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Abstract: The Industrial Internet of Things (IIoT) has led to the growth and expansion of various new
opportunities in the new Industrial Transformation. There have been notable challenges regarding
the security of data and challenges related to privacy when collecting real-time and automatic data
while observing applications in the industry. This paper proposes an Federated Transfer Learning
for Authentication and Privacy Preservation Using Novel Supportive Twin Delayed DDPG (S-TD3)
Algorithm for IIoT . In FT-Block (Federated transfer learning blockchain), several blockchains are
applied to preserve privacy and security for all types of industrial applications. Additionally, by
introducing the authentication mechanism based on transfer learning, blockchains can enhance
the preservation and security standards for industrial applications. Specifically, Novel Supportive
Twin Delayed DDPG trains the user model to authenticate specific regions. As it is considered
one of the most open and scalable interacting platforms of information, it successfully helps in the
positive transfer of different kinds of data between devices in more significant and local operations
of the industry. It is mainly due to a single authentication factor, and the poor adaptation to regular
increases in the number of users and different requirements that make the current authentication
mechanism suffer a lot in IIoT. As a result, it has been very clearly observed that the given solutions
are very useful.

Keywords: Internet of Things; authentication; privacy; security services

1. Introduction

Nowadays, essential applications of IoT have created great opportunities for industrial
innovations [1]. It integrates mobile communications, cloud computing, and artificial
intelligence into all elements of the production process. IIoT successfully helps in the
positive transfer of different kinds of data between devices in industries within larger and
local operations of the industry [2,3]. The huge number of data generated by the devices
connected to it has brought forward their needs for more efficient and accurate automatic
and real-time collection, examination, and processing of data. A lot of attention and focus
have been given towards all of the challenges faced in relation to the security of data and
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to privacy [4]. To successfully overcome every challenge in this field, a large number of
research was conducted in the industry and proper development processes are adopted
across the world, such as intelligence edge [5], transfer learning [6], and blockchain [7].
As as innovative and technological paradigm has been created, artificial intelligence (AI)
and its edge help integrate mobile computing, AI, and edge caching in relation to the
number of end users [8]. In IIoT that is enabled by edge intelligence, the management of
edge resources is controlled by AI. It can lead to strong computation and can increase the
storage of data in edge networks. It also meets the constraints for delays and all other
types of requirements for all of the performances that are useful in industrial applications.
The requirements for evaluations of large sets of data and more investments towards
computation have decreased due to its applications in the developmental process of the
model. Transfer learning helps a lot in exploring and conducting experiments that help
develop new and innovating ideas and help increase productivity. In IIoT, combining
transfer learning and block chain helps boost the performances made by both transfer
learning and block chains. With the help of blockchains, the credibility of data sources can
be easily verified. As a result, it helps in preventing data from being tampered and stops
fraudulent actions from being carried out using the data. Intelligent terminal applications in
the industry are considered fully responsible for collecting efficient and complete data of the
industry. Transfer learning is a more efficient methodology over a deep learning network
on small data sets. Anomaly-based detection with deep learning is a recent approach
proposed by [9]. Enriching transfer learning with neural translation deployment was
introduced in [10], where the features of a lexicon were introduced with transfer learning
with a shared vocabulary. The author in [11] proposed the semi-supervised attention
model, which helps in discriminating feature embedding, and a high accuracy rate was
achieved. The enhanced authentication protocol was introduced in that research [12], and
a new method of authentication and key exchange protocol was discovered to give an
efficient authentication mechanism for IoT. Several hurdles have acted as barriers to the
creation of blockchains and TL in the technology of IIoT. For example, in the old process
of blockchains, users can use a single process of authentication to pass the process. This
means that malicious actors can pass the authentication process if they passed them in
a specific region. Based on the above analysis, the IIoT architecture is constructed via
empowerment by edge and via intelligence and employment of the authentication process
based on TL. This is performed in order to build trustworthy blockchains and intelligence.
It is shown in Figure 1 that the proposed architecture possesses three or four aspects:
intelligent terminals, industrial applications, IIoT applications and edge, and intelligent
networks. All of the intelligent terminals of industrial applications are responsible for
collecting industrial data that is reliable and efficient. The edge server is a component
of the edge intelligent network, blockchain system, and artificial intelligence [11]. They
are responsible for analysis, fusion, and processing of the data; for providing security to
data; and for protecting its privacy for many IIoT applications. An authentication method
with Novel Supportive Twin Delayed DDPG has been developed in accordance with the
planned IIoT architecture with a formulated novel mechanism for FT-Block.

