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Abstract: In this paper, a model based on discrete wavelet transform and convolutional neural
network for brain MR image classification has been proposed. The proposed model is comprised of
three main stages, namely preprocessing, feature extraction, and classification. In the preprocessing,
the median filter has been applied to remove salt-and-pepper noise from the brain MRI images.
In the discrete wavelet transform, discrete Harr wavelet transform has been used. In the proposed
model, 3-level Harr wavelet decomposition has been applied on the images to remove low-level
detail and reduce the size of the images. Next, the convolutional neural network has been used for
classifying the brain MR images into normal and abnormal. The convolutional neural network is
also a prevalent classification method and has been widely used in different areas. In this study, the
convolutional neural network has been used for brain MRI classification. The proposed methodology
has been applied to the standard dataset, and for performance evaluation, we have used different
performance evaluation measures. The results indicate that the proposed method provides good
results with 99% accuracy. The proposed method results are then presented for comparison with
some state-of-the-art algorithms where simply the proposed method outperforms the counterpart
algorithms. The proposed model has been developed to be used for practical applications.

Keywords: classification; convolutional neural network; discrete wavelet transform; MRI

1. Introduction

With billions of neuronal cells, the human brain presents one of the intricate patterns of
structural and neural connectivity in the human organism. The characterization of different
sets of the brain, for instance, led to a new multidisciplinary approach in the study of
networks [1-3]. The brain connectivity characterizes networks of brain regions connected
by anatomical traits [4,5]. Understanding biological neuronal networks, particularly in the
human brain, requires proper knowledge of the network architecture of the whole brain [6].
Thus, over the past decades, the brain-mapping methods and neuroimaging techniques
for the pattern of neuronal networks gained great interest [7]. In this context, the wide
range of quantitative analysis of imaging datasets in the study of the human brain plays an
essential role in detecting brain disorders and early diseases [8].
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Magnetic Resonance Imaging (MRI) is a medical imaging modality that attracts atten-
tion in biomedical engineering and is known as a safe, non-invasive, non-persistent, and
pain-free diagnostic technique. Medical images can be obtained from X-ray radiography,
Computed tomography (CT), and other modalities. However, Magnetic Resonance Imaging
(MRI) does not cause radiation and employs a uniform magnetic field and Radiofrequency
(RF) to expose the human body to gain images of the internal body system. MRI images
can be presented with high-quality images in terms of resolution and contrast in 3D and 2D
formats. These digital formats give a vast amount of information about internal diseases for
soft tissue differentiation and further analysis and classification. MRI can provide detailed
information about abnormalities in the soft tissue [9] that may not be determined by CT or
X-ray radiography.

In this paper, we proposed a new method based on convolutional neural network
(CNN) and discreate wavelet transform for brain MRI classification. Recent advances
in neuroimaging techniques have resulted from complex neurological disorders, often
in terms of several challenges in early diagnosis and treatment. On the one hand, these
developments have taken place due to continuously produced medical data thanks to
tangible progress in automated CAD systems in medical imaging informatics. MRI-based
medical images, for instance, are more than pictures; they are data [10,11]. On the other
hand, most biomedical images show differences in brightness, shape, and texture [12].
Due to its intrinsic nature, the segmentation process of any medical image is a time-
consuming and challenging task [13]. Therefore, as the images of the human brain fall
together with ‘big data’” [14], there is an increasing demand for an automated image
processing to analyze and classify in terms of the latest applications in machine-learning
techniques [15].

Deep learning (DL) is a subfield of machine learning that extends traditional neural
network (NN) to models that mainly focus on feature learning. Compared to other DL
models, a CNN with a set of algorithms and techniques has become a successful tool in MRI
image classification [16]. An important aspect of CNN in DL is that the necessary features
can be learned through directly providing images known as end-to-end strategy, i.e., there
is no need to extract information from images first to feed CNN [17]. CNN has three
fundamental mechanisms: a local receptive field, weight sharing, and subsampling, and
consists of several layers, including convolutional and pooling layers, and each feature map
in a pooling layer is connected to a feature map in a convolutional layer. CNN has been
widely used in medical imaging for breast tissue classification and lung nodule detections.
Later CNN became very popular in the MR image classification for tumor-like lesions and
tissue segmentation and detection and deep cortical and subcortical white matter structures
and tissue segmentation [18].

Quantitative analysis of MRI-based images, in general, plays a vital role in clinical
diagnosis for the treatment of neurological diseases. With a high resolution, MRI easily de-
tects signals emitted from normal and abnormal tissue [19], providing valuable information
in distinguishing healthy and diseased brains. Several studies previously have examined
in developing machine learning algorithms for MRI-based image segmentation of normal
(e.g., white and gray matter) and abnormal brain tissues (e.g., brain tumor) [13,15,20,21].
Nevertheless, the classification of brain MRI slices as normal and abnormal is still a chal-
lenging task [21]. Developing a robust segmentation method, for instance, is a crucial
element in the successful classification of brain MRI images [13]. This paper deals with the
novel classification of MRI data of normal and pathological brain tissues using a robust
segmentation method that employs deep learning technique based CNNs. In recent years,
CNN s have gained significant interest in medical imaging [22,23] and have become more
prevalent in image classification methodology.

