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Abstract: Imaging sonar systems are widely used for monitoring fish behavior in turbid or low
ambient light waters. For analyzing fish behavior in sonar images, fish segmentation is often required.
In this paper, Mask R-CNN is adopted for segmenting fish in sonar images. Sonar images acquired
from different shallow waters can be quite different in the contrast between fish and the background.
That difference can make Mask R-CNN trained on examples collected from one fish farm ineffective
to fish segmentation for the other fish farms. In this paper, a preprocessing convolutional neural
network (PreCNN) is proposed to provide “standardized” feature maps for Mask R-CNN and to ease
applying Mask R-CNN trained for one fish farm to the others. PreCNN aims at decoupling learning
of fish instances from learning of fish-cultured environments. PreCNN is a semantic segmentation
network and integrated with conditional random fields. PreCNN can utilize successive sonar images
and can be trained by semi-supervised learning to make use of unlabeled information. Experimental
results have shown that Mask R-CNN on the output of PreCNN is more accurate than Mask R-CNN
directly on sonar images. Applying Mask R-CNN plus PreCNN trained for one fish farm to new fish
farms is also more effective.

Keywords: fish segmentation; sonar images; conditional random fields; mask R-CNN

1. Introduction

In modern aquaculture, fish states are constantly monitored to ensure the health of
the cultured fish. Because computer vision can provide noninvasive means of monitoring,
computer vision-based systems have been developed for a variety of applications in
aquaculture [1,2].

Figure 1 shows our AIoT based smart aquaculture system in which both the RGB
camera and the sonar imaging device are used to capture the underwater images of fish
inside an offshore cage. Our sonar imaging device helps to monitor the health condition of
the fish when the lighting condition is poor, which often limits the usage of RGB cameras
to capture clear images for fish monitoring. To achieve the goal of smart aquaculture,
fish counting and fish body length estimation based on underwater images are the two
essential functionalities. Both of them are important to estimate the growth curve of fish
and the feeding amount of an aquaculture cage to achieve the goal of precise aquaculture.
The Mask R-CNN deep learning model offers the fish detection and fish segmentation
simultaneously based on the captured underwater sonar images. The results could be
further used to count fish and estimate the body length of the fish in a non-intrusive manner.
Non-intrusive methods can reduce the manual handling of the fish, thus, can prevent stress
and disturbance among the fish school. It is in this sense that we integrated a non-contact
and visual method to estimate the fish biological information specifically on its body length
and biomass that can avoid fish injury and illness caused by fish catching to estimate the
fish biological information. Although semantic object segmentation based on a CNN deep
learning model and underwater images is not a new concept, to the best of our knowledge,
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the topic of this paper and the sensing technology for analyzing fish in sonar images are
rarely studied.

Figure 1. The proposed AIoT based smart cage system using multi-mode sensors include a stereo camera, a sonar imaging
camera, and a set of water quality detectors. The time series data of each sensor device are first processed by the associate end
computing system and sent to the cloud platform which offers all the AI micro-service computing for precise aquaculture.

The visual quality of underwater images can be poor because light can be heavily
attenuated and scattered in water. Underwater image enhancement is usually required for
analysis of the image of underwater objects [3,4]. On the other hand, imaging sonar systems
often apply to fish monitoring in turbid or low ambient light waters [5–9]. Figure 2a depicts
the underwater area covered by the imaging sonar system adopted in this paper. Figure 2b
shows a drone view of a land-based fish farm overlayed with the rectified underwater
sonar image. In sonar images, fish are often overlapping and the pixel value is proportional
to the intensity of the received reflection of the sonar signal. In land-based fish farms,
the sonar signal can be reflected from the fish, the facility, and the bottom and wall of
the fish farm. Different materials can have different reflectivity for underwater sound.
For example, the reflectivity of the fish is related to the species of the fish [9]. The reflectivity
of sand is higher than that of mud [10]. The distance from the sonar system to an object
also affects the intensity of the echo from this object. Even if the gain setting on the imaging
sonar system is properly tuned, sonar images acquired from fish farms of different size,
depth, and structural materials can be quite different in the contrast between fish and
the background.

Fish segmentation is often required for computer vision-based monitoring of fish
growth and behavior. Deep convolutional neural networks (CNNs) for instance segmen-
tation, such as SGN [11], FCIS [12], Mask R-CNN [13], TensorMask [14], have shown
excellent performances. Those CNNs can usually be transferred by fine-tuning to segment
other target instances. In this paper, Mask R-CNN is adopted for fish segmentation in
sonar images.

