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Abstract: In situ fluorophores were induced on polyvinyl alcohol (PVA) bulk materials by direct
femtosecond laser writing. The generation of fluorophores was ascribed to localized laser-assisted
carbonization. The carbonization of PVA polymers was confirmed through X-ray photoelectron
spectroscopy analysis. The distinct fluorescence responses of fluorophores in various solutions were
harnessed for implementing in situ reagent sensors, metal ion sensors, data encryption, and data
security applications. The demonstrated water detection sensor in acetone exhibited a sensitivity of
3%. Meanwhile, a data encryption scheme and a “burn after reading” technique were demonstrated
by taking advantage of the respective reversible and irreversible switching properties of the in
situ laser-induced fluorophores. Taking a step further, a quantitative cobalt ion measurement was
demonstrated based on the concentration-dependent fluorescence recovery. Combined with a laser-
induced hydrophilic modification, our scheme could enable “lab-on-a-chip” microfluidics sensors
with arbitrary shape, varied flow delay, designed reaction zones, and targeted functionalities in
the future.

Keywords: data security; fluorescence; laser ablation; materials processing; microfluidics

1. Introduction

Fluorescent materials have extensive applications in biological imaging [1], drug
delivery [2], sensors [3–6], data storage [7], and anti-counterfeiting encryption [8,9]. Mas-
sive production methods, including hydrothermal, solvothermal, and pyrolysis methods,
have been widely used for preparing fluorescent materials. However, these methods have
traditionally faced challenges in the fabrication of microscale arbitrary fluorescence-based
functional devices.

Owing to the ease of creating highly-localized and targeted material modifications
by femtosecond direct laser writing, microscale functional devices can be fabricated in
situ [10,11]. In addition, in situ femtosecond-laser-induced fluorophores in transparent
organic materials have enabled a growing number of applications, such as optical data stor-
age [12,13], microfluidics [14], and patterning [15]. The stimuli-responsive properties of flu-
orescent materials have also been implemented for information security encryption [16,17].

In this work, fluorophores were generated in situ by femtosecond-laser-induced direct
writing on the surface of polyvinyl alcohol (PVA). This property was employed for multi-
level optical data storage. Excited fluorescence was quenched by organic solvents with a
hydroxyl group. A lab-on-a-chip water sensor was fabricated by harnessing this response
behavior. In addition, a reversible data encryption-decryption scheme based on water-
responsive fluorophores was demonstrated. Taking a step further, we present a “burn
after reading” data security technique based on metal-ion-induced permanent quenching.
By grading the recovered fluorescence intensity, quantitative cobalt ion measurement
was implemented.
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2. Materials and Methods

PVA (1799) powder was purchased from Aladdin. PVA (1 g) was dissolved in deion-
ized water (10 mL) by continuous stirring. Then, the solvent was maintained at 90 ◦C until
complete dissolution. To prepare the PVA film, the PVA solution was cast on a glass slide
and dried at room temperature. Aqueous solutions of Co2+ were obtained by dissolving
cobalt chloride in deionized water.

Patterns were written on the surface of the PVA samples by direct laser writing
(Figure 1). A femtosecond laser system (Light Conversion, Pharos, Vilnius, Lithuania) with
a central wavelength of 1030 nm, repetition rate of 100 kHz, average power of 30 mW,
and pulse width of 220 fs was employed. The pulse energy was manipulated using a
programmed rotating half-wave plate and a linear polarizer. A dry objective lens with a
numerical aperture of 0.7 was used for focusing the incident beam. An XYZ translation
stage (Aerotech, Pittsburgh, PA, USA) was used for positioning and scanning the samples.
An excitation laser at 488 nm with a power of 2.5 mW was used in all of the fluorescence
imaging experiments in this work.
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Figure 1. Schematic of a pattern written in PVA using a femtosecond laser (left). Schematic of the
carbonization and dehydration processes after femtosecond-laser-based irradiation (right).

3. Results and Discussion

The fluorescence emission spectra of the PVA samples were obtained using a Zeiss
LSM 710 confocal microscope. For the fluorescence measurement, a 1 × 1 mm area was
fabricated on the surface with a line scanning speed of 1 mm/s and line separation of
10 µm. The untreated PVA sample had a negligible fluorescence signal, whereas the
modified samples exhibited a fluorescence intensity that was two orders of magnitude
higher than that of the pristine sample (Figure 2a). The fluorescence emission spectrum
displayed a typical excitation-dependent feature. The emission peaks gradually shifted to
longer wavelengths with increasing excitation wavelength. A similar excitation-dependent
emission characteristic was observed in carbon dots [18–21] and was explained by size
heterogeneity [22] and variations in the surface group composition [23]. The fluorescence
property can be employed for multi-level optical data storage (Figure 2b). As a proof-
of-concept, a bus photo, composed of 50 × 50 4-level pixels, was written on PVA by
single-pulse femtosecond laser irradiation (Figure 2b, inset).