All of the essential contributions that have been conducted with the help of this paper
are highlighted below:

• The privacy of a user’s various blockchains that have been brought forward to au-
thenticate the mechanism of the users is successfully and efficiently preserved so that
it protects them from all attacks [11]. The blockchains that introduced are the inner as
well as the outer blockchains.

• The implementation of the authentication of the users in every part is completely
dependent on the credit of the users. All this is carried out to gain more and more
accuracy towards the process of authentication. It is the authenticated mechanism
design that helps in merging the credit of the users with both the local credit as well
as the crossed region credits. Some algorithms are created and used to bring more
and more accuracy by providing proper training to the local models of authentication.
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A Supportive Twin Delayed DDPG (S-TD3) algorithm is then created for training
the local model of authentication with utmost accuracy.

• To decrease the extra time that is spent in the models of authentication, the method
of transfer learnings (TL) is applied. With the help of transfer learning of the outer
blockchains, the successful transfer of the models of authentication is accurately
carried out from the local level to foreign users.

• The final results of these are (i) that there is accurate authentication for local as well as
foreign users, and (ii) that higher throughput and low latency are achieved in several
scenarios of IIoT.

Figure 1. The framework of FT-Twin Delayed DDPG(S-TD3).

2. Related Work

At present, a blockchain facilitated machine learning authentication programme has
gained much importance in the Internet of Things. In [13], authentication has been pro-
posed based on mobile edge computing according to the technology of blockchain. In this,
one-way hash functions, and rotation bitwise and XOR operations take place. A smart
contract was designed by adopting machine learning and blockchain as it can remove data
trading for third parties [14,15]. It authenticates and authorizes the owner and purchaser
of data through the download mechanism known as off-chain. In [16,17], the problems in-
volved in centralized record keeping and decentralized case computation were considered.
After that, a mechanism for authentication helped improve the healthcare record-keeping
by enhancing reliability. A multiple-wireless sensor network-based authentication was
established on the blockchain [18,19]. Several inner and outer blockchains were introduced
in this research work that help integrate the local as well as public chain and form a hybrid
blockchain design. Various types of authentication scenarios were implemented for the
formation of the local and public blockchain. In [20,21], edge-based computing was applied
to authenticate the design of the system based on improving efficiency and authentication.
In the entire system, the blockchain uses a consensus that is tolerant of any faults and
helps in designing an authenticating mechanism and tracing the end activity. In [22,23],
the author proposed an authenticated system that was assisted by the blockchain for the
purpose of preserving privacy in VANETs. The misbehaving vehicles were traced condi-
tionally with a Hyperledger platform that was fabric-based as it enhanced the security
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and performance criteria. In [24], mechanism for authentication has been proposed for
several kinds of fog services as it facilitates data centre authentication. It facilitates light
weightiness communication authentication and vehicle animosity and resists any attack
on the data centre. In [25,26], proposed a mechanism for authentication based on edge
computing-based smart grid blockchains. This mechanism provides reasonable assistance
and security. Additionally, TL can reduce the time for model training involved in authenti-
cation. In [27,28], proposed an authenticating mechanism that protects against any outside
and unauthorized attacks by attackers and facilitates physical authentication. The authenti-
cation models facilitate reinforced learning, and TL helps in several discoveries. In [29],
a framework for authentication utilizes specific information related to several devices and
prevents all types of physical attacks.