As Figure 2c shows, sonar images acquired from different land-based fish farms can
be quite different in the echo from the fish and the bottom. That difference can make Mask
R-CNN, which is fine-tuned based on training examples of one fish farm, ineffective to fish
segmentation for the other fish farms. A method for fine-tuning and generalizing Mask
R-CNN for fish segmentation in sonar images is worthy of investigation.

Figure 3 presents the proposed approach. A preprocessing CNN (PreCNN) for Mask R-
CNN is proposed so that Mask R-CNN+PreCNN learned for one fish-cultured environment
can effectively apply to new environments. PreCNN is a semantic segmentation network
and integrated with conditional random fields (CRFs). PreCNN and Mask R-CNN can be
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separately trained and fine-tuned. As Figure 3a shows, the input of PreCNN comprises
several successive frames of a sonar video. PreCNN outputs a two-channel semantic
feature map, which represents the estimated posterior probabilities of each pixel belonging
to the background and the fish. The semantic feature map is used to form a standardized
three-channel input for Mask R-CNN, which comprises the fish-channel of the semantic
feature map and two channels of zeros. Mask R-CNN is fine-tuned on the standardized
input for fish segmentation. Figure 3b shows the flow of fish segmentation, where PreCNN,
the module for forming the standardized input for Mask R-CNN, and Mask R-CNN
sequentially apply. By considering the neural architectures for Mask R-CNN and PreCNN
as a whole, the output of PreCNN is a semantic intermediate representation of successive
sonar images. The proposed approach explicitly learns the semantic feature mapping,
which has good potential for crossing different fish-cultured environments.

Mask R-CNN+PreCNN has the advantages:

• Decoupling learning of fish instances from learning of fish-cultured environments:
PreCNN learns a mapping from sonar images to a semantic feature map. Mask R-
CNN is fine-tuned on the semantic feature map. Thus, learning of fish instances and
learning of fish-cultured environments can be separated.

• Utilizing temporal information in successive sonar-image frames: In noisy sonar
images, fish identification is usually more accurate by multiple frames than by a
single frame;

• Semi-supervised learning: To reduce annotation costs, ambiguous pixels and pixels
similar to annotated background pixels are not required to annotate. Images with
partial or no pixel-level annotations can be used to train PreCNN in a semi-supervised
learning manner.

(a) (b) (c)

Figure 2. Illustrations of sonar images acquired from fish farms by the Garmin CHIRP imaging sonar system, where
(a) depicts the underwater area covered by the imaging sonar system; (b) is a drone-view of a fish pond overlapped with
the rectified sonar image; (c) shows two sonar images acquired from different land-based fish farms.

Experimental results have shown that PreCNN can improve the accuracy of Mask
R-CNN for fish segmentation, especially across different fish-cultured environments.

This paper is organized as follows. Related works are presented in Section 2. PreCNN
is presented in Section 3. An extension of PreCNN, which can provide useful information
for Mask R-CNN to segment overlapping fish, is also presented there. Experimental results
are discussed in Section 4. Concluding remarks are drawn in Section 5.
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(a) (b)

Figure 3. The flow of Mask R-CNN+PreCNN: (a) the flow of training PreCNN and fine-tuning Mask R-CNN; (b) the flow
of fish segmentation.

2. Related Work

To monitor the states of fish in underwater areas with low optical visibility, imaging
sonar systems are often without alternative. Applications of imaging sonar systems in
aquaculture are broad, such as fish counting [5,15–19], recording fish schools [9,20], fish
tracking [21], fish detection [8,22], and monitoring of fish behavior [6,7] and feeding [23,24].
Image processing algorithms, such as adaptive thresholding and background subtraction,
often apply in those applications for fish segmentation. However, those algorithms are
often sensitive to noise and sonar artifacts [25].

Object detection and image segmentation algorithms have been developed to detect
objects in sonar images. In [26–28], unsupervised learning algorithms and likelihood ratio
tests are proposed to separate the highlight and shadow regions of unknown objects from
the background seabed. In [29], CNNs are found suitable for detecting objects of known
shapes on the seabed. In [18,19], CNNs are also shown to be effective in fish counting in
sonar images.

Mask R-CNN is widely used for instance segmentation in optical images, such as fish
detection [30] and ship detection [31]. Mask R-CNN belongs to the currently dominant
paradigm for instance segmentation—the detect-then-segment methodology [14]. Accord-
ing to the taxonomy of the instance segmentation networks [14,32], there are backbone
networks extracting image features for object detection and segmentation. In sonar images,
those backbone networks can couple fish instances with fish-cultured environments. In this
paper, to decouple learning of fish instances from learning of fish-cultured environments in
sonar images, PreCNN is developed to provide for Mask R-CNN the semantic information
in sonar images.

