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Abstract: Accurate and early detection of machine faults is an important step in the preventive
maintenance of industrial enterprises. It is essential to avoid unexpected downtime as well as to
ensure the reliability of equipment and safety of humans. In the case of rotating machines, significant
information about machine’s health and condition is present in the spectrum of its vibration signal.
This work proposes a fault detection system of rotating machines using vibration signal analysis. First,
a dataset of 3-dimensional vibration signals is acquired from large induction motors representing
healthy and faulty states. The signal conditioning is performed using empirical mode decomposition
technique. Next, multi-domain feature extraction is done to obtain various combinations of most
discriminant temporal and spectral features from the denoised signals. Finally, the classification
step is performed with various kernel settings of multiple classifiers including support vector
machines, K-nearest neighbors, decision tree and linear discriminant analysis. The classification
results demonstrate that a hybrid combination of time and spectral features, classified using support
vector machines with Gaussian kernel achieves the best performance with 98.2% accuracy, 96.6%
sensitivity, 100% specificity and 1.8% error rate.

Keywords: signal analysis; empirical mode decomposition; artificial intelligence; machine faults;
supervised learning; support vector machines

1. Introduction

Machine faults are a major cause of unexpected downtime and production loses of
industries [1]. Rotating machines constitute an integral part of most industrial equipment,
especially the emerging multiport energy conversion systems, e.g., wind mills, electric
vehicles and hydraulics, etc. [2]. They operate continuously under harsh conditions,
becoming more vulnerable to faults. Accurate and early detection of rotary machine faults
is essential to achieve system level reliability and energy efficiency. In order to achieve
sustained production, most industries adopt a condition based maintenance strategy which
requires continuous monitoring of machines and effective detection of faults before major
breakdowns [3]. The indices of machine health are assessed by analyzing the features of
various signals including voltages, currents, sound, temperature and pressure, etc. [4].
However, due to noise contribution from multiple sources, accurate machine fault detection
using these signal traits is a challenging task [5].
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Recently, use of vibration signals for machine fault diagnosis has got significant
research interest. The underlying fact is that all electro-mechanical systems produce vi-
brations which characterize the dynamic behavior of machine [6]. The vibration signals
acquired from a machine contain a wealth of information about its state. The vibrations of
a normal/healthy machine are constant and have low-amplitude, whereas the faulty ma-
chines produce time varying vibrations. The changes in vibration spectrum can be used to
identify the faulty condition of a rotatory machine. Recent advancements in artificial intelli-
gence as well as availability of low cost vibration sensors have encouraged the researchers
to investigate efficient machine fault diagnosis methods using rich vibration data.

2. Literature Review

The published methods of machine fault detection are mostly based on three types
of machine signals, i.e., current, sound and vibration. Current from stator of the motor
carries significant information about its condition. In [7], time-frequency analysis based
on Hermite-S method is proposed for dynamic faults detection of brushless DC motor.
A classical approach for motor’s fault detection is computing power spectral density
(PSD) from the Fourier Transform (FT) of current signal. However, the FT spectrum
becomes non-stationary due to variable speed of the motor. In [8], use of short time Fourier
transform (STFT) is proposed to extract additional information about time based variations
of frequencies in stator current signatures. In [9], the rotor fault identification of a three-
phase induction motor is performed using discrete fractional Fourier transform (DFT) of
stator current. DFT of time domain signal of stator current is computed at different angles
to construct a characteristic matrix. Next, fractal features are extracted and extension theory
is applied to identify the defect types. In [10], an approach named as complete ensemble
empirical mode decomposition with adaptive noise is proposed to extract distinct intrinsic
mode functions of current signal; the most discriminant among them are used to detect
bearing faults. In [11], STFT is adopted to obtain spectrogram of stator current and identify
BLDC motor defects. Motor current analysis is also proposed to detect mechanical and
electrical faults in induction motors [12]. A deep learning approach is proposed in [13]
for industrial motor fault diagnosis. At first, discrete time Hilbert transform is applied to
time series signals acquired from industrial machines. Next, using the absolute value of
resultant analytical signal, a textured pattern of images is constructed, which is then used
to train and classify deep convolutional neural networks.