3. System Model

In this paper, an efficient mechanism for authentication is formulated that helps in the
empowerment of blockchain. It helps construct intelligent and trustworthy blockchains
through the creation of multi-tier structures for each of the applications of IoT and creates
an internal and outer blockchain structure [11]. Additionally, the blockchain helps in
authenticating and enhancing the usability of local users in several regions. In contrast,
the outer blockchain authenticates the users that operate from a foreign country. All of the
servers for authentication, and the CA(Certificate Authority) of block chains and servers
are used on the edge server for the resources that are required for computation. Figure 2
presents the system model and states that there are several components:

Figure 2. The architecture model of the proposed FT-Block.

The users plays a significant role in connecting with the innermost or outermost
blockchain if they successfully clear the authentication test [11]. A user who works effi-
ciently in the Rj enhances their innermost credit and helps the user clear their authentication
of Ri. When the user moves from Ri to Rj, they might fail to authenticate in Rj as different
authentication standards vary from one region to the other.
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The two types of CA are discussed here. First one represents an internal blockchain,
known as the i_CA, and the other is the outer blockchain known as the o_CA. The i_CA
helps in local user authentication, whereas the outer blockchain facilitates user authentica-
tion of foreigners. All types of CAs employ servers that are edged and perform authentica-
tion based on DRL in the Internet of Things [11]. All of the CAs are useful in withdrawing
key pairs of users and helps in eliminating users who use their credit maliciously. There is
a problem in the leakage of privacy that has also been considered in this paper.

Moreover, there is a problem in the old blockchain, where users pass the local record
for authentication that can act maliciously in other regions. There are two types of attacks
that a user may face in the system, and these are as follows:

Attacks are launched by malicious users that help exchange individual tasks [11] for
completing and securing sensitive information in the entire blockchain.
Different blockchains can be joined by a malicious user, and they play a role as a legitimate
user to obtain information that is sensitive in the entire blockchain.

4. The Implementation of the FT-Block
4.1. Supportive Twin Delayed DDPG (S-TD3)-Based User Authentication

In the process of user authentication, the credit is chosen as the state. There is a
requirement to discover the threshold of credit to determine whether the authentication
process must be cleared by the user. The traditional blockchain design passes the user’s
authentication; then, the icr increases locally for good performances and decreases for
performances that are not up to par. If the authentication process is not cleared by the user,
then the ocr can be improved [11] cross-regionally. Both completion of tasks and reliability
of data are essential factors that help in measuring the performance of the users. Then, the
cri of user i can be obtained using Equation (1):

Cri = γ× i_cri + (1− γ)× o_cri (1)

The system accuracy is improvised using the authentication system developed called
Supportive Twin Delayed DDPG Algorithm (S-TD3), which provides higher security
for a user based on the authentic mechanism. The proposed method varies from the
existing DDPG, which holds n number of critic networks Vis and equivalent target critic
networks Vis, and m number of actor-networks ϕis and concerned target actor networks ϕis,
and the attributes are represented by the notations ηVi , ηøi , ηϕi , and ηθi , correspondingly.
The trajectory with the high-return results in the DRL process of learning. Thus, a pool υ∗,
which has the additional experience, is introduced to accumulate the mentioned data of
experiences related to traditional ones stockpiled in the pool υ representing the experiences.
The Supportive Twin Delayed DDPG (S-TD3) framework is illustrated in Figure 3.

Figure 3. The framework of the proposed Supportive Twin Delayed DDPG (S-TD3).