In image analysis methods, feature extraction is a method of dimension reduction. At
some point, the following process concentrates on the extraction of specific features from
brain MRI images [24]. Several methods reported different techniques for feature extraction
in image classification, wavelet transform-based techniques [25] such as Discrete Wavelet
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Transform (DWT) [26] and Continues Wavelet Transform (CWT) [27]. For feature reduction
studies, the most used techniques are already available, e.g., Linear Discriminate Analysis
(LDA) and Genetic Algorithm (GA) [28], Independent Component Analysis (ICA) and
Principal Component Analysis (PCA) [29]. Wavelets transform, for instance, has become a
prevalent choice for multiple imaging techniques and MRI classification features, thanks to
its effective non-stationary signal analysis method [30]. In this context, we have proposed a
novel approach for image classification by integrating wavelet transform to extract features
from MRIs.

This work has proposed a novel method based on Discrete Wavelet Transform (DWT)
and Convolution Neural Network (CNN) for brain MRI classification. The main contribu-
tion is the new assembling of a discrete wavelet transform with the convolutional neural
network. The discrete wavelet transform has been used to remove unnecessary detail
and make the image more informative and efficient for machine learning algorithms to
classify. The reason behind using discrete wavelet transform with a convolutional neural
network is that the approximate images returned by discrete wavelet transform have denser
information and proficiency for classification than original images.

Most research focused on the classification of brain images as normal or abnormal
for abnormal brain MRI studies. In the presence of any pathological appearance, the next
stage will be location identification and the medical recommendation. The division of
brain MR images into normal and abnormal can be carried out in two ways: (1) using the
conventional machine learning models, e.g., artificial neural network, logistic regression,
k-nearest neighbors, decision tree, support vector machine, and random forest; (2) using
deep learning models, e.g., CNN, stacked autoencoder (SAE), Boltzmann machine (BM),
long short-term memory (LSTM), etc. The conventional classification models and the deep
learning models have their pros and cons when applied for image classification.

When the normal or standard classifiers are used for the purpose, the major contri-
bution is the feature extraction stage, in which a minimal representation of an image is
fed as input to the classifier. In this architecture, some well-known features of images
are extracted, reduced, and then given as the input to the classifier. The major drawback
associated with this phenomenon is the loss of information during the feature extraction
and feature reduction stage. On the other hand, if the feature is not extracted from the
image or not even reduced, the classifier is not too powerful to perform the processing of
the whole image or a higher number of features efficiently. Hence, a trade-off is required
for gaining sufficient information from the images. Eventually, the number of features
extracted must neither be too high nor too low for maintaining a fruitful outcome.

Similarly, if deep network models are used to classify brain MRI images, the whole
image is given as input to the model for performing the classification task. To process the
whole image, the deep network models developed are highly complicated. The complex
models add extra processing time and effort to the model processing. In all previous works
where deep models have been used for classification, the authors have used the whole
image as input to the model, resulting in more processing time as outlined. This drawback
of deep models can be overcome if, instead of the whole image, another representation of
an image with a smaller size is given as input to the deep model.

Our contribution is three-fold: Firstly, the identification of representation of image
adequately enough to represent the whole image without any information loss. After
extensive experimentation, the final and summarized representation was the Harr wavelet
which is more effective and the simplest wavelet in the wavelet’s family. Other wavelets
were also included in the experiments, but their information possessing capability cannot
maintain the information. Secondly, compared to previously proposed CNN or other deep
models, our approach has a simple CNN architecture due to the reasons mentioned above.
Eventually, our proposed model provides simplicity as compared to other deep models
with significantly added performance.

The rest of the paper is organized as follows: Section 2 presents a brief review of the
related work. Section 3 briefly describes the method implemented in this paper. Section 4
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is carried out with the implementation, experimental results, and discussion. Lastly, the
conclusion part is presented in Section 5. The abbreviations with their corresponding
descriptions are listed in Table 1.

Table 1. Notations with the descriptions.

Notation Description
CNN Convolutional Neural Network
DWT Discrete Wavelet Transform
CT Computed tomography
MRI Magnetic Resonance Imaging
ReLU Rectified linear unit
Cov Convolution
LL Low-Low Level Detail
HL High-Low Level Detail
LH Low-High Detail
HH High-High Level Detail
FC Fully Connected
TP True Positive
TN True Negative
PF False Positive
ROC Receiver Operating Characteristic
VEs Validation Errors

2. Related Work

Over the past decades, several studies reported on computer-based neuroimaging
techniques for characterization and processing of MRI brain images that have become
the tool of choice for the diagnosis of brain disorders and early treatment [10,24,31-36].
At the same time, however, automated segmentation and classification of normal and
pathological brain structures are one of the most challenging tasks [15]. Nonetheless,
numerous approaches have been developed applying machine learning techniques to
detect the structural, functional alterations in the human brain; some are described in this
section. For instance, the classification of MRI data in image processing is often a costly,
laborious, and time-consuming task [37].