In case of fault detection methods based on acoustic signals, wavelet transform is
mostly used to extract time-frequency map of signals [14]. In [15], induction motor fault
detection is proposed through a combination of IMFs of sound spectrum. In [16], signal
analysis in the time domain is performed using the average power of sound spectrum to
detect faults in three-phase induction motors. In [17], a mobile phone-based microphone is
used for the detection of rotating machine faults. The research proposed that appropriate
signal processing methods could overcome the limitation of poor frequency response of
mobile microphone. In [18], a combination of STFT and stacked sparse autoencoder is
employed along with softmax regression to classify the faults. In another study [19], a
multidimensional signal acquired from several microphones is used for the detection of
gear faults.

The present research on vibration signal analysis is mainly focused on identification
of most discriminant features from machine’s vibration signals and efficient classification
of condition patterns. The published works in this domain can be broadly categorized
as time analysis, frequency analysis and time-frequency analysis methods. Time domain
analysis extracts various statistical features of vibration signal such as mean, root mean
square and kurtosis, etc. In [20], cyclostationarity is used as a time domain feature to detect
gear faults [20]. Although simple to compute, time domain features are noise sensitive and
hence effect the reliability of results. Frequency analysis is done to identify the machine
faults from the frequency domain representation of vibration signals. For this purpose
various implementations of Fourier transform are used [21–23]. However, these frequency
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methods assume the input signal to be linear and stationary. Spectral kurtosis is a well
known frequency domain feature, mainly used for detection of bearing faults [24]. Time-
frequency analysis methods obtain the signal information in time and frequency domain
simultaneously; thus extracting more powerful features for fault diagnosis. A number of
time-frequency methods have been proposed which include discrete wavelet transform
(DWT) [25], continuous wavelet transform (CWT) [26], wavelet packet transform and
comblet transform [27], etc.

The abnormalities in vibrations of machines can occur due to several causes which can
be electrical or mechanical [28]. Vibration faults due to electrical problems are generated
due to flux variations around the stator or broken bar of the rotor. Mechanical causes
include motor unbalance or faulty bearings, etc. [29]. In [30], the authors employed an
optical method to capture the vibrations of the motor. Frequency and time domain features
were extracted and fed to an artificial neural network (ANN) to detect normal and faulty
states. In [31], the author utilized neural networks for the detection of online electrical
faults of the motor through vibration signals. Short time Fourier transform was applied
to process the vibrations and neural network was employed to detect the faults. In [32],
several autoencoders are proposed to identify machine faults and results are compared
with support vector machines. An embedded solution for the detection of early machine
faults is proposed in [33]. Vibration signals were collected from a test rig apparatus in
lab environment. Signal segmentation was performed using EMD and classification of
normal state, offset pulley fault, wear fault, and cracking faults were done through k-
nearest neighbors. In another work [34], vibration signals were collected from rotating
machinery (motor) using AX-3DS wireless tri-axial accelerometer. Three machine states
namely, normal, inner race bearing fault, outer race bearing fault were discussed in study.
Signal preprocessing and segmentation was achieved using EMD, followed by feature
extraction. SVM classifier was trained and testing using extracted features to distinguish
different data classes.

The extracted features are used to train the classifiers to distinguish between healthy
and faulty machine patterns. Some interesting works are discussed as follows. In [35],
the windowed power spectral density of vibration signal is used with support vector
machine (SVM) to detect the normal and faulty condition of rotatory control valve. In [36],
a deep statistical feature set composed of time, frequency and time-frequency features
is classified using Gaussian–Bernoulli deep Boltzmann machine. The proposed method
is used to identify faults in gearbox and bearing system of rotatory machines. In [37]
proposes a method for fault detection of traction motor using a filter which estimates
the next healthy value from the previous values of the signal. From the difference of the
original and estimated signals, various statistical features are extracted and classification
is performed using artificial neural network (ANN), K-nearest neighbors (KNN), SVM
and random forest. In [38], multi-kernel SVM was utilized with incremental learning to
design an adaptive fault diagnosis system. In [39], fault classification of induction motor is
proposed by comparing the FFT spectra of acceleration signals for healthy and broken rotor
bars. Wavelet packet decomposition was applied in combination with SVM to distinguish
different types of bearing faults in [40,41]. In [42], A deep learning algorithm was developed
for motor fault diagnosis that also keeps in considering motor speed parameters.