We pre-selected the credit names as the state indicated by s during the user authenti-
cation process. To specify that the user’s authentication is successful, the score of the credit
threshold was discovered within the timeslot T. Additionally, the forthcoming state STt+1
was attained by computing the behavior of the user. For instance, the user overcomes the
authentication process, the credit i_cr increases at the local level for [11] better performance
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or goes down otherwise. Additionally, when a user fails to overcome the authentication
mechanism, rewards are given if it works well cross-regionally with an improvement in
o_cr. Then, the performance of the working model with the ith user Pi is the profit or
is indicated as gain through which they succeeded in the process of authentication. This
denotes that the completion of the task represented as (TC) and reliability of data (DR) are
primary significant attributes used to determine the performance of user’s model. The user
i, by assimilating a scale factor β, is given as

Pi = β× TCi + (1− β)× DRi, (2)

where we denote the reward Rw as

Rw = ∑
i

Pi (3)

The action Ac is calculated according to the supportive network S1( l |ηS1 ), i.e.,

Ac = (φ1(lT |ηφ1) + δ(S1(lT |ηS1)− φ1(lT |ηφ1)) (4)

where 0 ≤ δ ≤ 1. We use a pool denoted as υ1 to accumulate the experiences lt, Ac, Rw, lt+1
and utilize trajectory TR to store lt, Ac.

The model is trained for the proposed network of the Supportive Twin Delayed DDPG
(S-TD3) with M with the random experience from υ∗1 as

£(ηS) =
1
M

M

∑
i
|S1(li)|ηS1)− ai]

2 (5)

Accordingly, we update the network (critic) with M corresponding experiences ran-
domly from

£(ηS) =
1
M

M

∑
i
[V1(li], ai|ηV1)− yi]

2 (6)

where

yi = ri + ε
[
(1− δ)S1

(
li+1, ϕi

(
li+1 | ηΘ

)
| η∅1

)
+δ
(

S1

(
li+1, S

(
li+1 | ηθ1

)
| η∅1

)] (7)

Then, the gradient policy is implemented to keep track and update the φ by
Ultimately, networks (target) ηφ1

and ηθ1
efficiently become rationalized with a learn-

ing rate denoted with K.
It must be noted that the Supportive Twin Delayed DDPG (S-TD3) that is proposed as

a learning process is stable and helps in comparing the bootstrapped Deep Deterministic
Policy Gradient (DDPG) when doubled [30–35]. Initially, the network guides and defines
the stability of the supervised Supportive Twin Delayed DDPG (S-TD3) algorithm. The sup-
portive network can be updated by excellent experiences by enhancing the stability of the
system. Second, the DDPG is a gradient algorithm that employs the network and uses it as
a stabilizer to reduce the oscillations that take place during the entire process of learning.
In proposed work, a unsupervised gradient is embraced to enhance the networks that are
based on the process towards immediate reward [11]. This is an estimation of the reward
function and is an unbiased one. The reward that is received fluctuates immediately and
stabilizes in the learning process even if there is an unpredictable environment. Compared
with the DDPG, the developed model of Supportive Twin Delayed DDPG (S-TD3) provides
an even process of learning that is stable and accelerates the convergence.
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4.2. Authentication Mechanism on FT-Supervised Supportive Twin Delayed DDPG (S-TD3)

There are 2 types of transfers that are mainly deliberated in this research. The foremost
is called the local transfer, which comprises the model, which is helpful in the authentication
of local users Ri and can be transferred to foreign users and other Ri. The secon is the
cross-region transfer , and it is a model that is trained for the authentication of local users.
In general, it can be stated that foreign user authentication [11] helps in determining the
users that are qualified for joining the outer blockchain. The authentication process of
foreign users aims to define that the users of Rj, i 6= j, are qualified to be connected with the
blockchain (outer). Additionally, it is determined that users with the authentication process
at the local level of Rj, all values of i, are fit to be connected with the blockchain (inner) [11].
The significance of applying the federated transfer learning process is that it has a high
similarity among the authentication processes of users belonging to the local level or to
foreign users. Precisely, the resemblance amongst region pairs could be enumerated. For
instance, we represent the region i Ri by a tuple, i.e., Ri (taski , useri), where taski and useri
denote the set of task and set of user of Ri. Thus, we could attain the likeness between Ri
and Rj represented by notation Simi,j in the formula of distance calculation Mahalanobis,
to eliminate the effect of scaling. The sequence of similarity enables the user to define
the pair of regions that could be transferred to authentication models in a cross-regional
manner [11]. The users that pass authentications related to the specific areas are given
credits associated with the related thresholds. As given in Equation (1), it is apparent that
the represented weights β must be fixed comparatively >0.5 for users at the local level or
<0.5 for users with a foreign authentication. This helps in appreciating both the i_cr as
well as the o_cr. It suggests that there is a possibility of transferring the local models in an
authenticated manner. In foreign-based user authentication, the overall user performance
acts as the state of affairs and serves the entire state and obtains rewarding references.[11]
Based on the above similarities, the model for authentication of the user can be transformed
to the users of authentication [36–40].