Numerous works have been done toward feature extraction, segmentation, and clas-
sification of MRI images to develop different versions of algorithms and deep learning
models. Many authors have used conventional techniques integrated with modified algo-
rithms for the preprocessing of MRI images, then following the steps of computer-aided
diagnosis (CAD) frameworks to urge the ultimate outputs. All endeavors were aimed at the
best models to extend the performance of brain image classification. Many authors applied
DWT feature extraction tools to feed a neural network model for MRI classification for
image feature extraction purposes. For instance, Chaplot et al. 2006 [25] employed a DWT
feature extraction as an input to ANN and support vector machine (SVM) for brain disorder
detection, and Maitra et al. [38] presented two-stage algorithms of orthogonal DWT for
feature extraction and SVM for image classification. Kumar et al. 2017 [39] proposed a
slightly different model, where authors used DWT feature extraction, genetic algorithm
principal component analysis (PCA), and SVM classification. PCA was implemented to
reduce the number of features, and this hybrid method aimed at MRI tumor classification.
El-Dahshan et al. 2010 [40] used DWT for feature selection and forward back-propagation
artificial neural network (FP-ANN) and k nearest neighbor (KNN) classifier tools for MRI
brain image classification. A method of clustering Fuzzy C-means (FCM) was utilized by
Mohsen et al. 2018 [41] to image segmentation, and they used DWT for feature extraction
and deep neural network for MRI brain tumor classification.

High accuracies in brain MRI classification have been achieved by Wahid et al. [42],
who proposed a method based on statistical moments and probabilistic techniques. Sta-
tistical moments have been employed for feature extraction, and ANN has been used for
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feature reduction. Zahid et al. [43] proposed another methodology for brain MRI clas-
sification using DWT, color moments, and ANN. The DWT method has been used for
image decomposition and removed low detail from the image to obtain an approximate
small-sized image. A Harr wavelet of three levels of decomposition has been applied to the
images. The first three statistical moments are then calculated for each channel and total of
9 features are obtained that have then been further fed to ANN for classification. Slightly
different combination was proposed by Amin et al. [44]. They presented an MRI tumor
classification that employs DWT-based image fusion with Daubechies kernel, a global
thresholding method for segmenting tumor region and CNN model. A 23 layered CNN
architecture utilizes convolutional, batch normalization, rectified linear activation unit
(ReLU), down sampling through max pooling, fully connected network, and final output
layer softmax to classify normal and pathological brain structures.

Masood et al. [45] has proposed a method based on fuzzy logic and convolutional
neural network for brain tumor detection. In the preprocessed step the image enhance-
ment is used for image segmentation, fuzzy logic has been used for edge detection, and
convolutional neural network has been used to classify the brain images into meningioma
and non-meningioma. The proposed method is compared with some well-known meth-
ods and the results indicate that the proposed method performed well as compared to
counterpart algorithms. Muzammil et al. [46] proposed for improved clinical diagnosis
using an innovative multimodal image fusion technique. Obdusami et al. [47] suggested
a method for mild cognitive impairment (MCI), late mild cognitive impairment (LMCI),
early mild cognitive impairment (EMCI), and Alzheimer’s diseases (AD) prediction using
the finetuned ResNet18 network. The results exhibit that the accuracy of this method is
high as compared to conventional methods. A similar approach for pathological brain de-
tection has been proposed by Zhang et al. [48] based on three components namely wavelet
packet Tsallis entropy, extreme learning machine, and java algorithm. It was noted that the
proposed method outshines the existing methods.

To make the abnormal image classification process more efficient, Jude et al. 2019 [49]
used simple assignment processes rather than the weight adjustment process to reduce
computational complexities in conventional CNN architecture. Utilizing the 2D CNN
approach of Simonyan and Zisserman [50], Kamnitsas et al. [51] presented a more discrim-
inative 3D CNN model and processed multi-scale parallel convolutional pathways for
MRI brain tumor segmentation particularly for large data sets. Pereira et al. [52] presented
their own CNN architecture with the same approach, which employs small, cascaded
kernel layers rather than single and bigger ones. This model benefits from fewer weights
of the network and results in an effective MRI image segmentation. To discriminate small
lesions (<1.5 cc), Liu et al. [53] proposed a modified version of the CNN algorithm, where
authors employed one more sub-path to Kamnitsas et al. CNN model [51] for the MRI brain
metastases segmentation process. To increase classification execution, Togacar et al. [54]
proposed the recursive feature elimination (RFE) embedded CNN model enhanced with
hypercolumn technique and supported by networks like AlexNet and VGG-16, and SVM
classifiers. Inspired by the residual neural networks, Remedios et al. [14] presented a
3D CNN architecture for MRI contrast classification and named their model as PhiNet
designed for specific diseases like Alzheimer’s, sclerosis, and traumatic injuries.

In addition, some authors presented hybrid models to outperform traditional deep
learning techniques. For example, Cinar et al. 2020 [55] presented a hybrid CNN ar-
chitecture, which is a sophisticated and modified version of the original Resnet50 CNN
model [56] to increase the accuracy rate. The development occurred by removing the
last 5 layers of Resnet 50 and adding 10 different layers. Khan et al. [57] proposed a
hybrid model developed by cascading support vector machine with three pathway CNN
models. A different hybrid model approach was presented by Kruthika et al. [58] for MRI
Alzheimer segmentation and classification. This hybrid model consists of fast learning
capsule networks (3D CapsNet), 3D autoencoder, and 3D CNN. Chang et al. [59] proposed
a combined CNN model and conditional random fields (CRF) to increase MRI brain image
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segmentation accuracy. This two-pathway CNN model employs max and min pooling
layers on each. Finally, a comparative approach was proposed by Talo et al. [60]; they
compared the following well-known trained CNN models: ResNet50, ResNet35, ResNet18,
AlexNet, and VGG 16 to classify MRI images into normal and pathological brain structures,
i.e., inflammatory, neoplastic, degenerative and cerebrovascular categories using Harvard
Medical school MR image datasets. Different methods along with strengths and weakness
have given below in Table 2.