This work proposes a multi-domain feature analysis approach for fault detection of
induction motors. The main contributions to this work are;

1. First, a practical dataset of vibration signals is constructed from large industrial
scale 45 KW three-phase induction motors coupled with centrifugal water pumps.
To acquire signals in real time, an industry standard sensor, i.e., Beanscape tri-axis
acceleromter is used.

2. The proposed method employed a data-driven approach in signal preprocessing step
using Empirical mode decomposition technique.

3. While most of the published works are based on using only a single class of features,
i.e., time, frequency or time-frequency features constructed from STFT, this work
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proposes to use multi-class feature vectors consisting of several combinations of time
domain and frequency domain features. A detailed analysis is done to study the
discriminative properties of a large pool of such combinations. The most promising
feature combinations resulting in high classification performance are then presented.

4. Classification is performed using various classifiers with multiple kernel settings.

The rest of the article is organized as follows. Section 3 presents the pipeline of
proposed fault detection approach, discussing all the main computational steps. Section 4
presents comprehensive performance analysis of the proposed approach. Finally, Section 5
concludes this article by giving insights into future contributions.

3. Materials and Methods

Figure 1 demonstrates the pipeline of proposed machine fault detection approach. The
vibration signal is acquired from the machine under test using an acceleration sensor. The
noise corrupted signal is preprocessed using EMD technique. Afterwards, multi domain
features are extracted and fused together to obtain different combinations having high
discriminating capabilities. Finally, classification is done using a range of classifiers with
different settings. These steps are discussed as follows.

Feature extraction
Normal

Time

Frequency

Signal Preprocessing

Empirical Mode 

Decomposition

Faulty
Hybrid

Classification

SVM

KNN

LDA

Machine under 

examination

Vibration 

sensor

Figure 1. Pipeline of proposed machine fault detection approach.

3.1. Data Acquisition

The first and foremost step of any machine learning task is dataset collection. For this
work, a self-collected dataset is used consisting of physically acquired vibration signals
from induction motors of large industrial enterprise. For this study, 45 KW three-phase
induction motors coupled with centrifugal water pumps were used. Signal acquisition
is performed using Beanscape tri-axis wireless accelerometer, a widely used vibration
sensor for a variety of industrial applications. The accelerometer is mounted at various
positions on faulty and normally running motors as shown in Figure 2. The accelerometer
captures individual signals for vibrations along X,Y and Z axis, which are then combined
into a single time domain composite signal. For supervised binary classification, the data is
labelled as Normal and Faulty motors; the latter having bearing and alignment faults. The
sampling frequency of the sensor was set to 1000 Hz as provided by sensor specifications.
Table 1 provides a summary of acquired dataset. A total of 103 signals are collected from
normal motors, whereas 117 signals are collected from faulty motors. The duration of each
signal is 5 s.

Table 1. Details of the acquired dataset.

Data Class Name Signals Duration Signal Size

Normal 103 8.5 min 5 s
Faulty 117 9.75 min 5 s
Total 220 18.25 min -
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(a) (b)

Figure 2. Data Acquisition Setup. (a) Motor Assembly. (b) Accelerometer Placement.

3.2. Preprocessing

The accelerometer provides three independent channels of time domain vibration
signals corresponding to x, y and z axis. These channels are combined to form a single time
domain signal using the equation,

S(t) =
√

x(t)2 + y(t)2 + z(t)2 (1)

The signal S(t) is then normalized by dividing each sample by the maximum ampli-
tude value. Figure 3 shows the raw signals acquired from normal and faulty motors. It can
be observed that faulty motors exhibit amplitude spikes in their vibrations which shows
the presence of high frequency components in the signal spectrum.

(a) (b)

Figure 3. Time Domain Representation of Vibration signal for Normal and Faulty Motor. (a) Normal Motor. (b) Faulty Motor.

Empirical Mode Decomposition

The fault indicator proposed in this work is based on the observation that in the
presence of faults, the spectral components of vibration signal increased as compared to
healthy spectrum. Moreover, the acquired signal is also corrupted by noise and redundant
information. Therefore, in the next step, the normalized signal is subjected empirical
mode decomposition, an iterative technique which decomposes a raw signal into its time
domain sub-components called Intrinsic Mode Functions (IMFs) [43–45]. The output of
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EMD remains same in the spectrum. An IMF characterizes the oscillatory mode implanted
in the signal and it must satisfy following two properties.