Many CNNs for semantic segmentation [13,33–36] for optical or medical images have
come out. A comprehensive review of semantic image segmentation by deep learning
models can be found in [37]. In FCN [34], pre-trained CNNs for image classification
are casted into a fully convolutional form for pixel-level classification. Full resolution
feature maps are recovered by a upsampling network, which can combine information
from shallow layers and deep layers by skip connections. Transposed convolution is
widely used in the upsampling network. A drawback of transposed convolution is the
checkerboard problem. This drawback can be coped with pixel-transposed convolution [38].
In DeepLab [35], it turns out that CNNs abstracting spatial information by successive max-
pooling and downsampling can lose the spatial accuracy. Dilated (Atrous) convolution
is thus introduced to enlarge the receptive field without a loss of feature map resolution.
DeepLab also applies a fully connected CRF to improve the spatial consistency of the
segmentation result.

In [39], it turns out that CNNs and dense CRFs can be trained in an end-to-end
manner by formulating CRFs as recurrent neural networks (RNNs). The pairwise potentials
in [39] are limited to weighted Gaussians on predefined image features. In [40], CNNs are



Sensors 2021, 21, 7625 5 of 16

combined with a Gaussian CRF network, where all parameters are trainable. Freeform
pairwise potentials with all parameters trainable have come out, such as [36,41].

The attention mechanism has been applied to semantic segmentation. In [42], an atten-
tion model is proposed to learn to softly weights the multi-scale features when predicting
the semantic label of the pixel. In [43], a position attention module and a channel attention
module are appended on the top of a dilated FCN to learn the semantic interdependencies
in spatial and channel dimensions, respectively.

Due to the high cost of pixel-level annotations, weakly- and semi-supervised learning
algorithms of semantic segmentation, such as [44–46], have been proposed. The training
set for those algorithms can comprise training examples with strong and weak pixel-
level annotations and image-level annotations. On the other hand, few-shot semantic
segmentation can segment test images given only a few annotated support images [47,48].
If there exist a lot of unlabeled and related examples, self-training can improve the semantic
segmentation model [49]. However, those two approaches are out of the scope of the
application considered in this paper.

In summary, sonar images can be noisy in shallow waters. CRFs can be integrated
into PreCNN to get spatial consistent label maps. Since it is not easy to empirically set
parameters for CRFs on sonar images, freeform pairwise potentials for CRFs with all
parameters trainable are required. Besides, to get rid of laboriously annotating every pixel
of a sonar image, end-to-end training for PreCNN in a semi-supervised learning manner is
also preferable.

3. Materials and Methods
3.1. Problem Formulation

Let L denote a label set L = {1, . . ., `}. In an annotation image, a labelled pixel can
be either a pixel outside a fish or a pixel in a fish. To give fish motion information in
annotation images, the label of a pixel in a fish can also be related to the motion direction
of the fish. That extension will be presented in Section 3.5.

Let X denote a multiple-channel image which is formed by stacking a sequence of
one-channel sonar images. In this paper, X comprises three successive sonar images. Let Y
denote the label map assigned to X and yi be the label of pixel i. The probability of Y given
X in a CRF can be modeled by the Gibbs distribution as [36,39]

P(Y|X) = 1
Z(X)

exp(−E(Y|X)),

where Z(X) is the partition function and E(Y|X) is the Gibbs energy defined as

E(Y|X) = ∑
i

ψu(yi|X) + ∑
i

∑
j∈Ni

ψp(yi, yj|X). (1)

In Equation (1), Ni denotes a set of neighboring pixels of pixel i, ψu(yi|X) denotes the
unary potential, and ψp(yi, yj|X) is the pairwise potential. The unary potential ψu(yi|X) is
the cost of assigning label yi to pixel i and can be defined on the output of a deep CNN
φu(yi|X) as

ψu(yi|X) = − log(φu(yi|X)).

