primarily based on self-
reports dealing with perceived fatigue and outcomes based upon work-related incidents.
Such subjectivity is not representative of actual human performance-based functionality
and can easily be manipulated to reflect the desired outcome [120]. As Mehta et al. [57]
indicate, some of these standardised fatigue surveys are not always appropriate for some
groups (e.g., drillship operators, analysed in their study), nor are they validated against
physiological fatigue outcomes from those workers.

Among results, three articles explicitly addressed fatigue detection through physio-
logical measurements [47,57,74] and compared responses with self-reported fatigue states.
Fu et al. [47] proposed a fatigue detection model based on a dynamic Hidden Markov
Model using cardiac, respiration and EMG signals simultaneously recorded from sen-
sors and sent to a computer by Bluetooth during real driving. This approach, involving
12 professionals and 3.5 h of driving, was concluded as an effective way to make rational
inferences on drivers fatigue. An equivalent physiological fusion alternative for fatigue
detection was proposed by Aryal et al. [87], in a simulated environment and using boosted
tree classifiers. In both cases, the combination of features from the different sensors led to a
higher accuracy than using features from only one of them. These examples suggest that
by integrating modern computing techniques, solid research perspectives are anticipated
as these prediction models can be adapted to several occupational groups and lead the
path to develop warning systems against high levels of physical fatigue and improving
work-rest schedules. Nevertheless, despite its promising perspectives, the success factors
of artificial intelligence implementation in real-life occupational settings have not yet been
deeply evaluated, suggesting another short-term research need.
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4.4. Current Trends and Future Research Perspectives

The different studies addressed in the current review helped to evidence the trends
in research regarding the most monitored physiological variables and the usefulness of
their information. While investigation using physiological monitoring systems is quickly
evolving, limitations for their application and interpretation among occupational groups
emerge. Some studies highlighted the need for standards suitable for application within
physically demanding occupations concerning physiology data interpretation. For example,
in Davis et al. [46] study, results from specific firefighting activities monitoring were
compared with the American College of Sports Medicine guidelines, indicating limits
of age-predicted percentage of maximal heart rate and heart rate reserve (85% and 70%,
respectively) after which exercise should be stopped [121]. Both criteria were reached in
most of the evaluated firefighters and evidenced the tremendous physiological cost of
their activities and the need for specific guidelines or assessment methods for physically
demanding occupations such as those from tactical personnel [117].

Consistently, previous studies concluded that normative guidelines (e.g., ISO 8996 [122])
were not ideal for firefighters, and two new classes for the classification of metabolic and
respiratory responses to intensive work were proposed in the study of Holmér et al. [123].
Furthermore, regarding the feasibility of some measurement approaches, variables with
recognised validity for heat stress assessment (such as core temperature) were of restricted
applicability in some occupational settings, opening the pave for the application of al-
ternative measurements (e.g., skin temperature) or estimation procedures such as those
addressed by Falcone et al. [124].

As expected, most investigations analysed results from multivariable signals through
statistical analysis after all data were collected and evidenced that the real-time analysis
of sensory data should be undoubtedly the focus of future research. On the other hand,
limited evidence was also found in applying other processing methods such as machine
learning techniques. Supervised learning algorithms including dynamic Markov models
and Gaussian support vector machine were used with physiological, motion and contex-
tual data to allow an efficient classification of events (e.g., stress and fatigue levels). The
advantage of these and other similar processing methods is that they can continuously
process large data sets and provide an easy understanding of physiological information,
allowing individualised assessments and timely interventions in the workplace. In ad-
dition, the application of these models also proved that the simultaneous analysis of
multiple physiological signals can improve the accuracy of their predictions and reduce
their sensitivity to errors. Research perspectives should deeply explore the applicability
of these machine learning algorithms conducting real-time assessments while combining
the data from multiple wearable sensors to accurately describe workers’ well-being and
health conditions.

As findings revealed, it is fundamental to understand the causes behind workers’
unsafe behaviours to remove these root causes that do not help manage their job demands.
By leveraging wearable sensors and regularly obtaining data at the individual level, it is
possible to eventually explain how effectively and positively a worker’s physiological reac-
tions can change his/her job demands, as well as safety and productivity performances [53].
In summary, the tendency to use validated variables and procedures for physiological
measurement is maintained for occupational applications and, future perspectives should
be oriented to validate the other referred variables and processing methods within more
extensive samples and during real-life operations.

4.5. Limitations

Despite the obtained results, limitations at the review level include language bias since
studies in languages other than English were not considered, as well as publication bias
because no unpublished research was included. The potential exclusion of some articles
due to the applied rigorous criteria could have left out data sources and, the experimental
procedures heterogeneity (in working tasks, assessed variables, used approaches and data
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processing methods) did not allow conducting a statistical analysis combining the results.
In addition, criteria for assessing the methodological quality and bias may not have been
the most suitable for all articles. Given the high variability across studies, only the most
notable research goal was considered when classifying health-related objectives. Even
though rigorous classification schematised and structured the obtained results providing a
clear understanding of up-to-date research orientations, identified research objectives may
have disregarded other relevant specific study goals of some papers.