The model [11,12] transferring application is represented in Figure 4. The foremost
category of the transfer utilizes the networks by training them for Supportive Twin Delayed
DDPG (S-TD3), facilitating user authentication belonging to the category of foreign users.
The several attributes of input and layers that are hidden are accomplished with training
for enabling the authentication for users belonging to local users and reducing the training
time involved in initialization and authentication. However, the parameters of the output
layer cannot be shared with the local users, and then, different types of calculations are
utilized for performing foreign user authentication. All of the layers can be attuned and
transmitted to analyze the results of the authentication. The next transfer is implemented
similarly [41–45].

Figure 4. The user authentication: Transfer Learning for Reinforcement learning.
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Once this happens at the conclusion of both local and foreign user authentications, all
are allowed to access security-level permission. It is possible to provide an effective method
for deconstructing and grouping the user integrity of the entire task. Users are classified
into various categories according on their security level. After that, all of the sensitive
tasks are broken down into several non-sensitive ones and each of them is accompanied by
an assured level of security. All of the tasks are accepted only when the level of security
is higher for the tasks undertaken. The incentive mechanism can be introduced. Honest
users are rewarded with extra points of credit that are related to task-related security levels.
The key pairs can be rewarded to CAs and they help in preventing users from stealing
information that is sensitive in nature [46,47].

The proposed FT-Block helps in preventing both collusion and Sybil attacks. Once the
user has been authenticated, the inner or the outer blockchains can be joined by the users.
When the user acts maliciously by pocketing the sensitive information, in turn, their credit
drops instantly. When the credit is lower than the threshold, the key pair of the user can be
withdrawn, and the lower credit causes the user to have less chances to proceed through
authentication. This suggests that the user is not able to cause any other damage to the
blockchain by attacking it. Additionally, the authority granted to the user for controlling
the outer blockchain is less compared with the inner blockchain. This means that even if
two users are from a different blockchain, they often conspire with each other and obtain
important data relevant for both the inner and the outer blockchains.

5. Result Evaluation
5.1. Simulation Setup

The simulation was conducted with a PC using an i7 Processor, 3.1 GHZ CPU, 16 GB
mem. and 64-bit Windows 7 . The relevant assessment of the approach was performed for
FT-Block, and the industrial applications were executed.

1. Performance Metrics: The system throughput helps evaluate FT-Block, latency, and
the accuracy of authentication considering different SR, NT, NBT, NU (Number of
User), and BS.

• System Throughput: The performance of the entire system can be improved if
the performance of transactions is at very high speed.

• Transaction Latency: For improving the processing capacity of all the communi-
cations, the latency of transactions must be decreased.

• Accuracy Rate of Authentication: Both FAR as well as MDR comprise the rate of
error on an average.

Training of Model Time: To decrease the time taken for training the model for enhanc-
ing the user authentication rate and the process of TL.