Table 2. Different models with their strengths and limitations.

Reference Model Contribution Limitation
[14] Integrated model of CNN and Good classification accuracy on Very large and complex
Transfer Learning test data. CNN model
[16] Novel 3D CNN Method Robust wh?n training on one dataset ~ Only de51gne.d. for. 3D images, and
and testing on another dataset. low classification accuracy
Autoencoder Deep Neural . . . .
[36] Network (ADNN) Accuracy was improved High Computation Complexity
Enhanced Approach using High accuracy was achieved by
371 Residual Networks considering small dataset. Poor results on large dataset
Modified Deep Convolutional . . e
[49] Neural Network Computation complexity was reduced Low classification accuracy
AlexNet, Vgg-16, ResNet18, Used to classify five classes . o
[60] (normal, cerebrovascular, neoplastic, Low classification accuracy
ResNet34, and ResNet50 . .
degenerative, and inflammatory)
[61] Color Moments and artificial Simple and very fast Low classification accuracy
neural network
[43] DWT, color moments, and artificial High accuracy Good only on small dataset

neural network

The current studies have some limitations in one way or another way; some methods
are good in accuracy but take a lot of time to compute. Some are fast, but the accuracy of
these algorithms is poor. Hence, there is extensive to develop model to tackle these issues.

3. Proposed Methodology

The proposed methodology carried out the discrimination of MR images into nor-
mal or abnormal. The proposed approach comprises four stages: preprocessing, feature
extraction, classification, and visualization, as depicted in Figure 1. In the preprocessing
stage, the median filter has been applied to enhance the image’s quality remove salt and
pepper noise. In the feature extraction stage, the discrete wavelet transform has been
applied on the smoothed image to obtain a small size approximate image by removing
some unnecessary and unrelated information from the original image. We have applied
the Harr wavelet in the proposed work, which is more effective and the simplest wavelet
in the wavelet’s family. In the classification stage, the convolutional neural network has
been applied to classify the brain MRI into normal or abnormal. The convolutional neural
network approximates images as inputs from the discrete wavelet transform and classifies
them into normal or abnormal in the classification stage.

3.1. Preprocessing

Numerous types of image filters are available in the literature, such as mean filter,
median filter, wiener filter, and different types of image noises that exist, such as space noise,
Gaussian noise, salt and pepper noise, speckle noise. Hence, it is of utmost importance
to apply an appropriate filter for noise removal for images. In the proposed work, we
have used the MR grayscale brain images, and these types of images are affected by
salt-and-pepper noise [42,61]. For this purpose, we have used a median filter to remove
salt-and-pepper noise from MR brain images. The median filter has the capability of
sharpening the images and preserving the edges. We have used window size: 3 x 3 masks;
this size is suitable because the large window size of the mask affects the image edges and
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requires high computation time. After salt and paper removal the grayscale images are
converted to RGB images, Figure 2 shows a grayscale image along with RGB image. These
RGB images are further fed as inputs to the DWT layer to get an approximate image size.

-~

Classification

Proposed Work Stages

il

_
00000000
0

T /

Figure 2. Normal image (left) and RGB image (right).

3.2. Discrete Wavelet Transform

As mentioned earlier, we employed discrete wavelet transform to extract the approxi-
mate image. Wavelet transform uses a windowing technique with variable size; thus, it
preserves both the time and frequency information of the signal. The main advantage
of the wavelet is the adoption of scale instead of adopting frequency, in short, the DWT
produces a time-scale view rather than a time-frequency view. The timescale is an efficient
and powerful way of viewing the data [62].

In this work, the focus is on 2D imaging; hence, it is required to use DWT to each
dimension disjointedly. The schematic diagram of the DWT is illustrated in Figure 3.
As depicted, that each level is divided into four sub-bands, namely Low-Low (LL), Low-
High (LH), High-High (HH), and High-Low (HL) images at each level, and 1, 2, and
3 signify the according levels. The division of the LL sub-band is further carried out into
the four previous stated bands. The detailed component of the image is represented by LH,
HL, and HH [63]. The compaction of the image is incremented with the incrementation of
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levels, but the quality of the desired approximate image is decreasing. In this work, a level-3
decomposition was carried out using Harr wavelet to approximate solid information. In the
first level of decomposition, the image is divided into four sub-bands, namely LL1, LH1,
HH1, HL1, in which the LL represented approximate image (LL1) which is of essential
and further it is considered for processing. In the second level of decomposition, the LL1
is further decomposed into four sub-bands, namely LL2, LH2, HH2, and HL2. The LL2
approximate image is further considered for processing. In the third level of decomposition,
the LL2 is further decomposed in four sub-bands named LL3, LH3, HH3, and HL3.

LL3 | HL3
HL2
LH3 | HH3 HL1
LH2 HH3
Input Brain MR Image
LH1 HH1
LL2 HL2
e HL1 HL1
LH2 HH3
LH1 HH1 LH1 HH1

Figure 3. 2D three-level decomposition method.

3.3. Convolutional Neural Networks (CNNs)

Methods based on deep learning usually provide better results than shallow learning-
based methods, i.e., classical dense artificial networks [44]. In the proposed work, the
convolutional neural network has been considered for brain MRI classicization. The con-
volutional neural network nowadays is extensively used for classification purposes in
different areas.