1. The number of maxima and minima must differ atmost by 1
2. The mean of IMF is zero

IMF decomposition of a signal is obtained by a process known as “sifting” which is
performed with the following steps.

1. Identify all local minima and maxima of the input signal x(t)
2. Create the upper and lower envelope of all local minima and maxima by using

cubic-spline method
3. Designate the mean of upper and lower envelopes as m1
4. Calculate h1 = x(t)− m1 as the first component
5. If h1 is an IMF, take it as first IMF of x(t). Else, take h1 is a proto-IMF and name it

as h11. Take h11 as the original signal and repeat steps 1–4 until h1k is an IMF, and
designate it as c1 = h1k, where k indicates the number of iterations to produce an IMF.

6. Obtain residum r1 = x(t)− c1
7. Treat r1 as the original signal and apply steps 1–6 to obtain other IMFs c2, c3, · · · , cn

as follows:

r1 − c1 = r2
...

rn−1 − cn = rn

The decomposition process can be stopped when rn becomes a monotonic function.
However, only few IMFs have physical meaning for most practical purposes. At the
end of EMD, it gives a signal of the form

x(t) =
n

∑
i=1

ci(t) + rn, (2)

where x(t) is decomposed into n IMFs and a residue rn. Figure 4a,b illustrate few
IMFs extracted from normal and faulty signals of machines. High frequency com-
ponents can be observed in lower IMFs. In this work, total 10 IMFs are extracted. It
was conceived experimentally that first IMF (IMF1) contained noisy elements and
redundant components. Therefore, this component was rejected. The remaining nine
IMFs and residual signal were added together to construct the preprocessed signal.

3.3. Feature Extraction

Feature extraction is a crucial step in machine learning and pattern recognition frame-
works. One type of feature is never adequate to extract all hidden characteristic infor-
mation from the signals of different classes. In this work, different combinations of time,
and frequency domain features are systematically tested to find out the best performing
combination with the highest classification accuracy and lowest feature dimensions.

3.3.1. Temporal Features

Temporal features define various statistical descriptors extracted from the time domain
representation of vibration signal [46]. This work uses a number of classical time domain
statistical features such as mean, standard deviation, root mean square (RMS) and signal
energy to obtain differences between one vibration signal and another. In addition, due
to non stationary nature of vibration signal of faulty machines, more advanced statistical
features such as skewness and kurtosis are also investigated in this work. These features
computed using the probability density function (PDF) of the time domain signal. Since
the PDF of vibration signal changes with change in condition of machine bearing, thus
skewness and kurtosis also change. The kurtosis quantifies the peak value of the PDF of
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the signal, whereas the skewness quantifies the asymmetry behavior of PDF. Studies show
that kurtosis for a normal machine machine is approximately three and its skewness value
is approximately zero [47]. In case of PDF changes due to a machine fault, the kurtosis
value increases and skewness value becomes positive or negative.

(a)

(b)

Figure 4. IMFs of vibration signals of Normal and Faulty machines. (a) Normal Motor. (b) Faulty Motor.
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3.3.2. Spectral Features

Spectral features are extracted from the frequency domain representation of a signal.
In order to convert the time domain signal in to frequency domain, FFT is a common
method of analysis which obtains the dominant frequency of the repetitive impulse period
of certain machine faults. Several classical spectral features are used in this work and
obtained from amplitude spectrum of vibration signal. These features include mean
frequency, median frequency and standard deviation. In addition, various advanced
spectral features have also been investigated in this work. These include spectral kurtosis,
spectral centroid, spectral flux, spectral roll-off, spectral flatness, spectral crest, spectral
decrease, spectral slope and spectral spread. Table 2 lists all features used in this work
along with their acronyms.

Table 2. List of Features investigated for classification.

Time Domain Frequency Domain

Feature Acronym Feature Acronym

Mean M Mean Frequency FM
Standard Deviation SD Frequency Standard Deviation FSD
Skewness SK Skewness of Frequency FSK
Kurtosis KR Kurtosis of Frequency FKR
Peak to Peak PP Band Power BPWR
Root Mean Square RMS Median Frequency FMED
Energy E Spectral Centroid SC

Spectral Flux SF
Spectral Roll Off SRO
Spectral Flatness SFL
Spectral Crest SCR
Spectral Decrease SDEC
Spectral Slope SSL
Spectral Spread SS

3.3.3. Hybrid Features

In this work, the hybrid features are defined as the feature vectors consisting of various
combination of temporal and spectral features.