5. Conclusions

The current review reports on recent investigations of continuous physiological moni-
toring for quantitative assessments with occupational health-related goals. Responding
to each of the addressed research goals from this study, the following conclusions could
be gathered:

(i) Cardiac variables (specifically heart rate and heart rate variability) were identified
as the most used physiological metrics, providing useful information about various do-
mains affecting workers performance and wellbeing. However, findings also evidenced the
need to use these variables with other metrics and contextualised individual information to
diagnose the studied condition. As a result, skin and core temperature were proved essen-
tial for thermal stress and fatigue assessment and physical activity based on accelerometry
for determining activities workload. Furthermore, the limited (but promising) evidence on
respiratory-related variables associations and electrodermal activity were pointed as the
potential focus in future research.

(ii) Among the included studies, six research objectives were identified and helped
delineate the overall perspective on the research trends among occupational groups. Heat
stress assessment and the quantification of physical demands and workload of specific
activities were the most recurrent. Additional studies were found focusing on the cardiovas-
cular responses to intense and stressful working activities. Fatigue and stress assessments
were also addressed, while various conditions associated with physical activity patterns
were evidenced mainly among nurses. The information extracted and analysed from
each study helped observe which physiological variables were used for each area and
occupational group.

(iii) The latest approaches and systems for measuring human physiology among
occupational groups were retrieved and highlighted using multivariable signals sensors.
The evolution and applicability of these systems were corroborated, but the evidence on
real-time processing approaches was found limited.

(iv) Challenges for future research are centred on the processing methodologies of
physiology information and the application of principled computational techniques that
allow continuous and real-time monitoring in operational settings, promoting to sustain
workers’ given tasks more safely and healthily.

As a result, this review established various directions for further research. It can be
the starting point for future in-field investigations by providing a general view on the up-
to-date related research among occupational groups. Furthermore, it can derive into more
in-depth reviews addressing any of the six different research domains in both laboratory
and field conditions. Finally, the limited evidence on the applicability of some physiological
metrics and real-time processing methods can be the focus of further investigations.
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Appendix A

Table A1. Physiological sensors used for continuous monitoring among included studies.

Signals Acquired Physiological Monitoring
Systems

System Specifications/Key
Features

Reported
Measurement
Characteristics

Number of
Studies References

Cardiac only

Polar heart rate monitors
(Polar Electro, Kemple,
Finland): Team Pro, H7,
S625X, RCX3, Vantage XL,
S710

- Water-resistant
- Operating temperature

−10 ◦C to +50 ◦C
- Compatible with other

sensors

Not reported 8 [40,49,65,67,
68,70–72]

H12+ digital Holter recorder
V3.12 (Mortara Instrument,
Milwaukee, Brookfield, WI,
USA)

- 64 mm × 98 mm × 25 mm;
- 12-lead ECG Pacemaker

detection with ECG display
and lead quality check

Not reported 3 [41,64,72]

Garmin Smartwatch (Garmin
International, Olathe, KS):
Forerunner 110 monitor and
Vivoactive HR

- Waterproof
- Fitness tracking
- Rectangular flat dial design

Not reported 3 [46,58,61]

Apple Watch Series 1

- Aluminium case with Sport
Band 38 mm × 42 mm

- Splash resistant
- Battery up to 18 h

Not reported 1 [55]

Heart rate sensor myBeat
WHS-2 (Union Tool Co., Ltd.,
Shanghai, China)

- Resolution of 1 kHz
- Interval per beat
- Analysis of R-R interval

5-min interval 1 [48]

Respiratory only
Open-circuit spirometry
system (K4b2, Cosmed Srl,
Rome, Italy)

- Gold standard wearable
metabolic system

- Sampling period: breath by
breath

- Battery autonomy: 3 h

Not reported 4 [66–68,73]
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Table A1. Cont.

Signals
Acquired

Physiological Monitoring
Systems

System Specifications/Key
Features

Reported Measurement
Characteristics

Number of
Studies References

AeroSport KB1-C ambulatory
metabolic analysis,
open-circuit
spirometry-based system
(AeroSport, Inc., Ann Arbor,
MI, USA)

- Contains electronic
instrumentation, battery,
oxygen and carbon dioxide
sensors, and telemetry
connections to a
microprocessor that permits
radio transmissions of up to
300 m to a receiver and
computer, can be
programmed at 20, 40, or 60-s
intervals

- Compact (7.5 cm × 15 cm ×
5 cm) and lightweight
(1.13 kg)

20-s measurement
interval 1 [71]

Multivariable
signals

Integrated monitor Equivital
Life Monitor EQ-01 and
EQ-02 (Hidalgo, Cambridge,
UK)

- Lightweight and optimised
for long-wear comfort

- Up to 48 h battery life
- 9 belt sizes
- Flexible software platforms

Not reported 7
[42,51,57,
63,69,73,
77]

Chest-strap Zephyr status
monitor

- One size shoulder strap and
three strap sizes, weight: 0.64
ounces

- accuracy (bpm): ±3

Not reported 4 [45,53,56,
59]

Biofeedback 2000 x-pert
system

- Modular system with
wireless connection

EEG, EMG and
respiration modules used,
13 data sections with 15
min interval

1 [47]

Wristband-type biosensor E4
manufactured by Empatica,
Cambridge, Massachusetts

- Includes three sensors: PPG
(photoplethysmography),
EDA (electrodermal activity)
and ST (peripheral skin
temperature)