The deep CNN φu(yi|X) will be defined later. The pairwise potential ψp(yi, yj|X) is the
cost of assigning labels yi and yj, respectively, to pixels i and j. The potential ψp(yi, yj|X)
can be defined as [36]

ψp(yi, yj|X) = c(yi, yj) f (fi, fj, dij),

where c(u, v) is the compatibility from label v to label u and f (xi, xj, dij) is the similarity
between pixels i and j in terms of image features fi and fj and the spatial distance di,j
between pixels i and j. The deep feature fi is extracted by φu(yi|X). In the proposed
approach, c(u, v), f (fi, fj, dij), and φu(yi|X) are all trainable.
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3.2. The Mean-Field Approximation to P(Y|X)
For efficient inference of the CRF, the mean-field approximation Q(Y|X) to the distri-

bution P(Y|X) often applies [36,39,40], where Q(Y|X) is of the fully factorized form

Q(Y|X) = ∏
i

Qi(yi|X)

and minimizes the Kullback-Leibler (KL) divergence DKL(Q||P). The distribution Qi(yi|X)
can be obtained by

Qi(yi|X) =
1
Zi

exp(−(ψu(yi|X) + φp(yi|X))) (2)

where Zi is the local normalization constant and

φp(yi = u|X) = ∑
v∈L

c(u, v) ∑
j∈Ni

f (fi, fj, dij)Qj(yj = v|X).

Equation (2) can be turned into a fixed-point form as

Q(t)
i (yi|X) =

1

Z(t)
i

exp(−(ψu(yi|X) + φ
(t−1)
p (yi|X))) (3)

where
φ
(t−1)
p (yi = u|X) = ∑

v∈L
c(u, v) ∑

j∈Ni

f (fi, fj, dij)Q
(t−1)
j (yj = v|X) (4)

with
Q(0)

i (yi|X) =
1

Z(0)
i

exp(−ψu(yi|X)).

The distribution function Qi(yi|X) for all pixels can be updated in parallel.

3.3. Semi-Supervised Learning

The distribution function Q(Y|X) can be learned in a manner of semi-supervised
learning. For clarity, Θ denotes all parameters to learn for Q(Y|X) and Q(Y|X) is added
by a subscript notation as QΘ(Y|X). Let Hs be the annotation image for training example
Xs, and hs;i;u be the variable for indicating if the label of pixel i of Xs is u. If pixel i of Xs is
manually annotated, hs;i;u ∈ {0, 1} are all constant; otherwise, hs;i;u ∈ [0, 1] are all latent
variables. Additionally, we have ∑u∈L hs;i;u = 1. The complete data likelihood function
can be defined as

Lc(Θ) = ∏
s

∏
i

∏
u∈L

Qhs;i;u
i;Θ (yi = u|Xs),

and the complete data log-likelihood function is

lc(Θ) = ∑
s

∑
i

∑
u∈L

hs;i;u log(Qi;Θ(yi = u|Xs)).

According to the EM algorithm, Θ can be estimated by maximizing the expected
complete data log-likelihood function:

Θ(t) = arg max
Θ

π(Θ|Θ(t−1))
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where

π(Θ|Θ(t−1)) = ∑
s

(
∑

i/∈As

∑
u∈L

EQ
i;Θ(t−1)

[hs;i;u] log(Qi;Θ(yi = u|Xs))+

C× ∑
i∈As

∑
u∈L

hs;i;u log(Qi;Θ(yi = u|Xs))

)

with As the set of labeled pixels of Xs and

EQ
i;Θ(t−1)

[hs;i;u] = Qi;Θ(t−1)(yi = u|Xs).

In π(Θ|Θ(t−1)), the labelled pixel is weighted by a factor C, which is set to 1 in this
paper. A mini-batch gradient-descent algorithm with the loss function −π(Θ|Θ(t−1)) can
be adopted to learn Θ.

3.4. The Neural Network Architecture

As Figure 4 shows, the distribution function Q(Y|X) can be implemented by a deep
neural network, which comprises four parts for the four functions:

• φu(yi|X): a deep CNN;
• φp(yi|X): an RNN;
• f (fi, fj, dij): a CNN comprising a sequence of 1× 1 convolutional operations;
• c(u, v): a 1× 1 convolutional operation.

Figure 4. The neural architecture of Q(yi|X), where F∆x ,∆y denotes the feature map, which is of the same size of F and
covers starting from the k + ∆yth row and the k + ∆xth column of F with k padded zeros at the top, bottom, left, and right
side; in addition, “∀(∆x, ∆y)” at the corner of the rectangle with solid lines indicates that the network inside is performed
for each (∆x, ∆y).

The distribution function φu(yi|X) is implemented by a deep CNN. This deep CNN
consists of five blocks and its network architecture is similar to the P-Net [36]. The first
four blocks comprise 3× 3 dilated convolutional layers with dilation rates 1, 2, 4, and 6,
respectively. Dilated convolutional operations are adopted to enlarge receptive fields
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without a loss of feature map resolution. The outputs of the last layers of the first four
blocks are concatenated together to be the input for the fifth block. The fifth block comprises
one dropout layer and three 1× 1 convolutional layers.