We applied a convolutional neural network on 64 x 64 x 3 approximate images
obtained through DWT. Our CNNSs architecture has six types of layers with different pa-
rameters. They are convolutional layer, batch normalization, ReLU, max pooling, fully
connected, and Sigmoid. Images that have been used in the proposed work are 2D images;
hence, 2D convolutional layers have been applied to the input images. For image normal-
ization, the batch normalization filter has been used by applying fgl and variance o2 over
mini-batch. The B, activations are evaluated by using the Equations (1)—(3).

_ S8y
Vop2 +¢

In Equation (1) € indicates the stability factor. The stability factor is used for stability
improvement in the case of smaller batch sizes.

Bn 1)

Bn =N, + B )

In Equation (2) the parameters y and B represent the offset and scale factors, respec-
tively. The 7y and B factors are updated during the network training process. ReLU is used
to perfom thresholding operations as given in Equation (3).

—x, x>0

o ={ 5 ®
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The down sampling is performed through the max-pooling layer. There is a connection
between all preceding layers £ neurons, and all features are combined that are learned

through the previous layer. A sigmoid layer is used to classify based on probability given
in Equation (4).

exp ay
Yio expa;t @)

The proposed CNN structure consists of five blocks, as shown in Figure 4. The first
four blocks are the same, holding convolution, batch normalization, ReLU, and max-
pooling layers. The last (5th) block is different from the previous four blocks. The fifth
layer contains the FC layer following by a sigmoid layer.

Y(£) =

Conv-1 G a
Bach Norm OIve
o Bach Norm C}(:nv-S Conv-3
ReLU i BacyNes Bach Norm
Max- i

Normal

Sigmoid

Figure 4. Proposed schematic CNN diagram for classification of brain MRI as normal and abnormal.

Qo] Az =050 ) , Conv 32x32x3x16 p

Conv 3x3 x8
Bach Normalization
+
ReLU
2 x 2 Max-Pooling

The block-wise architecture of the proposed model is illustrated in Figure 5. The
kernel size of convolutional layers in the first four blocks is represented using Equation (5).

hxwxc )

where /1, w, and ¢ represent the height, width, and channel, respectively. The h = w =3 in
the first four blocks, ¢ = 8 in the first block, ¢ = 16 in the second block, ¢ = 32 in the third
block, and ¢ = 64 in the fourth block of the proposed model of CNN. A 2 x 2 max-pooling
has been used in the first four blocks with stride = 2. Bach normalization has been applied
to every block with 8, 16, 32, 64 channels.

Conv 16x16x3 x32 \ \

Conv 3x3 x32

Bach Normalization

\
Conv 3x3 x16 :
Bach Normalization :

/ /
1 i
i i
i i
1 1

—> & —> %
1 1
1 1
1 1
1 1
\ \

\
|
i
1 1 :
] ReLU | ReLU !
] 2 x 2 Max-Pooling : 2 x 2 Max-Pooling !
| ] '
__________________________ - N e o e e e e e - H
|
|— 1
'
v :
——————————————————————————————————————————————————— - Il
P \ 1
F’ Conv 8x8x3 x64 ‘ !
1 1 1
! Conv 3x3x3x64 o
: Bach Normalization Wprred] : |
: + Slgmmd : |
H ReLU 1 ‘:
| 2x2Max-Pooling Abnormal : ;
|
\ l II
N ~ ’ ’
Block 5 Block 6 -~

Figure 5. Block-wise architecture of the proposed model.
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4. Implementation, Results, and Explanations
4.1. Implementation Setup

This section briefly explains the implementation environment for the research and
development of brain tumor detection from brain MRI images using CNN. All the im-
plementation of the proposed work has been carried out on Intel(R) Core (TM) i7-7500U
having NVIDIA GeForce 940MX GPU, 15 GB DDR2 RAM, and Window 10 is installed
on it. In this study, we have built a convolutional neural network that is trained on brain
MRI images. The convolutional neural network can predict and classify brain images
as normal or abnormal. Graphics Processing Units (GPU) can significantly increase the
training process of different models. Intensive computation, matrix multiplication, and
other operations are involved in training models like image classification. We have used
GPUs with machine learning frameworks to train the model in our experiment. In this
study, TensorFlow and different libraries such as Keras, NumPy, and SciPy are used to
build the convolutional neural network. For some graphical representations, Matlab 2019
has also been used.

The dataset used in the proposed work is comprised of T2-weighted MR brain im-
ages in the axial plane and 512 x 512 in the plane resolution. The data are downloaded
from [64]. 5000 images have been selected randomly, in which 2055 are normal, and 2045 are
abnormal. The abnormal brain MR images comprise the below diseases: glioma, menin-
gioma, Alzheimer, Alzheimer plus visual agnosia pic’s disease, sarcoma, and Huntington’s.
A sample image from each disease is illustrated in Figure 6, along with a normal brain
MR image.

Figure 6. (a) normal brain MRI, (b) glioma, (c) meningioma, (d) Alzheimer, (e) Alzheimer plus
(f) visual agnosia pic’s disease, (g) sarcoma, and (h) Huntington’s.

Using the above dataset and implementation software tools, we have implemented
each stage of the proposed work as discussed below. In the preprocessing, we have applied
the median filter with (3, 3) size; the median filter has been chosen to remove salt and
pepper noise because the MRI images are generally affected by such noises.