- size: case 44 mm × 40 mm ×
16 mm and wrist: 110–190
mm

- weight: 25 g
- streaming mode: 24+ h,

recording mode: 32+ h,
charging time: < 2 h

PPG: sampling rate of 64
Hz and an output
resolution of 09 nW/digit.
EDA: 4-Hz sampling
frequency, 900-pS
resolution, and range of
0.01–10 µS. Infrared
thermopile: sampling
rate of 4 Hz and accuracy
of 0.02 ◦C within normal
skin temperature

2 [50,76]

Chest-worn sensor EcgMove
3 (Movisens)

- Combination of ECG and
physical activity sensor in one
compact system

- Comfortable chest strap with
good signal quality for
long-term measurements (up
to 2 weeks)

- Validated energy expenditure
calculation and activity
recognition

Not reported 2 [54,60]

Smart clothing COCOMI
(TOYOBO Co., Ltd., Osaka
city, Japan) (heart rate,
respiration, perspiration,
body surface temperature and
joint angle)

- Underwear-type shirt
integrated with biometric
information sensor (detection
of heart rate) and a 3-axis
acceleration sensor

Not reported 1 [48]
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Table A1. Cont.

Signals
Acquired

Physiological Monitoring
Systems System Specifications/Key Features Reported Measurement

Characteristics
Number of
Studies References

Samsung Galaxy S4 (Android
4.2.2 Jelly Bean Operation
System, octa-core chipset,
1.6-GHz Quad + 1.2 GHz
Quad CPU)

- Smartphone containing an
accelerometer,
STMicroelectronics LSM 330,
and a Sensirion SHTC1
humidity and temperature
sensor

1 [59]

Basis Fitness Wristband: B1
and Basis Peak™ (BASIS, an
Intel Company, San Francisco,
CA, USA)

- Photoplethysmography (PPG)
sensor for heart rate monitoring,
accelerometer, thermometers
(body temperature and outside
temperature) and galvanic skin
response (GSR) sensor

1-min interval 2 [49,59]

Activity
sensor
only

Promove 3D activity sensor
(Inertia Technology, Enschede,
The Netherlands)

- Samples and communicates
wireless motion and orientation
information from three-axial,
fully-digital sensors: 3-D
acceleration, 3-D turn rate
(gyroscope) and 3-D magnetic
field intensity (compass)

- Data is transmitted using the
low-power 2.4 GHz wireless
radio to a central node, which
connects to a computer through
a USB

- Data can also be stored in the
on-board flash memory and
retrieved later over USB or
wirelessly

Samples of accelerations
in three dimensions at 40
Hz and average sum of
the Integral of the
Modulus of Accelerations
(IMA) per minute

1 [43]

LSM9DS0 sensors by
STMicroelectronics, a
wearable microcontroller, the
Adafruit Flora, via I2C

- 3D accelerometer, 3D
gyroscope, 3D magnetometer

- Available in a plastic land grid
array package and guaranteed
to operate over an extended
temperature range from −40 ◦C
to +85 ◦C

Not reported 1 [44]

Wrist actigraph (Ambulatory
Monitoring, Inc., Ardsley, NY,
USA)

- Basic sleep estimation,
high-resolution analogue data
collection, simultaneous
environmental data collection,
subjective wearer input
features, and comprehensive
sleep scoring and sleep
distribution data on the wrist

- Lithium battery powered for
long use and come with a full
one-year warranty

1-min epochs 1 [52]

ActiGraph GT9X and
wGT3X-BT (ActiGraph, LLC,
Pensacola, FL, USA)

- Sample rate 30–100 Hz
- Battery life 14–25 days
- Water-resistance 1 m, 30 min
- Wear location: wrist, waist,

ankle, thigh

100 Hz 3 [53,62,73]

Accelerometer-based
wrist-worn activity tracker
Fitbit Flex and Fitbit Charge 2
(Fitbit Inc., San Francisco, CA,
USA)

- 3-axis accelerometer and
vibration motor

- Operating temperature: −10 ◦

to 45 ◦C
- Battery life up to 5 days, battery

type: lithium-polymer

Not reported 3 [70,74,75]
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Table A1. Cont.

Signals
Acquired

Physiological Monitoring
Systems System Specifications/Key Features Reported Measurement

Characteristics
Number of
Studies References

GeneActiv accelerometer
wristband

- Lightweight waterproof
wristband

- Outputs acceleration, light and
temperature data at up to 100
Hz

- High resolution, raw SI unit
data in an open format

- Battery life: 1 week to 1 month
- Body locations: wrist, upper

arm, chest, waist, thigh, ankle
- Operating temperature 5–40 ◦C
- FDA 510(k) exempt, European

Class 1 medical device

Not reported 1 [59]

Philips Actiwatch Spectrum
Pro

- Battery life: 55 days with four
scores per day

- Size: 37 × 35 × 12 mm and
weight: 31 g (with band)

- Waterproof (1 m for 30 min)
- Operating temperature 5 to

40 ◦C
- Contains seven data channels:

white photopic light
illuminance, red, green and
blue light irradiance, activity,
off-wrist and event marking

Not reported 1 [74]

Core tem-
perature
only

Ingestible thermometric pill
(Jonah VitalSense,
Respironics, Bend, OR, USA)

- Accuracy: ± 0.1 ◦C (32 ◦C to
42 ◦C) and ± 0.25 ◦C (42 ◦C to
50 ◦C)

- Data resolution ± 0.01 ◦C
- Sensing range 25 ◦C to 50 ◦C,

reception range within one
meter

- Battery life up to 240 h active
transmission

- Dimensions: 23 mm × 8.6 mm
and weight 1.6 g

Not reported 3 [51,65,73]

Appendix B

Table A2. Methodological and risk of bias analysis of selected studies. Final scores (0–1) are presented using a green colour
scale (more intense for higher scores).