The mean-field CRF inference, Equation (3), can be implemented as an RNN [39].
By padding, slicing, and concatenating the feature map from the first block of the CNN
for φu(yi|X), the two functions f and c in Equation (4) can be implemented by 1 × 1
convolutional operations. The output of f (fi, fj, dij) is a product of two sigmoid functions
for indicating if pixels i and j are nearby pixels and similar in image features. The function
c(u, v) can be implemented by a 1× 1 convolutional operation with nonnegative weights,
zero bias terms, and linear activation functions. Due to the memory space,Ni only includes
the pixel in the 3× 3 neighborhood of pixel i in this paper.

3.5. Segmentation of Overlapping Fish with Mask R-CNN

In addition to fish shapes [50], the fish motion direction is also a cue for segmenting
overlapping fish. PreCNNd, which is an extension of PreCNN, provides motion information
for Mask R-CNN for segmenting overlapping fish. In an annotation image for training
PreCNNd, a fish pixel can be annotated by the category of the motion direction of the fish.
In this paper, the fish motion direction is categorized into four directions: the north-west,
north-east, south-west, and south-east directions. Thus, the output Q of PreCNNd is a
5-channel feature map, where one channel is for the background and the others are for the
four motion direction categories.

To make Mask R-CNN utilize the fish motion direction, the output of PreCNNd

is combined channel-wisely to provide multiple standardized inputs for Mask R-CNN.
Fifteen combinations of the four motion-direction categories (the empty combination is
excluded) can be considered. Thus, fifteen standardized 3-channel inputs for Mask R-
CNN are created. A 3-channel standardized input comprises two channels of zeros and
a channel which is the channel-wise sum of Q across the channels corresponding to the
considered motion-direction categories. Each input presents a possible interpretation of fish
shapes according to some motion directions. At last, apply the non-maximum-suppression
technique to all detected fish masks to get the final results. Accordingly, the fish size can be
estimated based on non-overlapping fish. In Mask R-CNN+PreCNNd, Mask R-CNN can
be trained on the standardized input with the four fish-motion categories all considered.

4. Results
4.1. Test Environments

The sonar images for this experiment were collected from three environments. Figure 5
shows examples of sonar images collected from the three environments.

• E-A:The first environment is an indoor land-based fish farm with a concrete bottom.
The species of the fish in this fish farm is Cyprinus carpio haematopterus.

• E-B: The second environment is the same as the first one except that the gain setting
on the sonar system was higher to show more details.

• E-C: The third environment is an outdoor land-based fish farm with a mud bottom.
The species of the fish in this fish farm is Pampus argenteus.

Because it is not easy to precisely identify every fish in a sonar image, only the fish,
whose boundary can be unambiguously identified, was annotated. The region around an
annotated fish was annotated as the background. A region, where there are sure no fish,
was also annotated as the background. Some regions in the annotation image can have no
labels. Figure 6 shows an example of the annotation image and Table 1 shows the number
of annotated examples.

In this experiment, the backbone network of Mask R-CNN was ResNet101. When
Mask R-CNN was trained, the backbone network above the fifth block (included) and
the head of Mask R-CNN were fine-tuned by the mini-batch stochastic gradient descent
algorithm with at most 200 epochs.
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The proposed algorithm was implemented in the Python programming language with
software libraries OpenCV, Keras, and TensorFlow. The experiments were performed on a
desktop with an Intel Core i7-7700 3.6-GHz CPU, 64-G RAM, and one NVIDIA TITAN RTX
GPU card.

(a) (b)

(c) (d) (e)

Figure 5. The sonar images of the three test environments, where (a,b) show the fish farms for
test environments E-A,B and E-C, respectively; (c–e) show examples of the sonar images in test
environments E-A, E-B, and E-C, respectively.

(a) (b)

Figure 6. An example of the annotation image: (a)sonar image; (b) annotation image.

Table 1. The specifications of the dataset.

Test Environment E-A E-B E-C

Total number of sonar images 50 60 35

Total number of annotated fish 522 794 360

4.2. Performance Evaluation

In this experiment, the ground truth for a test image does not include ambiguous
fish due to annotation difficulty. The average precision (AP) was estimated by five-fold
cross-validation. Thus, a high AP indicates that most of the annotated fish are detected and
have a high rank in the list of the detected fish. A low AP reveals that many annotated fish
are not detected or there are many ambiguous fish, which are not ground-truthed, have a
high rank in the list of the detected fish.