The implemented 3 levels decomposition by using Harr wavelet is depicted in Figure 7.
By using Harr wavelet, a three-level decomposition has been done, which significantly
minimizes the input image size. The desired small-size approximate image after three
decomposition levels is shown in the top left corner of Figure 7. The original images
are of size 512 x 512 x 3, and after removing the low-level detail from the original
image by using 3-level Harr wavelet decomposition, the size of the images is reduced to
64 x 64 x 3. In the proposed work, we have considered 3-level decomposition because
this is an appropriate size; more decomposition levels increase the possibility of losing
useful information from images.



Sensors 2021, 21, 7480

11 of 19
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(a) (b)

Figure 7. (a) original image, (b) 3 levels decomposition by using Harr wavelet.

In the proposed work, convolutional has been used on the input by using a convo-
lutional filter for generating a feature map. A kernel of size (3 x 3) has been used as a
convolutional filter, and the stride (2,2) is used to move the convolutional filter at each step.

The approximate images achieved after applying 3 levels of decomposition using Harr
wavelet are then fed to CNN algorithms for classification. As discussed earlier, the original
images are of size 512 x 512 x 3 but after 3 levels of decomposition, the size is reduced, and
64 x 64 x3 approximate images are achieved, which are further fed to CNN algorithms.
64 x 64 images are then rotated in different angles for the best learning rate before feeding
to the CNN algorithm. The CNN algorithm takes the 64 x 64 approximate images as input,
and eight different mean filters have been applied to images in the convolutional layer of the
first block of the proposed model, as shown in Figure 8. In the second convolutional layer
of the second block, 16 mean filters are convoluted on the features map of the first block
after applying the ReLU activation function, batch normalization, and a (2,2) max pooling.

Conv-1 Conv-2 Conv-3 Conv-4

64 x 64 x 3 x 8 32x32x3 x16 16 x 16 x 3 x 32 8x8x3 x 64
- & &

Input
Image

64 x64x3

Figure 8. Intermediate results of sequences at CNN.

Similarly, in the third block, 32 mean filters are convoluted on feature maps of block
2 after applying the ReLU activation function, batch normalization, and a (2, 2) max-
pooling. Hence in the results, the number of images generated is 32 of size 16 x 16 x 3.
16 x 16 x 3 sizes still huge image size, and if it is directly given to a fully connected layer,
then computation time will be very high; hence we need to shrink the image further. Hence,
in the fourth layer, we convoluted 64 mean filters of size (3, 3) on the second convolutional
layer features map. In the fourth convolutional layer, the number of images is 64 with
size 8 x 8 x 3. At this point, we felt that the 8 x 8 x 3 is an appropriate size for a fully
connected layer. The 8 x 8 x 3 is then converted to a one-dimensional array and then fed
to a fully connected layer. These features are then mapped to a fully connected layer. In the
last layer, the sigmoid function has been used to classify the brain MR images into normal
and abnormal.
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In this study we have converted the grayscale images to color (RGB) images in order to
get more information for binary image classification. From previous studies we have learnt
that feature extracted are more informative as compared to grayscale Images [65]. The
DWT has been used in this study to reduce the dimensionality, because the original images
that we are feeding to the convolutional neural network are large in size (512 x 512 x 3),
so the total number pixels per image are 786,432. In order to reduce the dimensionality
of these images we have used discrete wavelet transform (DWT) to reduce the size of
the images and obtained small size of images without losing useful information. In this
work, a 3-level decomposition DWT has been used; it has significantly reduced the size
of images to 64 x 64 x 3. Hence, feeding these small sizes of images greatly reduces the
computational complexity of convolutional neural network. All networks are listed with
their properties in Table 3.

Table 3. All network layers are listed with their properties.

Number Layer Name Layer Properties
1 Images (Input) Size=64 x 64 x 3
2 Conv-1 Convolutional (64 x 64 x 3 x 8) with stride 2
3 Bach Norm Bach Normalization Operation
4 ReLU Rectified Linear Unit
5 Max Pooling Max-Pooling Operation (2 x 2, stride [2,2], padding = [same])
6 Dropout 50% dropout
7 Conv-2 Convolutional (32 x 32 x 3 x 16) with stride 2
8 Bach Norm Bach Normalization Operation
9 ReLU Rectified Linear Unit
10 Max Pooling Max-Pooling Operation (2 x 2, stride [2,2])
11 Dropout 50% dropout
12 Conv-3 Convolutional (16 x 16 x 3 x 32, stride 2, padding = [0,0,0,0])
13 Bach Norm Bach Normalization Operation
14 ReLU Rectified Linear Unit
15 Max Pooling Max-Pooling Operation (2 x 2, stride [2,2], padding = [same])
16 Dropout 50%
17 Conv-4 Convolutional (8 x 8 x 3 x 64) with stride 2
18 Bach Norm Bach Normalization Operation
19 ReLU Rectified Linear Unit
20 Max Pooling Max-Pooling Operation (2 x 2, stride [2,2], padding = [same])
21 Dropout 50%
» Fully Connected 512 hidden neurons in fﬁr‘st hidden layer and 1024 in second
idden layer
23 F . tanh on first and second hidden layers neurons, and sigmoid
unctions
on the output layer neuron.
24 Classification Output (Normal or abnormal)
25 Loss Binary Cross-entropy

The CNN model’s training is first carried out on a given dataset with trial and test
error methods because there is no proper mechanism for an appropriate number of layers
selection. Hence, the different number of layers (6, 10, 15, 20, 25, and 30) have been tried
to obtain the best results, but when the number of layers increases or decreases from 25,
then validation error is increased. Hence, in the proposed CNN model, 25 layers have
been selected for further experiments. The hyperparameters castoff in our methodology is
illustrated in Table 4. The stability of the network mostly occurs after 30 epochs; hence the
total number of epochs that have been chosen here is 40 to train the model effectively. The
validation errors are given in Table 5. In the proposed work, 70% of data have been selected
to train the network, and 30% has been used for testing. The loss rate of the proposed
model is shown in Figure 9. The proposed work binary classification has been performed
to classify the brain MR images into normal or abnormal. In Figure 9, the training epochs
are denoted by the x-axis and the y-axis denoting error or loss rate. The best prediction



Sensors 2021, 21, 7480

13 of 19

scores for training and VEs are obtained, indicating a reciprocal relationship between losses
and accuracy.