Study
Reference

Risk of Bias Assessment Criteria

Score:Study
Design Participants Data

Sources
Reporting

Bias Limitations Generalisability
Potential

Sources of
Bias

[40] 0.86 0.60 1.00 0.83 0.00 0.00 1.00 0.61
[41] 0.86 0.80 1.00 0.83 0.00 1.00 1.00 0.78
[42] 0.86 0.80 0.50 1.00 0.00 1.00 1.00 0.74
[43] 0.86 0.60 0.50 1.00 1.00 1.00 1.00 0.85
[44] 0.86 0.40 0.50 0.83 0.00 1.00 1.00 0.66
[45] 0.86 0.40 0.50 1.00 1.00 1.00 1.00 0.82
[46] 0.86 0.40 0.50 1.00 1.00 1.00 1.00 0.82
[47] 0.86 0.40 1.00 1.00 0.00 1.00 1.00 0.75
[48] 0.86 0.40 0.50 1.00 1.00 1.00 1.00 0.82
[49] 0.86 0.40 0.50 1.00 0.00 1.00 0.33 0.58
[50] 0.86 0.20 1.00 1.00 0.00 1.00 1.00 0.72
[51] 0.86 0.60 0.50 1.00 1.00 1.00 1.00 0.85
[52] 0.86 0.60 0.50 1.00 1.00 1.00 1.00 0.85
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Table A2. Cont.

Study
Reference

Risk of Bias Assessment Criteria

Score:Study
Design Participants Data

Sources
Reporting

Bias Limitations Generalisability
Potential

Sources of
Bias

[53] 0.86 0.40 1.00 1.00 1.00 1.00 1.00 0.89
[54] 0.86 0.60 0.50 1.00 1.00 1.00 1.00 0.85
[55] 0.86 0.40 1.00 1.00 0.00 1.00 1.00 0.75
[56] 0.86 0.40 0.50 0.83 1.00 1.00 1.00 0.80
[57] 0.86 0.40 1.00 1.00 0.00 1.00 1.00 0.75
[58] 0.86 0.60 0.50 1.00 1.00 1.00 1.00 0.85
[59] 0.86 0.60 1.00 1.00 0.00 1.00 1.00 0.78
[60] 0.86 0.60 0.50 1.00 1.00 1.00 1.00 0.85
[61] 0.86 0.60 1.00 1.00 1.00 1.00 1.00 0.92
[62] 0.86 0.60 1.00 1.00 1.00 1.00 1.00 0.92
[77] 0.86 0.40 0.50 1.00 1.00 1.00 1.00 0.82
[63] 0.86 0.60 0.50 1.00 0.00 1.00 1.00 0.71
[64] 0.86 0.40 0.50 0.83 1.00 1.00 1.00 0.80
[65] 0.86 0.20 1.00 1.00 1.00 0.00 1.00 0.72
[66] 0.86 0.20 0.50 0.67 1.00 1.00 1.00 0.75
[67] 0.86 0.60 0.50 0.83 0.00 0.00 1.00 0.54
[68] 0.86 0.60 1.00 1.00 0.00 1.00 1.00 0.78
[69] 0.86 0.60 1.00 1.00 1.00 1.00 1.00 0.92
[70] 0.86 0.60 1.00 0.83 1.00 1.00 1.00 0.90
[71] 0.71 0.40 1.00 1.00 0.00 1.00 1.00 0.73
[72] 0.86 0.60 0.50 1.00 0.00 1.00 1.00 0.71
[73] 0.86 0.60 0.50 1.00 0.00 1.00 1.00 0.71
[74] 0.86 0.40 1.00 1.00 1.00 1.00 0.57 0.83
[75] 0.86 0.60 1.00 1.00 1.00 1.00 0.71 0.88
[76] 0.86 0.20 1.00 1.00 1.00 1.00 0.43 0.78
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Rate Variability and Accelerometry as Classification Tools for Monitoring Perceived Stress Levels—A Pilot Study on Firefighters.
Sensors 2020, 20, 2834. [CrossRef]

70. Al-Bouwarthan, M.; Quinn, M.M.; Kriebel, D.; Wegman, D.H. A Field Evaluation of Construction Workers’ Activity, Hydration
Status, and Heat Strain in the Extreme Summer Heat of Saudi Arabia. Ann. Work Expo. Health 2020, 64, 522–535. [CrossRef]
[PubMed]

71. Abdelhamid, T.S.; Everett, J.G. Physiological demands during construction work. J. Constr. Eng. Manag. 2002, 128, 427–437.
[CrossRef]

72. Angerer, P.; Kadlez-Gebhardt, S.; Delius, M.; Raluca, P.; Nowak, D. Comparison of Cardiocirculatory and Thermal Strain of Male
Firefighters during Fire Suppression to Exercise Stress Test and Aerobic Exercise Testing. Am. J. Cardiol. 2008, 102, 1551–1556.
[CrossRef] [PubMed]