5.2. Results

The Figure 5 denotes that the progression of the Sending Rate (SR) value grows. The
task was performed with the verification in Figure 5 formulated by the proposed FT-Block
with trustworthy blockchains. As represented in Figures 6 and 7, either (Block Size) BS or
(Number of Block Transaction) NBT increases, thereby increasing the value accordingly
with the system throughput for every value of transactions. The value of tps starts to
level off when it reaches BS ≥ 3.9 mb and NBT ≥ 700. We attained a very effective user
authentication system by presenting TL to trustworthy blockchains; the authentication
is efficient as well as reliable for both users of local and foreign contexts. The outcomes
represented in Figure 5–7 clearly show that the system proposed in FT-Block can definitely
give better throughput for all types of industrial applications. This takes place as TL
is introduced to implement blockchains that are trustworthy. It enhances the efficiency,
authentication, and reliability for local as well as foreign users. The results shown in
Figure 5 indicate that FT-Block helps improve the throughputs of the system by facilitating
various types of industrial applications. [11]
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The latency values are presented with the help of Figures 8–10. It has different values
of NBT, BS, and SR. A lower level of latency indicates that the performance is enhanced. At
first, the block size is set at 2.9 mb. As shown in Figure 8, the transmit rate rises and the
delay increases at a predictable pace. When the NT is set to 800, the maximum amount of
delay is no more than 8 s. A significant reason for this is that the FT-Block mechanism can
help users authenticate and utilize TL efficiently. Figures 8–10 show that the blockchain
of FT-Block is intelligent and has an excellent capacity to process transactions taking into
account several scenarios of industry [11].

The Figures 11 and 12 show a comparison of accuracy calculated between Supportive
Twin Delayed DDPG (S-TD3) and DDPG on user authentication for industrial IoTs for False
Acceptance Rate (FAR), and Managed Detection and Response (MDR). For L_FAR and
L_MDR, when federated transfer learning is deployed locally and helps in authenticating
regional users and foreigner users. The users are trained in all of these aspects. The training
of the model for Ri regarding the authentication of a user belonging to the local group is
shifted to authorize users. L2_F and L2_M Fig. 13 then trains the model trained for the
user authentication to be transferred cross-regionally and to be authenticated for locally
available users [11]. Then, we contemplate the scenario that accepts the transformed model,
based on its locally available user authentication model. As shown in Figure 11, when a
certain threshold is reached by the NU, there is an increase in the authentication accuracy
of both local and foreign users and gradual improvement in the drop in MDR and FAR.
Both MDR and FAR are less for DDPG compared with Supportive Twin Delayed DDPG
(S-TD3). It acts as a supportive network and helps discover an accurate threshold of credit
to improve the authentication accuracy. It can be shown in Figure 12 that Supportive Twin
Delayed DDPG (S-TD3) is affected by the NU, and it can be compared with LCR FAR
and MDR that fluctuate in a decreased manner. The Supportive Twin Delayed DDPG
(S-TD3) can help achieve an LCR FAR that is less than three percent and an MDR that is
less than five percent. This happens as the latter retrains, and the cross-regional model can
increase the rate of authentication and its accuracy. In Figures 11 and 12, it is illustrated
that FT-Block helps enhance the results and its accuracy in several industrial scenarios [11].

In Figure 13, it can be analyzed that L2_F and L2_M increase at first in the case of NU
and then decreases, and then, both are at the same level. Increased levels of authentication
and its accuracy require a more significant number of participants. The FAR and MDR
are the less compared with DDPG. User authentication based on TL can decrease the time
taken for training required by the model in transforming data both locally and across
regions. The authentication accuracy depends on the dataset of the user for each of the
regions. The Supportive Twin Delayed DDPG (S-TD3) shows the best results compared
with shown in Figure 14 DDPG in less CR2_F and CR2_M, i.e., the high CR2_F and CR2_M
of the proposed method Supportive Twin Delayed DDPG (S-TD3) algorithm [3,4] are 7.9%
and 10.8% comparatively with the existing method DDPG [11]. Evidence to prove the
efficiency of the proposed FT-Block for user authentication in industrial IoT is presented.

Figure 5. Throughput FT-Block vs. Send Rate with Novel Supportive Twin Delayed DDPG.
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Figure 6. Throughput FT-Block vs. Number of Transactions in Block with Novel Supportive Twin
Delayed DDPG.

Figure 7. Throughput FT-Block vs. BlockSize with Novel Supportive Twin Delayed DDPG.