The chemical changes in the PVA samples were characterized using X-ray photoelec-
tron spectroscopy (XPS). The XPS data were recorded using an AXIS-ULTRA DLD-600W
spectrometer. A 1 × 1 cm area was laser-processed on the surface for XPS measurements.
The XPS tests were conducted on the regions with and without femtosecond laser irradia-
tion (Figure 2c,d). In both cases, the XPS spectra were decomposed into the contributions
of C–C/C=C, C–O, and C=O bonds, which were located at 284.6, 286.4, and 288.0 eV,
individually. The fitting peak area results indicate that after laser irradiation the relative
content of the C–C/C=C bonds increased by 13%. Such changes in chemical bonds signify
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the carbonization of PVA [24–26]. Meanwhile, dehydration of the PVA chain is expected to
occur owing to laser-induced thermal effects. Fluorophore generation can be attributed
to the introduction of nanoclusters [18], carbon quantum dots [19], and aromatic com-
pounds [13,20]. However, the existence form of fluorophores remains to be investigated.
Transmission electron microscopy (TEM) characterization of in situ generated fluorophores
remains challenging [26].
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Figure 2. (a) Photoluminescence spectra of modified PVA samples for different excitation wavelengths and pristine PVA
sample for the excitation wavelength of 488 nm. (b) Confocal fluorescence microscopy image of voxel array excited at
488 nm. Fluorescence intensity as a function of pulse energy. The inset is a 4-level picture of a bus. The scale bars are 50 µm.
XPS spectra of (c) the pristine PVA sample and (d) the laser-modified PVA sample.

As a reagent detection method, fluorophore-based sensors have the advantages
of sensitivity and rapidity [27–29]. Combined with the in situ fabrication property of
femtosecond-laser-based direct writing, “lab-on-a-chip” reagent sensors could be imple-
mented. Following this idea, we tested the fluorescence responses of the modified PVA
samples with different solvents. Eight identical micrometer-scale patterns were fabricated.
Following the deposition of different solvents (water, glycerin, methanol, ethanol, ace-
tone, DMF, isopropanol) on these patterns, the fluorescence response varied significantly.
Dramatic fluorescence intensity reduction was observed, except in the case of acetone
(Figure 3a). This phenomenon can be ascribed to the influence of intermolecular hydrogen
bonds [30] and solvent polarity [31]. Water, glycerin, methanol, ethanol, and isopropanol
have hydroxyl groups that may introduce hydrogen bonds to fluorophores, reducing the
fluorescence intensity [32]. Although both dimethylformamide (DMF) and acetone are
solvents without hydroxyl groups, their corresponding fluorescence responses are distinct.
The retention discrepancy could be attributed to the relative difference in polarities [29].
Fluorescence images of the induced pattern response to water and acetone are shown in
Figure 3b. A significant reduction in the fluorescence intensity after water addition is
visible (2.6% remained). In contrast, a negligible intensity change was observed when
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the added solvent was acetone (98.2% remained). Thus, fluorescent sensors for detecting
water in acetone can be fabricated. The intensities of the fluorescence response to acetone
solutions with different water contents were measured (Figure 3c). The fluorescence re-
tention decreased linearly with increasing water content. Even for an acetone solution
with 3% water content, the fluorescence response was still significant (quenching more
than 50%). Therefore, our method that uses laser-induced in situ fluorophores can enable
simple and rapid water detection, for which only microliter-scale solvents are required.
It is a promising method for sensing water in organic solvents that possess low polarity
or are free of hydroxyl groups, including pentane, hexane, petroleum ether, cyclohexane,
and isooctane.
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Figure 3. Reagent sensing characteristics of the fluorophores. (a) Fluorescence retention of different solvents on the laser-
modified PVA samples. (b) Fluorescence images of two patterned PVA samples before and after water (i,ii) and acetone
(iii,iv) dropping, respectively. The scale bars are 50 µm. (c) The fluorescence retention as a function of water content in
acetone. (d) Fluorescence intensities of the laser-modified PVA after continuous exposure to 488-nm-wavelength excitation.
The intensities are normalized to the first measurement.

To rule out the possible influence of laser-induced photobleaching that is common
in confocal microscopy, we measured the fluorescence intensity of the structures during
10-min-long continuous laser irradiation with a fixed one-minute measurement interval
(Figure 3d). No obvious decay of fluorescence intensity was observed.