73. Horn, G.P.; Kesler, R.M.; Motl, R.W.; Hsiao-Wecksler, E.T.; Klaren, R.E.; Ensari, I.; Petrucci, M.N.; Fernhall, B.; Rosengren, K.S.
Physiological responses to simulated firefighter exercise protocols in varying environments. Ergonomics 2015, 58, 1012–1021.
[CrossRef] [PubMed]

74. Brzozowski, S.L.; Cho, H.; Arsenault Knudsen, É.N.; Steege, L.M. Predicting nurse fatigue from measures of work demands. Appl.
Ergon. 2021, 92, 103337. [CrossRef] [PubMed]

75. Feng, T.; Booth, B.M.; Baldwin-Rodríguez, B.; Osorno, F.; Narayanan, S. A multimodal analysis of physical activity, sleep, and
work shift in nurses with wearable sensor data. Sci. Rep. 2021, 11, 8693. [CrossRef] [PubMed]

76. Lee, B.G.; Choi, B.; Jebelli, H.; Lee, S. Assessment of construction workers’ perceived risk using physiological data from wearable
sensors: A machine learning approach. J. Build. Eng. 2021, 42, 102824. [CrossRef]

77. Sol, J.A.; Ruby, B.C.; Gaskill, S.E.; Dumke, C.L.; Domitrovich, J.W. Metabolic Demand of Hiking in Wildland Firefighting.
Wilderness Environ. Med. 2018, 29, 304–314. [CrossRef] [PubMed]

78. Tadic, M.; Cuspidi, C.; Grassi, G. Heart rate as a predictor of cardiovascular risk. Eur. J. Clin. Investig. 2018, 48, e12892. [CrossRef]
[PubMed]

79. Kim, H.-G.; Cheon, E.-J.; Bai, D.-S.; Lee, Y.H.; Koo, B.-H. Stress and Heart Rate Variability: A Meta-Analysis and Review of the
Literature. Psychiatry Investig. 2018, 15, 235–245. [CrossRef] [PubMed]

80. Borg, G.; Hassmén, P.; Lagerström, M. Perceived exertion related to heart rate and blood lactate during arm and leg exercise. Eur.
J. Appl. Physiol. Occup. Physiol. 1987, 56, 679–685. [CrossRef] [PubMed]

81. Hankins, T.C.; Wilson, G.F. A comparison of heart rate, eye activity, EEG and subjective measures of pilot mental workload
during flight. Aviat. Space Environ. Med. 1998, 69, 360–367. [PubMed]

82. Carney, R.M.; Steinmeyer, B.; Freedland, K.E.; Stein, P.K.; Hayano, J.; Blumenthal, J.A.; Jaffe, A.S. Nocturnal patterns of heart rate
and the risk of mortality after acute myocardial infarction. Am. Heart J. 2014, 168, 117–125. [CrossRef] [PubMed]

83. Kang, D.; Kim, Y.; Kim, J.; Hwang, Y.; Cho, B.; Hong, T.; Sung, B.; Lee, Y. Effects of high occupational physical activity, aging, and
exercise on heart rate variability among male workers. Ann. Occup. Environ. Med. 2015, 27, 22. [CrossRef]

84. Laborde, S.; Mosley, E.; Thayer, J.F. Heart Rate Variability and Cardiac Vagal Tone in Psychophysiological Research—
Recommendations for Experiment Planning, Data Analysis, and Data Reporting. Front. Psychol. 2017, 8. [CrossRef]
[PubMed]

85. Ernst, G. Heart-Rate Variability—More than Heart Beats? Front. Public Health 2017, 5. [CrossRef]
86. Lee, W.; Lin, K.-Y.; Johnson, P.W.; Seto, E.Y.W. Selection of wearable sensor measurements for monitoring and managing

entry-level construction worker fatigue: A logistic regression approach. Eng. Constr. Archit. Manag. 2021. ahead-of-print.
[CrossRef]

87. Aryal, A.; Ghahramani, A.; Becerik-Gerber, B. Monitoring fatigue in construction workers using physiological measurements.
Autom. Constr. 2017, 82, 154–165. [CrossRef]

88. Umer, W.; Li, H.; Yantao, Y.; Antwi-Afari, M.F.; Anwer, S.; Luo, X. Physical exertion modeling for construction tasks using
combined cardiorespiratory and thermoregulatory measures. Autom. Constr. 2020, 112, 103079. [CrossRef]

89. ISO. ISO 9886: 2004 Ergonomics—Evaluation of Thermal Strain by Physiological Measurements. 2004. Available online:
https://www.iso.org/standard/34110.html (accessed on 25 August 2021).