4.2.1. Mask R-CNN vs. Mask R-CNN+PreCNN

Table 2 shows the AP0.5 (average precision with the mask IoU 0.5) and the AP0.75 of
Mask R-CNN and Mask R-CNN+PreCNN. The threshold for the confidence score in Mask
R-CNN was set to 0.2 for calculating the AP. Observations on Table 2 are as follows.

• The AP0.5 of Mask R-CNN is high when the training and the test example are of the
same environment.

• The AP0.5 of Mask R-CNN is degenerate when applying Mask R-CNN trained for one
test environment to the other two test environments.

• The AP0.5 of Mask R-CNN across environments E-A and E-B is acceptable. Mask
R-CNN trained for one test environment can apply to the same environment with a
different but proper gain setting on the imaging sonar system.

• The AP0.5 of Mask R-CNN across environments E-A and E-C or across environments
E-B and E-C is low. This is because the echoes reflected from the different fish species
and the bottom of different materials show different patterns.
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• The overall AP0.5 of Mask R-CNN can be improved if the training examples are from
the three test environments.

• When the training and test examples are of different environments, Mask R-CNN+
PreCNN is more accurate than Mask R-CNN. Besides, even though Mask R-CNN is
fine-tuned on the examples of the three test environments, Mask R-CNN+PreCNN
learned on the training example of one single test environment is at least as accurate
as Mask R-CNN. That experimental result shows that Mask R-CNN based on the
semantic feature map outputted by PreCNN is less dependent on the environment
and supports the feasibility of the proposed approach.

• Because the AP0.75 of Mask R-CNN+PreCNN is better, Mask R-CNN+PreCNN can
segment fish in a way more consistent with human annotations.

As Figure 7 shows, applying Mask R-CNN trained for environment E-A or E-B to
environment E-C can miss some fish. A possible cause is that the fish in the sonar image of
environment E-C is blurrier and has lower contrast. Applying Mask R-CNN trained for
environment E-C to environment E-A or E-B can miss some fish and detect incorrect fish
with high confidence scores. In summary, Mask R-CNN+PreCNN is more accurate than
Mask R-CNN alone in using for a single test environment and in applying across different
test environments.

Table 2. The AP0.5 and AP0.75 of Mask R-CNN and Mask R-CNN+PreCNN.

Test (AP0.5)

Mask R-CNN Mask R-CNN+PreCNN

Training E-A E-B E-C E-A E-B E-C

E-A 0.86 ± 0.06 0.71 ± 0.07 0.37 ± 0.07 0.97 ± 0.01 0.96 ± 0.03 0.75 ± 0.07

E-B 0.66 ± 0.11 0.84 ± 0.06 0.17 ± 0.07 0.92 ± 0.04 0.99 ± 0.01 0.80 ± 0.02

E-C 0.41 ± 0.04 0.17 ± 0.05 0.96 ± 0.01 0.85 ± 0.05 0.91 ± 0.03 0.95 ± 0.02

E-AB 0.84 ± 0.04 0.84 ± 0.06 0.45 ± 0.08

E-BC 0.71 ± 0.09 0.83 ± 0.06 0.86 ± 0.06

E-AC 0.80 ± 0.06 0.61 ± 0.13 0.83 ± 0.04

E-ABC 0.81 ± 0.08 0.79 ± 0.04 0.76 ± 0.03

Test (AP0.75)

Mask R-CNN Mask R-CNN+PreCNN

Training E-A E-B E-C E-A E-B E-C

E-A 0.47 ± 0.14 0.13 ± 0.03 0.04 ± 0.03 0.88 ± 0.05 0.84 ± 0.04 0.57 ± 0.10

E-B 0.11 ± 0.07 0.47 ± 0.04 0.01 ± 0.01 0.75 ± 0.07 0.89 ± 0.05 0.60 ± 0.08

E-C 0.10 ± 0.03 0.01 ± 0.01 0.71 ± 0.12 0.53 ± 0.06 0.70 ± 0.07 0.84 ± 0.03

4.2.2. Mask R-CNN+Image Preprocessing vs. Mask R-CNN+PreCNN

This experiment compared Mask R-CNN incorporated with contrast stretching and
bilateral filtering to Mask R-CNN+PreCNN. The test for Mask R-CNN with contrast
stretching evaluates if contrast stretching can transfer the training sonar image collected
from one test environment into the training sonar image for the others. Figure 8a shows that
the contrast in sonar images can be tuned by contrast stretching. However, by comparing
Tables 2 and 3, Mask R-CNN fine-tuned on the image, which is transformed from the
training image for another test environment by contrast stretching, does not improve in
crossing different test environments.
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Figure 7. Examples of applying Mask R-CNN and Mask R-CNN+PreCNN across different environments, where a fish in
the ground truth and not detected is enclosed by a circle; the threshold of the confidence score for Mask R-CNN is 0.2; the
first two rows show applying the model for E-A to E-C and applying the model for E-B to E-C, respectively, and the last two
rows show applying the model for E-C to E-A and to E-B, respectively.