Figure 8. Latency FT-Block vs. Send Rate with Novel Supportive Twin Delayed DDPG.

Figure 9. Latency FT-Block vs. Number of Transactions in Block with Novel Supportive Twin Delayed
DDPG.
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Figure 10. Latency FT-Block vs. BlockSize with Novel Supportive Twin Delayed DDPG.

Figure 11. Authentication Accuracy in FAR and MDR with varying Num User with Novel Supportive
Twin Delayed DDPG.

Figure 12. Authentication Accuracy in L_FAR, L_MDR with varying Num User with Novel Support-
ive Twin Delayed DDPG.

Figure 13. Authentication Accuracy in L2_F and L2_M with varying Num of User with Novel
Supportive Twin Delayed DDPG.
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Figure 14. Authentication Accuracy in CR2_F and R2_M with varying Num User with with Novel
Supportive Twin Delayed DDPG.

We witnessed from Table 1 that, with respect to the region number varying all of the
metrics correspond with the accuracy of authentication rises.

Table 1. Accuracy of Authetication vs. Num Reg (NR) with Novel Supportive Twin Delayed DDPG.

Num Reg 5 10 15

LCR_ F/LCR_M 4.2%/5.1% 5.23%/6.15% 5.2%/8.1%
L2_F/L2 MDR 5.2%/6.1% 7.3%/9.1% 8.1%/10.2%
CR2_F/CR2_M 7.15%/8.12% 7.9%/10.8% 8.93%/12.89%

The training time was compared and then analyzed with respect to the number of
regions with and without TL as shown in Figure 15. It is important to state that a larger
NR leads to an increased training model and reduces the training time as well. It is
aided by TL as shown in Figure 16, and FT-Block is helpful in authenticating users for
several applications of the Internet of things. Additionally, TL can reduce the time for
model training that is involved in authentication. An authentication mechanism protects
against any spoofing attacks by the [48–53] attackers and facilitates physical authentication.
The authentication models facilitate reinforced learning, and TL helps in several discoveries.
The framework for authentication utilizes specific information related to several devices
and prevents all types of physical attacks.

Figure 15. The training time of the model with authentication without federated transfer learning for
varied region number.
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Figure 16. The training time of the model with authentication with transfer learning for varied
region number.

6. Conclusions and Future Work

Securing data and maintaining privacy are essential factors in the Internet of things
applications and act as foundations for guaranteeing national and industrial security. All
industrial applications in the Internet of Things require reliable and real-time information
that helps in user interaction and becomes vulnerable to several types of illegal attacks,
information leakage, and denying services. It has a security mechanism that is less complex
and provides a mechanism of user authentication to solve several security-related problems.
A Novel Supportive Twin Delayed DDPG authentication mechanism has been formulated
that overcomes the limitations of IIoT-related user mechanisms. This is based on federated
transfer learning and proposed by FT-Block. In FT-Block, several blockchains are used effi-
ciently to achieve privacy in application within industries. In FT-Block, several blockchains
have been applied to preserve privacy and security for all types of industrial applications.
Additionally, by introducing the authentication mechanism based on federated transfer
learning, blockchains that are trustworthy to enhance industrial applications’ preserva-
tion and security standards are created. Specifically, a deep, supportive gradient-based
algorithm trains the user authentication model for specific regions. The proposed Novel
Supportive Twin Delayed DDPG , FT-Block facilitates IIoT applications and helps achieve
high throughput and low latency. This results in increased accuracy of all authentication
metrics as well. The reason behind this is that it brings a greater number of participating
users and reduces the difficulties faced by authenticating users. The results that are shown
in the Results section indicate an enhanced scale of authentication to the users. Industrial
applications such as automated programs such as electrical vehicle can also be deployed
with this authentication methodology and can extend the research with vehicular networks,
and with transfer learning mechanism, since it provides highest security tradeoff with
throughput and latency, the best approach can be fine-tuned for all dynamic networks as
future work.
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