90. Cuddy, J.S.; Buller, M.; Hailes, W.S.; Ruby, B.C. Skin Temperature and Heart Rate Can Be Used to Estimate Physiological Strain
During Exercise in the Heat in a Cohort of Fit and Unfit Males. Mil. Med. 2013, 178, e841–e847. [CrossRef]

91. Hunt, A.P.; Billing, D.C.; Patterson, M.J.; Caldwell, J.N. Heat strain during military training activities: The dilemma of balancing
force protection and operational capability. Temperature 2016, 3, 307–317. [CrossRef] [PubMed]

http://doi.org/10.1080/00140139.2013.818719
http://www.ncbi.nlm.nih.gov/pubmed/23869685
http://doi.org/10.1016/j.autcon.2015.11.003
http://doi.org/10.1016/j.apergo.2014.06.002
http://doi.org/10.1016/j.buildenv.2012.07.006
http://doi.org/10.3390/s20102834
http://doi.org/10.1093/annweh/wxaa029
http://www.ncbi.nlm.nih.gov/pubmed/32219304
http://doi.org/10.1061/(ASCE)0733-9364(2002)128:5(427)
http://doi.org/10.1016/j.amjcard.2008.07.052
http://www.ncbi.nlm.nih.gov/pubmed/19026313
http://doi.org/10.1080/00140139.2014.997806
http://www.ncbi.nlm.nih.gov/pubmed/25597759
http://doi.org/10.1016/j.apergo.2020.103337
http://www.ncbi.nlm.nih.gov/pubmed/33264675
http://doi.org/10.1038/s41598-021-87029-w
http://www.ncbi.nlm.nih.gov/pubmed/33888731
http://doi.org/10.1016/j.jobe.2021.102824
http://doi.org/10.1016/j.wem.2018.03.006
http://www.ncbi.nlm.nih.gov/pubmed/29887347
http://doi.org/10.1111/eci.12892
http://www.ncbi.nlm.nih.gov/pubmed/29355923
http://doi.org/10.30773/pi.2017.08.17
http://www.ncbi.nlm.nih.gov/pubmed/29486547
http://doi.org/10.1007/BF00424810
http://www.ncbi.nlm.nih.gov/pubmed/3678222
http://www.ncbi.nlm.nih.gov/pubmed/9561283
http://doi.org/10.1016/j.ahj.2014.04.012
http://www.ncbi.nlm.nih.gov/pubmed/24952868
http://doi.org/10.1186/s40557-015-0073-0
http://doi.org/10.3389/fpsyg.2017.00213
http://www.ncbi.nlm.nih.gov/pubmed/28265249
http://doi.org/10.3389/fpubh.2017.00240
http://doi.org/10.1108/ECAM-02-2021-0106
http://doi.org/10.1016/j.autcon.2017.03.003
http://doi.org/10.1016/j.autcon.2020.103079
https://www.iso.org/standard/34110.html
http://doi.org/10.7205/MILMED-D-12-00524
http://doi.org/10.1080/23328940.2016.1156801
http://www.ncbi.nlm.nih.gov/pubmed/27857960


Sensors 2021, 21, 7249 28 of 29

92. Cheshire, W.P. Thermoregulatory disorders and illness related to heat and cold stress. Auton. Neurosci. 2016, 196, 91–104.
[CrossRef] [PubMed]

93. Mokhlespour Esfahani, M.I.; Nussbaum, M.A.; Kong, Z. Using a smart textile system for classifying occupational manual material
handling tasks: Evidence from lab-based simulations. Ergonomics 2019, 62, 823–833. [CrossRef]

94. Nicolò, A.; Massaroni, C.; Schena, E.; Sacchetti, M. The Importance of Respiratory Rate Monitoring: From Healthcare to Sport and
Exercise. Sensors 2020, 20, 6396. [CrossRef] [PubMed]

95. Nicolò, A.; Massaroni, C.; Passfield, L. Respiratory frequency during exercise: The neglected physiological measure. Front.
Physiol. 2017, 8, 922. [CrossRef] [PubMed]

96. Massaroni, C.; Tocco, J.D.; Bravi, M.; Carnevale, A.; Presti, D.L.; Sabbadini, R.; Miccinilli, S.; Sterzi, S.; Formica, D.; Schena, E.
Respiratory Monitoring During Physical Activities With a Multi-Sensor Smart Garment and Related Algorithms. IEEE Sens. J.
2020, 20, 2173–2180. [CrossRef]

97. Hernando, A.; Lázaro, J.; Gil, E.; Arza, A.; Garzón, J.M.; López-Antón, R.; Cámara, C.d.l.; Laguna, P.; Aguiló, J.; Bailón, R.
Inclusion of Respiratory Frequency Information in Heart Rate Variability Analysis for Stress Assessment. IEEE J. Biomed. Health
Inform. 2016, 20, 1016–1025. [CrossRef] [PubMed]

98. Khoshmanesh, F.; Thurgood, P.; Pirogova, E.; Nahavandi, S.; Baratchi, S. Wearable sensors: At the frontier of personalised health
monitoring, smart prosthetics and assistive technologies. Biosens. Bioelectron. 2021, 176. [CrossRef] [PubMed]

99. Austad, H.; Wiggen, Ø.; Færevik, H.; Seeberg, T.M. Towards a wearable sensor system for continuous occupational cold stress
assessment. Ind. Health 2018, 56, 228–240. [CrossRef] [PubMed]

100. Shumate, T.; Link, M.; Furness, J.; Smith, K.K.; Simas, V.; Climstein, M. Validity of the polar vantage m watch when measuring
heart rate at different exercise intensities. PeerJ 2021, 9. [CrossRef]