(a) (b)

Figure 8. Examples of sonar images processed with contrast stretching and bilateral filtering, where (a) shows the source
sonar image and the image transformed from the source image into the image for the target environment by contrast
stretching; (b) shows the source image processed with a bilateral filter.

The test for Mask R-CNN with bilateral filtering evaluates if Mask R-CNN on the sonar
image preprocessed with bilateral filtering is more accurate. Figure 8b shows examples of
sonar images processed by a bilateral filter, where the background of the processed sonar
image becomes less noisy. However, by comparing Tables 2 and 3, bilateral filtering does
not improve Mask R-CNN in the AP0.5.

Mask R-CNN+PreCNN is more accurate than Mask R-CNN incorporated with contrast
stretching and bilateral filtering because PreCNN is a nonlinear mapping from successive
sonar-image frames to a semantic feature map.

4.2.3. PreCNN vs. PreCNN with CNN Only

PreCNN only based on the CNN for φu(yiX) without the pairwise potential was
also analyzed. This version of PreCNN is referred to as PreCNNCNN only. According to
Tables 2 and 4, PreCNNCNN only is less accurate, especially in Environment E-C. As Figure 9
shows, this is probably because Mask R-CNN+PreCNNCNN only often gives high confidence
scores to detected fish. Thus, the fish not in the ground truth can have a high rank in the
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list of detected fish and the AP of the detection result can be lower. The output of PreCNN
on fish is smoother. Mask R-CNN+PreCNN can rank the detected fish in a way more
consistent with the way of human annotators probably because smooth boundaries are
important cues for annotators to identify fish in sonar images.

Table 3. The AP0.5 of Mask R-CNN with image preprocessing.

Test (AP0.5)

Mask R-CNN+Contrast Stretching Mask R-CNN+Bilateral Filtering

Training E-A E-B E-C E-A E-B E-C

E-A 0.86 ± 0.06 0.67 ± 0.04 0.36 ± 0.05 0.86 ± 0.03 0.68 ± 0.04 0.38 ± 0.04

E-B 0.61 ± 0.04 0.84 ± 0.06 0.15 ± 0.06 0.55 ± 0.13 0.84 ± 0.03 0.09 ± 0.08

E-C 0.40 ± 0.06 0.08 ± 0.04 0.96 ± 0.01 0.41 ± 0.02 0.11 ± 0.03 0.89 ± 0.06

Figure 9. Example results of Mask R-CNN+PreCNN and Mask R-CNN+PreCNNCNN only, where the number associated
with an object is the rank and the object with a blue number is not in the ground truth.

Table 4. Experimental results of Mask R-CNN+PreCNNCNN only.

Test (AP0.5)

Mask R-CNN+PreCNNCNN only

Training E-A E-B E-C

E-A 0.90 ± 0.04 0.73 ± 0.06 0.62 ± 0.06

E-B 0.85 ± 0.02 0.79 ± 0.03 0.60 ± 0.05

E-C 0.79 ± 0.02 0.71 ± 0.07 0.57 ± 0.03

4.2.4. Experimental Results of YOLOv4

YOLOv4 [51] is a well-known bounding-box object detection model. The training
fish for YOLOv4 is only annotated with a bounding box, whereas a training fish for Mask
R-CNN and PreCNN requires a mask annotation. The cost of annotating a training fish
for YOLOv4 is much lower than that for Mask R-CNN and PreCNN. Table 5 shows that
the AP0.5 for YOLOv4 is lower than that for Mask R-CNN and Mask R-CNN+PreCNN.
Particularly, the AP0.5 of YOLOv4 sharply deteriorates when YOLOv4 is applied across
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the test environments E-B and E-C. The mask annotation of training fish is helpful for the
detection and segmentation of fish in sonar images.

Table 5. Experimental results of YOLOv4.