Table 4. Hyperparameters of the proposed CNN model.

Max Epochs Validity Frequency Learning Rate
35 31 0.001

Table 5. Validation error for layers selection in the proposed CNN model.

Total Number of CNN Layers Validation Error
6 0.12125
10 0.11358
20 0.10889
25 0.08000
30 0.09835
35 0.10486

D 5 T T T T T T T

Loss

Training Epochs

Figure 9. Accuracy with respect to loss.

4.2. Results and Discussion

For this, we have applied the convolutional neural network for brain MRI classification.
There are many classifiers, such as support vector machine, k-nearest neighbor, artificial
neural network, random forest, and we have applied these classifiers in our previous
studies [24,42,66]. However, a convolutional neural network performs the best in the sense
of accuracy in this study. Different authors have applied different techniques to the same
set of data for brain MRI classification, but the results are not prominent. The overall
accuracy of the results of the proposed method is determined by using the performance
evaluation factors, such as Kappa statistics, which is a measurement metric that carried out
the comparison of the observed accuracy with the expected accuracy. This is considered
true positive (TP), which indicates the accurate prediction of the positive class, false positive
(FP), which indicates the inaccurate prediction of the positive class [24,42]. The precision is
a performance matric that uses TP and FP factors to define the degree of measurements
given in Equation (6).

TPTFP ©)

Another performance measurement is Recall which is a fraction of the total amount of
relevant rederived instances, given in Equation (7).

Precision =

TP

Recall =——
A T IP I EN

@)

where false negative represents the accurate prediction of negative class.



Sensors 2021, 21, 7480 14 of 19

The receiver operating chrematistic curve (ROC) is a graphical plot equating the TP
and the FP rates of a classifier. These mentioned measures values are given in tables and fig-
ures for performance measurement of the proposed model for brain MRI classification [67].

In the proposed work, we have calculated the performance measures to measure the
proposed approach’s performance with different aspects. There is no proposer mechanism
for defining the number of layers in the convolutional neural. In the proposed work, the
trial and test have been defined to define suitable number layers for the proposed CNN
model. For each number of layers, the performance measures have been calculated, and the
results exhibit that the model with 19 layers performs better than 23-15 layers, as illustrated
in Table 6 and Figure 10, respectively.

Table 6. Overall accuracy of CNN with respect to the number of layers.

CNN (No. Kappa

Layers) Statistics TP Rate FP Rate AUC Recall Precision
CNN (19) 0.9880 0.990 0.0013 0.9970 0.9970 0.9980
CNN (23) 0.9820 0.9850 0.0030 0.9990 0.9860 0.9880
SVM (15) 0.9780 0.9820 0.0040 0.9990 0.9804 0.9881

CNN Accuracy w.r.t. Number of Layers

CNN(15)

CNN(23)

CNN (19

98% 98% 99% 99% 100%
Figure 10. The overall accuracy of CNN with respect to the number of layers.

Secondly, despite the accurate number of layer specifications, the measurement of the
proposed method has been carried out using different amounts of data for training and
testing. The data have been divided into 70 and 30%, 60 and 40%, and 50 and 50% in the
proposed CNN model, and performance measures have been calculated for each splitting
as shown in Table 7 and Figure 11.

Table 7. Overall accuracy of CNN with respect to training and testing ratios.

Method (Ratio) Sﬁatlir;lt)ii , TPRate  FPRate ROC Recall  Precision
(731;121 (31090)/0) 0.9880 0.990 0.0020 0.997 0.990 0.990
(6?:;\; 2(390)/0) 093780 096150  0.03850 1 096150  97.14209
(5%2121 (51090)/0) 0.96530 0.971 0.0060 0.9970 0.9710 0.9720

Further, the proposed model is applied without DWT and with DWT, as shown in
Table 8 and Figure 12. The results provided by the proposed CNN model with DWT are
better than the CNN without DWT.
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CNN w.r.t. training and testing ratio
{ CNN (19) (50% and 50%)

CNN (19) (60% and 40%)

i CNN (19) (70% and 30%)

96.00% 97.00% 98.00%  99.00%

Figure 11. Overall accuracy of CNN with respect to training and testing ratios.

Table 8. Performance measurement of CNN with and without DWT.

CNN (No. Layers) Kappa Statistics TP Rate FP Rate ROC Recall Precision
CNN (19) with DWT 0.9880 0.99 0.0020 0.9970 0.99 0.99
CNN (19) without DWT 0.9627 0.969 0.0060 0.998 0.9690 0.9690
CNN Accuracy with and without DWT
@]
Z
o Z
=z
s
Q
=1
2
:; I
=5
5
95%  96%  97%  98%  99%  100%
Figure 12. Performance of the proposed CNN model with and without DWT.
The comparison of the proposed method is carried out with some well-known brain
MRI classification methods. In all these methods, the same number of images and same
modality (MRI) images have been used, and the results illustrate that the proposed method
is far better as far better in terms of training accuracy, testing accuracy, minimum training
loss, and minimum testing loss compared to the counterpart methods. The proposed
method accuracy results with some state-of-the-art techniques have been listed in Table 9.
Table 9. Performance comparison in terms of accuracy and loss.