101. Karaca, A.; Demirci, N.; Yılmaz, V.; Hazır Aytar, S.; Can, S.; Ünver, E. Validation of the ActiGraph wGT3X-BT Accelerometer for
Step Counts at Five Different Body Locations in Laboratory Settings. Meas. Phys. Educ. Exerc. Sci. 2021. [CrossRef]

102. Benedetti, D.; Olcese, U.; Frumento, P.; Bazzani, A.; Bruno, S.; d’Ascanio, P.; Maestri, M.; Bonanni, E.; Faraguna, U. Heart rate
detection by Fitbit ChargeHR™: A validation study versus portable polysomnography. J. Sleep Res. 2021. [CrossRef] [PubMed]

103. Zlatar, T.; Torres Costa, J.; Vaz, M.; Santos Baptista, J. Influence of severe cold thermal environment on core and skin temperatures:
A systematic review. Work 2019, 62, 337–352. [CrossRef] [PubMed]

104. Jussila, K.; Rissanen, S.; Aminoff, A.; Wahlström, J.; Vaktskjold, A.; Talykova, L.; Remes, J.; Mänttäri, S.; Rintamäki, H. Thermal
comfort sustained by cold protective clothing in arctic open-pit mining—A thermal manikin and questionnaire study. Ind. Health
2017, 55, 537–548. [CrossRef] [PubMed]

105. Ray, M.; King, M.; Carnahan, H. A review of cold exposure and manual performance: Implications for safety, training and
performance. Saf. Sci. 2019, 115, 1–11. [CrossRef]

106. Abed, S.N.; Kadhim, R.A.; Abbas, D.M. Assessment of the work conditions of small slaughterhouses in the Thi-Qar Governorate
in Iraq. J. Public Health Res. 2021, 10, 1–4. [CrossRef]

107. Auttanate, N.; Chotiphan, C.; Maruo, S.J.; Näyhä, S.; Jussila, K.; Rissanen, S.; Sripaiboonkij, P.; Ikäheimo, T.M.; Jaakkola, J.J.K.;
Phanprasit, W. Cold-related symptoms and performance degradation among Thai poultry industry workers with reference to
vulnerable groups: A cross-sectional study. BMC Public Health 2020, 20. [CrossRef] [PubMed]

108. Rodrigues, S.; Paiva, J.S.; Dias, D.; Pimentel, G.; Kaiseler, M.; Cunha, J.P.S. Wearable Biomonitoring Platform for the Assessment
of Stress and its Impact on Cognitive Performance of Firefighters: An Experimental Study. Clin. Pract. Epidemiol. Ment. Health
2018, 14, 250–262. [CrossRef] [PubMed]

109. Vavrinsky, E.; Stopjakova, V.; Kopani, M.; Kosnacova, H. The Concept of Advanced Multi-Sensor Monitoring of Human Stress.
Sensors 2021, 21, 3499. [CrossRef] [PubMed]

110. Thielmann, B.; Pohl, R.; Böckelmann, I. Heart rate variability as a strain indicator for psychological stress for emergency physicians
during work and alert intervention: A systematic review. J. Occup. Med. Toxicol. 2021, 16. [CrossRef] [PubMed]

111. Frazier, S.E.; Parker, S.H. Measurement of physiological responses to acute stress in multiple occupations: A systematic review
and implications for front line healthcare providers. Transl. Behav. Med. 2019, 9, 158–166. [CrossRef]

112. Robinson, A.M. Let’s Talk about Stress: History of Stress Research. Rev. Gen. Psychol. 2018, 22, 334–342. [CrossRef]
113. Clark, C.C.T.; Nobre, G.C.; Fernandes, J.F.T.; Moran, J.; Drury, B.; Mannini, A.; Gronek, P.; Podstawski, R. Physical activity

characterization: Does one site fit all? Physiol. Meas. 2018, 39, 09TR02. [CrossRef] [PubMed]
114. Hwang, J.; Fernandez, A.M.; Lu, A.S. Application and Validation of Activity Monitors’ Epoch Lengths and Placement Sites for

Physical Activity Assessment in Exergaming. J. Clin. Med. 2018, 7, 268. [CrossRef] [PubMed]
115. Achten, J.; Jeukendrup, A.E. Heart rate monitoring. Sports Med. 2003, 33, 517–538. [CrossRef] [PubMed]
116. Seravalle, G.; Quarti Trevano, F.; Grassi, G. Heart rate as a predictor of cardiovascular risk. Minerva Med. 2021, 112, 130–143.

[CrossRef]
117. Smith, D.L.; Haller, J.M.; Benedict, R.; Moore-Merrell, L. Firefighter Incident Rehabilitation: Interpreting Heart Rate Responses.