3.4. Classification

In the final step, the extracted time and spectral features are fused together in different
combinations and applied to a set of classifiers. In this study, a 10-folds cross-validation
scheme is adopted to train/test the classification models. In this scheme, the dataset is
divided into ten equal folds. In each iteration, one fold is employed for testing, and the
remaining nine folds are used to train the model. This procedure is repeated 10 times, and
the final performance is computed by taking an average of all runs. As shown in Table 1,
the data comprises of 103 normal, 117 f aulty and a total of 220 signal observations. Each
observation is composed of 5000 signal samples. In each iteration of 10-fold cross-validation,
22 observations (10 Normal and 12 Faulty signals) were used for testing, and the remaining
198 (93 Normal and 105 Faulty) were employed for training the classification model. This
process is iterated 10 times, and the model is tested and trained on all observations. This
scheme is more preferable for a dataset of comparatively small size.

The classification is performed using different kernel settings of SVM, linear discrimi-
nant analysis (LDA), decision tree (DT) and k-nearest neighbours (KNN) classifiers.
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4. Performance Analysis
4.1. Feature Analysis

In order to find the best describing feature set combination with lowest dimensions,
we performed experimentation with two base line classifiers, i.e., support vector machine
with Quadratic kernel (SVM-Q), and k-nearest neighbors with weighted kernel (KNN-W).
The performance of these classifiers on different feature sets is demonstrated in Table 3. The
feature sets F1-F3 are composed of single domain features, i.e., time or frequency, whereas
F4-F7 are hybrid feature sets consisting of a combination of time as well as frequency
features. The SVM-Q achieves an accuracy of 90.5%, 94.1%, and 94.1% for time, frequency
and spectral features respectively. Among the various feature sets that we tried, the
set F4 achieves the best classification performance using SVM-Q classifier, achieving an
accuracy of 98.2%. This best combination has a feature size of 13. A full combination of all
features, i.e., F7 has 96.5% accuracy however, in this case the feature dimensions becomes
considerably large, i.e., 21 features.

Table 3. Performance evaluation of different feature sets combination with several classifiers

Feature Set Size Feature Class Features in the Set
Accuracy (%)

SVM-Q KNN=W

F1 7 Temporal M,SD,SK,KR,PP,RMS,E 90.5 90.0

F2 6 Frequency FM,FSD,FSK,FKR,BPWR,FMED 94.1 93.6

F3 8 Frequency SC,SF,SRO,SFL,SCR,SDEC,SSL,SS 94.1 92.3

F4 13 Hybrid M,SD,SK,KR,PP,RMS,E 98.2 90.0FM,FSD,FSK,FKR,BPWR,FMED

F5 14 Hybrid FM, FSD, FSK, FKR,BPWR,FMED, 95 91.4SC,SF,RO,SFL,SCR,SDEC,SL,SS

F6 15 Hybrid M, SD, SKW,KR,PP,RMS,E, 91.4 91.4SC,SF,SRO,SFL,SCR,SDEC,SSL,SS

F7 21 Hybrid M,SD,SK,KR,PP,RMS,E
96.5 90.5FM,FSD,FSK,FKR,BPWR,FMED

SC,SF,SRO,SFL,SCR,SDEC,SSL,SS

In pattern recognition problems, a relationship between different feature classes
can be efficiently illustrated using a scatter plot. Best features are identified as those
having maximum inter-class difference, i.e., the means of both classes lie at maximum
distance from each other in scatter plot, whereas intra-class difference is minimum for
the same feature. As an example, Figure 5a shows the predictions of SVM-Q classifier
on joint feature vector of temporal mean and standard deviation. Similarly, Figure 5b
shows the SVM-Q predictions on frequency standard deviation and skewness features. In
this way, classifier predictions were visually analyzed to obtain promising feature vector
combinations for classification.
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(a)

(b)

Figure 5. Model Predictions of SVM-Q Classifiers for various combinations of temporal and frequency
domain features. (a) Temporal Mean and Standard Deviation. (b) Frequency standard deviation
and skewness.