Test (AP0.5)

Training E-A E-B E-C

E-A 0.57 ± 0.04 0.56 ± 0.01 0.45 ± 0.02

E-B 0.47 ± 0.06 0.59 ± 0.04 0.28 ± 0.04

E-C 0.40 ± 0.02 0.25 ± 0.02 0.47 ± 0.02

4.3. Segmentation of Overlapping Fish with Mask R-CNN+PreCNNd

In this experiment, sixteen sonar images from environment E-A were selected for
testing Mask R-CNN+PreCNNd. Because annotators must definitely identify every fish
including overlapping fish, challenging sonar images were not selected. A total of 243 fish
including 50 overlapping fish were identified in those images. Figure 10 shows an example
of segmenting overlapping fish. Fish locomotion comprises local and global motion and
some motion directions are ambiguous within a small receptive field. Thus, it can be
seen that there may be multiple labels of motion directions on a fish. Figure 11 shows the
average precision-recall curve. All fish can be detected with 20 percent of false positives.

Figure 10. An example of segmenting overlapping fish by Mark R-CNN+PreCNNd, where the overlapping fish are
highlighted by a circle and the label map is yielded according to the output Q of PreCNNd.
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Figure 11. The average precision-recall curve.

5. Conclusions

In this paper, a preprocessing CNN has been proposed to provide “standardized”
feature maps for Mask R-CNN for fish segmentation in sonar images. The proposed
preprocessing CNN is a semantic segmentation network and integrated with conditional
random fields. The preprocessing CNN is aimed at decoupling learning fish instances
from learning fish-cultured environments. As a result, the proposed approach can improve
Mask R-CNN for segmenting fish in sonar images and can also ease applying Mask R-CNN
across fish-cultured environments. In the future, the efficiency of the proposed framework
will be improved by developing a lightweight fish-instance segmentation network on the
proposed preprocessing CNN.

Author Contributions: Conceptualization, C.-C.C. and S.-C.C.; methodology, C.-C.C.; software,
Y.-P.W.; validation, C.-C.C., Y.-P.W. and S.-C.C.; formal analysis, C.-C.C.; investigation, S.-C.C.;
resources, Y.-P.W.; data curation, Y.-P.W.; writing—original draft preparation, C.-C.C.; writing—
review and editing, S.-C.C.; visualization, Y.-P.W.; supervision, C.-C.C.; project administration,
S.-C.C.; funding acquisition, S.-C.C. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by Ministry of Science and Technology, Taiwan under grant number
MOST 110-2221-E-019-048 and Fisheries Agency, Council of Agriculture, Taiwan under grant number
110AS-6.2.1-FA-F6. The APC was funded by Fisheries Agency, Council of Agriculture, Taiwan.

Institutional Review Board Statement: This study designs a monitoring system using an invasive
approach. This study is not involving humans or animals.

Informed Consent Statement: This study designs a monitoring system using an invasive approach.
This study is not involving humans or animals.

Data Availability Statement: The study did not report any data.

Acknowledgments: This work was supported in part by Ministry of Science and Technology and
Fisheries Agency, Council of Agriculture, Taiwan under grand numbers MOST 110-2221-E-019-048-
and 110AS-6.2.1-FA-F6, respectively.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Saberioon, M.; Gholizadeh, A.; Cisar, P.; Pautsina, A.; Urban, J. Application of machine viion systems in aquaculture with

emphasis on fish: state-of-the-art and key issues. Rev. Aquac. 2017, 9, 4, 369–387. [CrossRef]
2. Zhou, Y.; Yu, H.; Wu, J.; Cui, Z.; Zhang, F. Fish behavior analysis based on computer vision: A survey. In Data Science; Mao R.,

Wang H., Xie X., Lu Z., Eds.; Springer: Singapore, 2019; pp. 130–141.

http://doi.org/10.1111/raq.12143


Sensors 2021, 21, 7625 15 of 16

3. Liu, R.; Fan, X.; Zhu, M.; Hou, M.; Luo, Z. Real-world underwater enhancement: Challenges, benchmarks, and solutions under
natural light. IEEE Trans. Circuits Syst. Video Technol. 2020, 30, 12, 4861–4875. [CrossRef]

4. Chen, L.; Jiang, Z.; Tong, L.; Liu, Z.; Zhao, A.; Zhang, Q.; Dong, J.H.; Zhou, H. Perceptual underwater image enhancement with
deep learning and physical priors. IEEE Trans. Circuits Syst. Video Technol. 2020, 31, 3078–3092. [CrossRef]

5. Jun, H.;Asada, A. Acoustic counting method of upstream juvenile ayu plecoglossus altivelis by using DIDSON. In Proceedings of
the 2007 Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies,
Tokyo, Japan, 17–20 April 2007; pp. 459–462.
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