Prehosp. Emerg. Care 2016, 20, 28–36. [CrossRef]
118. Knoop, V.; Cloots, B.; Costenoble, A.; Debain, A.; Vella Azzopardi, R.; Vermeiren, S.; Jansen, B.; Scafoglieri, A.; Bautmans, I.;

Bautmans, I.; et al. Fatigue and the prediction of negative health outcomes: A systematic review with meta-analysis. Ageing Res.
Rev. 2021, 67, 101261. [CrossRef] [PubMed]

http://doi.org/10.1016/j.autneu.2016.01.001
http://www.ncbi.nlm.nih.gov/pubmed/26794588
http://doi.org/10.1080/00140139.2019.1578419
http://doi.org/10.3390/s20216396
http://www.ncbi.nlm.nih.gov/pubmed/33182463
http://doi.org/10.3389/fphys.2017.00922
http://www.ncbi.nlm.nih.gov/pubmed/29321742
http://doi.org/10.1109/JSEN.2019.2949608
http://doi.org/10.1109/JBHI.2016.2553578
http://www.ncbi.nlm.nih.gov/pubmed/27093713
http://doi.org/10.1016/j.bios.2020.112946
http://www.ncbi.nlm.nih.gov/pubmed/33412429
http://doi.org/10.2486/indhealth.2017-0162
http://www.ncbi.nlm.nih.gov/pubmed/29353859
http://doi.org/10.7717/peerj.10893
http://doi.org/10.1080/1091367X.2021.1948414
http://doi.org/10.1111/jsr.13346
http://www.ncbi.nlm.nih.gov/pubmed/33837981
http://doi.org/10.3233/WOR-192868
http://www.ncbi.nlm.nih.gov/pubmed/30829644
http://doi.org/10.2486/indhealth.2017-0154
http://www.ncbi.nlm.nih.gov/pubmed/29021416
http://doi.org/10.1016/j.ssci.2019.01.014
http://doi.org/10.4081/jphr.2021.1967
http://doi.org/10.1186/s12889-020-09272-6
http://www.ncbi.nlm.nih.gov/pubmed/32887559
http://doi.org/10.2174/1745017901814010250
http://www.ncbi.nlm.nih.gov/pubmed/30972123
http://doi.org/10.3390/s21103499
http://www.ncbi.nlm.nih.gov/pubmed/34067895
http://doi.org/10.1186/s12995-021-00313-3
http://www.ncbi.nlm.nih.gov/pubmed/34187497
http://doi.org/10.1093/tbm/iby019
http://doi.org/10.1037/gpr0000137
http://doi.org/10.1088/1361-6579/aadad0
http://www.ncbi.nlm.nih.gov/pubmed/30113317
http://doi.org/10.3390/jcm7090268
http://www.ncbi.nlm.nih.gov/pubmed/30208567
http://doi.org/10.2165/00007256-200333070-00004
http://www.ncbi.nlm.nih.gov/pubmed/12762827
http://doi.org/10.23736/S0026-4806.20.06695-1
http://doi.org/10.3109/10903127.2015.1037477
http://doi.org/10.1016/j.arr.2021.101261
http://www.ncbi.nlm.nih.gov/pubmed/33548508


Sensors 2021, 21, 7249 29 of 29

119. Bustos, D.; Guedes, J.C.; Vaz, M.P.; Pombo, E.; Fernandes, R.J.; Costa, J.T.; Baptista, J.S. Non-Invasive Physiological Monitoring for
Physical Exertion and Fatigue Assessment in Military Personnel: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18,
8815. [CrossRef] [PubMed]

120. Thompson, B.J. Does work-induced fatigue accumulate across three compressed 12 hour shifts in hospital nurses and aides? PLoS
ONE 2019, 14, e0211715. [CrossRef] [PubMed]

121. ACSM. ACSM’s Health-Related Physical Fitness Assessment Manual. 2013. Available online: https://www.acsm.org/read-
research/books/acsms-health-related-physical-fitness-assessment-manual (accessed on 20 August 2021).

122. ISO. ISO 8996: 2004 Ergonomics of the Thermal Environment—Determination of Metabolic Rate. 2004. Available online:
https://www.iso.org/standard/34251.html (accessed on 5 August 2021).

123. Holmér, I.; Gavhed, D. Classification of metabolic and respiratory demands in fire fighting activity with extreme workloads. Appl.
Ergon. 2007, 38, 45–52. [CrossRef] [PubMed]

124. Falcone, T.; Cordella, F.; Molinaro, V.; Zollo, L.; Del Ferraro, S. Real-time human core temperature estimation methods and their
application in the occupational field: A systematic review. Measurement 2021, 183, 109776. [CrossRef]

http://doi.org/10.3390/ijerph18168815
http://www.ncbi.nlm.nih.gov/pubmed/34444564
http://doi.org/10.1371/journal.pone.0211715
http://www.ncbi.nlm.nih.gov/pubmed/30730927
https://www.acsm.org/read-research/books/acsms-health-related-physical-fitness-assessment-manual
https://www.acsm.org/read-research/books/acsms-health-related-physical-fitness-assessment-manual
https://www.iso.org/standard/34251.html
http://doi.org/10.1016/j.apergo.2006.01.004
http://www.ncbi.nlm.nih.gov/pubmed/16516136
http://doi.org/10.1016/j.measurement.2021.109776

	Introduction 
	Methods 
	Results 
	Studies Selection 
	Characteristics of the Included Studies 
	Risk of Bias Assessment and Quality of Results 

	Discussion 
	Monitored Physiological Variables 
	Cardiac and Thermal Responses 
	Other Monitored Variables 

	Physiological Monitoring Systems and Processing Methods 
	Safety and Health Applications 
	Thermal Stress 
	Physiological Workload 
	Stress Detection 
	Physical Activity Patterns 
	Cardiac Activity 
	Fatigue 

	Current Trends and Future Research Perspectives 
	Limitations 

	Conclusions 
	
	
	References