4.2. Classification Performance

In the next step, best feature set of Table 3, i.e., F4 comprising of time and frequency
features is selected for classification using a range of classifiers namely, Linear Discriminant
Analysis (LDA), Decision Tree (DT), KNN with K = 10 (KNN-M), KNN with K = 1 (KNN-
F), KNN with the weighted kernel (KNN-W), SVM with the quadratic kernel (SVM-Q),
SVM with linear kernel (SVM-L), SVM with cubic kernel (SVM-C), and SVM with Gaussian
Kernel (SVM-G). Table 4 shows the performance of these classifiers in terms of standard
performance metrics of specificity, sensitivity, accuracy and error. SVM-Q achieves best
classification performance with 98.2% accuracy, 96.6% sensitivity, 100.0% specificity and
1.8% error rate. These results are also graphically illustrated in Figure 6. Most of the
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classifiers used in this work achieve an accuracy above 90% which shows the validity of
proposed approach.

Table 4. Performance of feature set F4 with a range of classification methods.

Classifier Accuracy (%) Sensitivity (%) Specificity (%) Error (%)

DT (fine) 96.8 96.6 97.1 3.2
LDA 86.8 78.6 96.1 13.2
KNN-M 88.6 81.2 97.1 11.4
KNN-F 90 86.3 94.2 10
KNN-W 90 83.8 97.1 10
SVM-L 91.4 86.3 97.1 8.6
SVM-Q 98.2 96.6 100 1.8

SVM-C 94.1 91.5 97.1 5.9
SVM-G 88.2 80.3 97.1 11.8

Figure 6. Performance comparison of different classifiers in terms of accuracy, sensitivity, specificity,
and error.

Figure 7 shows the confusion matrix of classification performance with SVM-G clas-
sifier. Out of 117 faulty vibration signals, only 4 are misclassified as Normal and the
remaining 113 signal are correctly predicted. Moreover, all 103 signals acquired from
normal/healthy motors are correctly predicted as normal by the classifier.

Figure 8 illustrates the confusion matrix information in term of sensitivity and specificity.
Faulty class achieves 96.6% sensitivity, whereas the normal class achieves 100% specificity.
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Figure 7. Confusion Matrix of classification using SVM-Q.

Figure 8. Confusion Matrix in terms of sensitivity and specificity.

5. Conclusions and Future Work

Early and accurate machine fault detection plays an important role to ensure the
productivity and economic stability of industrial enterprises. In most of emerging multiport
energy conversion systems, critical functions are performed by rotating machines especially
motors. The vibration signals contain a wealth of information about the health and state
of the machine. However, due to time varying nature of vibration signals, using them
for accurate detection of machine faults is not a trivial tasks. This calls for extraction of
powerful features from vibration data and selection of appropriate classification methods.
In this work, an approach is proposed for fault identification of large industrial motors.
This work has three main contributions.
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1. Since, the reliability of any system based on machine learning depends upon effective-
ness of collected dataset. In this work, the vibration signal dataset is constructed from
real-time, practical industrial setup rather than using data collected from laboratory
environment.

2. In order to remove the noise contribution from practical sources, an efficient signal
conditioning approach is proposed based on Empirical mode decomposition.

3. While most of the published works in this domain are concentrated on using a single
class of features of fault detection, this work is based on an approach based on hybrid
features. we systematically analyzed the performance of different combinations of
time and frequency domain features using a range of classifiers with multiple settings.

The proposed approach can be applied to any industrial setup for real time detection
of machine faults using vibration analysis. In future work, we aim to extend this work to
perform multi-class identification of individual faults of machines. Moreover, increasing the
number of data samples and feature reduction methods can also improve the performance
with reasonable complexity.
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The following abbreviations are used in this manuscript:

PSD Power Spectral Density
STFT Short Time Fourier Transform
DFT Discrete Fourier Transform
LD Linear dichroism
HT Hilbert Transform
DWT Discrete Wavelet Transform
CWT Continuous Wavelet Transform
ANN Artifical Neural Network
SVM Support Vector Machines
KNN K Nearest Neighbors
EMD Empirical Mode Decomposition
IMF Intrinsic Mode Function
RMS Root Mean Square
DT Decision Tree
SVM-Q SVM with quadratic kernel
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