Model Training Accuracy Testing Accuracy Training Minimum Loss  Testing Minimum Loss
CNNBCN-ER [61] 100.00% 94.85% 143 x 1073 1.86 x 10~
CNNBCN-WS [61] 100.00% 94.53% 6.61 x 107* 220 x 107!
CNNBCN-BA [61] 100.00% 94.53% 1.43 x 1073 1.72 x 1071
CNNBCN-ERT1 [61] 100.00% 95.49% 1.07 x 1072 1.69 x 107!
CNNBCN-WS1 [61] 100.00% 95.17% 146 x 1073 213 x 107!
CNNBCN-BA1 [61] 100.00% 95.01% 113 x 1073 1.71 x 1071

Model 1 [68] - 91.28% - -
Model 2 [67] - 94.68% - -
Model 3 [69] 99.54% 94.20% 253 x 1072 1.82 x 1071
Model 4 [65] - 94.39% -

Model 5 [70] - 95.00% - -
Model 6 [71] - 93.83% - —
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Table 9. Cont.

Model Training Accuracy Testing Accuracy Training Minimum Loss  Testing Minimum Loss
Wide-Resnet-101 [72] 99.51% 91.14% 1.72 x 1072 290 x 1071
Mobilenet-v1 [73] 100.00% 93.88% 2.96 x 1073 223 x 107!
Proposed Method 100.00% 97.32% 3.42 x 1074 1.53 x 107!

CNNBCN-ER = Convolutional Neural Network Based on Complex Network—Erdos-Renyi. CNNBCN-WS = Convolutional Neural Network
Based on Complex Network—Watts—Strogatz. CNNBCN-BA = Convolutional Neural Network Based on Complex Network—Baradasi-Albert.
CNNBCN-ER1 = Modified CNNBCN-ER. CNNBCN-WS1 = Modified CNNBCN-WS CNNBCN-BA1 = Modified CNNBCN-BA.

In this work, we have proposed a brain MRI image classification model comprised
of preprocessing, discrete wavelet transform, and convolutional neural network. The
MRI images are typically affected by salt-and-pepper noise [43,61]. To be able to remove
noise, we employed an efficient mean filter. The discrete wavelet transforms, particularly
Haar wavelet, have been used extensively to reduce the size of the images by applying
different decomposition levels. We have used 3-level Harr wavelet decomposition to
remove low-level detail from images and make them suitable for classification. The orig-
inal 512 x 512 x 3 size images have been reduced to 64 x 64 x 3 by applying 3-level
decomposition. Only images with high information have been fed to CNN to achieve high
classification results. This model of CNN has been used extensively in image classification
problems [44]. The proposed architecture has 19 layers: one input layer and four convo-
lutional layers with 8, 16, 32, and 64 filters. The network has four normalization layers,
two pooling layers of size 2 x 2 with a stride of 2. The CNN model also has four ReLU
layers, one fully connected layer, a sigmoid layer for classification, and an output layer.
The proposed model has been applied on MRI images taken from [68], where 5000 images
with 2045 abnormal and 2055 normal images have been selected for experiments. The ROC
method has been used for performance evaluation, and the proposed model has given
99% accuracy, which is quite prominent. The results gained from this model are compared
with some well-known methods for brain MR image classification. The performance of the
proposed model is far better in comparison to the counterpart approaches for brain MR
image classification.

The proposed work is simple and efficient and provides good results, but the problem
is that we can compare but there are some certain limitations to the proposed work. We
have applied the proposed model to a comparatively large dataset, the proposed work
performance will be poor on the small dataset. Another limitation of the proposed work
is that we have applied the proposed to 2D images and have not checked feasibility on
3D images. We have also used only MRI images and have not considered CT images, or
the fusion of both. In real life it is very difficult to get brain MRI images from hospital,
because normally these images are private, and doctors hesitate to provide these images
for experiments. Therefore, we have applied the proposed model on a large dataset.

5. Conclusions and Future Work

In this present method, discrete wavelet transform has been used with the convolu-
tional neural network for brain MRI classification. Usually, we directly reduce the size of
images when we provide data to the convolutional neural network, and it may cause the
loss of important information. Hence, in the proposed model, we have used the discrete
wavelet transform to reduce the size of images without losing any information. These
reduced images are then fed to the convolutional neural network for classification. The
proposed method has been evaluated on different performance evaluation metrics, and the
results exhibit that the proposed model provides good results. The purpose of designing
the proposed brain MR image classification model is to improve the performance of the
current methods for brain MR image classification and provide an easy way for the radiol-
ogist to take measures. It is worth mentioning that the proposed model performs very well,
and the accuracy of the proposed method is almost 100%. The proposed method has been
evaluated in different aspects and different ways, and the results are prominent.
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In the future, we would like to extend our model to multiple class classification as the
current system provides only binary classification. We also want to evaluate our model on
other modalities, e.g., PET and CT images. We will also design and a web-based interface
to facilitate radiologists to use the system efficiently.
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