It was also corroborated that fluorophores could respond to metal ions in the form of
fluorescence property changes, as reported previously [33–37]. Assuming this characteristic,
laser-induced in situ fluorophores could be used for implementing “burn after reading”, for
data security. In Figure 4a, the fluorophores were permanently turned off after dropping
the Co2+ aqueous solution (0.1 mol/L). The fluorescence intensity remained negligible after
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drying (from 1.9% to 0.1%). The irreversible quenching is attributed to the reaction in which
the empty orbital of Co2+ is coordinated with the electrons of carbonized clusters so that
the fluorescence is still inhibited after drying [34–36]. In addition to Co2+, other transition
metal ions with empty orbitals, such as Cu2+, Ni2+, Fe3+, Cd2+, Pb2+, and Hg2+, may also be
exploited as quenching agents. An example is presented in Figure 4e–g. In addition to data
security applications, laser-induced fluorophores could be used for quantitative detection
of metal ions, utilizing the quenching property. A series of laser-patterned PVA samples
was dripped with Co2+ aqueous solutions of different concentrations, respectively (0 to
10−1 mol/L). After subsequent drying, the fluorescence recovered partially depending on
the cobalt ion concentration (Figure 4h). Based on this principle, quantitative measurement
of metal ion concentrations in solution can be implemented.
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Figure 4. (a) Normalized fluorescence intensities of the laser-induced patterns following solvent
deposition and drying. (b) A flower pattern fabricated using a femtosecond laser on the PVA surface,
followed by 10 µL water dropping (c), and consequent heating at 35 ◦C for 2 h (d). (e) A fish pattern
fabricated using a femtosecond laser on the PVA surface, followed by 10 µL Co2+ aqueous solution
(0.1 mol/L) dropping (f), and consequent heating at 35 ◦C for 2 h (g). (h) Recovered fluorescence
intensity as a function of cobalt ion concentration. The insets are corresponding patterns. The
intensities are normalized to the measurement of the untreated laser-patterned sample. The scale
bars are 50 µm.

Besides inducing fluorophores on the surface of PVA, another advantage of femtosec-
ond laser processing is to create functionalized surface structures [38]. In our experiment,
the laser-modified PVA surface was shown to possess hydrophilic property (Figure 5a,b).
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The Co2+ aqueous solution inhibited the fluorescence signal in the targeted rectangular
regions, whereas the fluorescence in the square regions was almost unaffected. The fluid
was mainly localized in the targeted area and could not across the 100 µm gap. Intriguingly,
the porous hydrophilic modification (Figure 5c) exhibited form birefringence property
(Figure 5d), owing to the laser-induced periodic surface structures [39]. The average re-
tardance value was 18.5 ± 1.0 nm (Figure 5d). We envision that drainage channels with
different fluid flow delays and designed reaction zones could be fabricated by tuning
the laser parameters such as scanning direction, velocity, light intensity, and polarization.
In addition, surface multi-functional devices could be readily fabricated in the near fu-
ture combining the stimuli-responsive properties of the laser-induced fluorophores and
femtosecond laser micro/nano-machining.
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Figure 5. Hydrophilic surface laser patterning. Fluorescence images of the hydrophilic patterns
(a) before and (b) after dropping the Co2+ aqueous solution (0.1 mol/L) at the far right of the patterns.
The gaps between the left squares and the right rectangles are 100 µm. The scale bars are 500 µm.
(c) Corresponding SEM and (d) birefringent slow axis orientation images of the laser-patterned PVA
surface. Pseudo colors (inset (d)) indicate the direction of the slow axis. The scale bars are 10 µm.
Laser parameters: 300 mW, 10 mm/s scanning speed, 1 MHz repetition rate, 0.25 NA objective lens.

4. Conclusions

In conclusion, in situ surface fluorophores were obtained by femtosecond-laser-based
processing of transparent organic material PVA. The obtained fluorophores were character-
ized in terms of their fluorescence emission spectra and XPS. The carbonization of PVA in
the laser-modified region was confirmed. Such change in the material was due to the laser-
induced plasma ablation and the subsequent thermal effects. To demonstrate whether the
induced fluorophores could be used for optical data storage, a four-level image was printed
on PVA. Owing to the fluorescence response to water, fluorophores were implemented
for fabricating a water sensor. In addition, the off-on switching and metal-ion permanent
quenching properties of these fluorophores were demonstrated for data security and metal
ion measurement applications. Combined with the laser-induced hydrophilic modification,
such femtosecond laser-induced in situ fluorophores are promising for various applications,
such as “lab-on-a-chip” detection, fluorescent patterning, data storage, and data security.
The organic substrate, as a platform of diverse composition, is desired for the polymor-
phism of femtosecond-enabled in situ fabrications. Our work is likely to shed some light on
the future development of in situ femtosecond-laser-printed functional fluorescent devices
based on multi-component organic/inorganic materials. Using these materials as a carbon
source, we expect that the properties of the femtosecond-laser-induced carbon fluorophores
can be selectively tuned by changing the chemical precursors, such as nitrogen-containing,
boron-containing, and sulfur-containing materials.
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