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Abstract: There is a growing demand for fast, accurate computation of clinical markers to improve
renal function and anatomy assessment with a single study. However, conventional techniques
have limitations leading to overestimations of kidney function or failure to provide sufficient spatial
resolution to target the disease location. In contrast, the computer-aided analysis of dynamic contrast-
enhanced (DCE) magnetic resonance imaging (MRI) could generate significant markers, including the
glomerular filtration rate (GFR) and time–intensity curves of the cortex and medulla for determining
obstruction in the urinary tract. This paper presents a dual-stage fully modular framework for
automatic renal compartment segmentation in 4D DCE-MRI volumes. (1) Memory-efficient 3D
deep learning is integrated to localise each kidney by harnessing residual convolutional neural
networks for improved convergence; segmentation is performed by efficiently learning spatial–
temporal information coupled with boundary-preserving fully convolutional dense nets. (2) Renal
contextual information is enhanced via non-linear transformation to segment the cortex and medulla.
The proposed framework is evaluated on a paediatric dataset containing 60 4D DCE-MRI volumes
exhibiting varying conditions affecting kidney function. Our technique outperforms a state-of-the-art
approach based on a GrabCut and support vector machine classifier in mean dice similarity (DSC) by
3.8% and demonstrates higher statistical stability with lower standard deviation by 12.4% and 15.7%
for cortex and medulla segmentation, respectively.

Keywords: cortex; DCE-MRI; GFR; kidney; medulla; MR urography; renal compartment; segmentation;
time–intensity curve

1. Introduction

Kidney-related disorders are reportedly a growing global problem, with approxi-
mately 2 million people dying from acute kidney injury and an estimated 5 to 10 million
people dying annually from kidney disease [1]. Kidney damage leading to disease is caused
by diabetes mellitus, hypertension and other chronic conditions. Furthermore, a recent
study highlighted the detrimental impact of pain in patients with chronic kidney disease
(CKD), where the occurrence of pain has been estimated at 50% to 70% in patients with
advanced CKD [2].

Consequently, there is a growing demand for methods that accurately monitor and
stratify renal function [3,4] and, thus, improve the assessment of disease prognosis, pro-
gression and treatment planning. Standard methods for the detection, diagnosis and
stratification of decreased or abnormal renal function involve clinical chemistry measures.
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For example, a blood test provides an estimate of the glomerular filtration rate (GFR),
which indicates the level of kidney function and determines the stage of kidney disease.
One of the disadvantages of such clinical tests is the inability to target the disease location
or provide a per-kidney assessment of GFR. Moreover, such conventional methods may
overestimate GFR by around 10% to 20% [5].

In recent years, dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI)
has gained credit in the medical community for accurate evaluation of localised renal
function [6,7] without employing ionising radiation, from which measurements that pertain
to morphology and function are computed. With the new advances of using non-Cartesian
sampling methods for DCE-MR image acquisition, i.e., using a dynamic stack-of-stars radial
sampling technique, high spatiotemporal resolution can be achieved for accurate function
estimation. This new technique is simultaneously robust to respiratory motion. Recent
results demonstrate that radial stack-of-stars acquisition enables accurate computation of
kidney function markers from DCE-MRI [8–10].

In DCE-MRI scanning, the subject or patient receives an administration of gadolinium-
based contrast agent into the bloodstream, which is then filtered through the kidney
compartments. For every 3D image series acquired at different time points in DCE-MRI,
the relative signal intensity change in the kidney over time reflects the rate of contrast
transfer through the organ. Direct analysis of the DCE-MRI signal time curves from each
kidney provides information that supports the diagnosis and classification of the disease
severity. Furthermore, DCE-MRI scans that are processed through computer-aided systems
using segmentation and a tracer kinetic model fitting can offer essential renal functional
information, such as filtration rate. DCE-MRI is a unique modality that provides evaluation
of both anatomy and function of kidneys at the same time using a single 6 min imaging
sequence. The functional markers and anatomical evaluation are used together to make
clinical decisions on whether the patient will need surgery.

The integration of MR urography (MRU) protocols involving DCE-MRI can add
diagnostic value, allowing a thorough evaluation of renal function and anatomy with a
single exam. This type of imaging, through the usage of a gadolinium contrast agent, is
generally performed in the paediatric population, especially in the context of previously
known congenital anomalies that have been identified prenatally or at birth. With the use
of feed and wrap imaging, it is possible to perform MRU without sedation in babies [9].
Indeed, MRU can offer a detailed view of internal renal anatomy and function, which
is a vital aid in evaluating a diverse range of congenital abnormalities of the kidneys
and urinary tract. For instance, some children with prenatal hydronephrosis have non-
obstructive dilatation of renal calyces that naturally lessens over time [11] without the need
for any intervention. However, in other cases, there may be a ureteropelvic junction (UPJ)
obstruction, which is a partial or total blockage at the junction of the kidney, pelvis and
ureters. MRU can offer diagnostic guidance for obstruction that may lead to permanent
kidney damage when there is a delay in intervention.

With the growing demand for DCE-MRI, the need to generate accurate clinical markers
of kidney function from computer-aided systems is essential. A prerequisite includes
segmenting the kidney parenchyma, which includes the cortex and medulla. One approach
includes manual segmentation: an expert operator (e.g., a radiologist or radiographer)
chooses 3D volumes in the DCE-MRI at specific temporal points when the contrast between
individual, separate compartments in the kidney is highest, and then outlines a contour of
each anatomical structure. However, manual segmentation is extremely time-consuming,
fastidious and subject to high inter-observer and intra-observer variability. In contrast,
an accurate and robust automated technique for segmenting the kidney parenchyma can
potentially increase the usage of MRI for computing GFR and other clinical markers and
can lessen the burden on radiologists and radiographers.

One challenge in accurate segmentation is the requirement of high temporal resolution,
where each 3D volume is acquired in less than 3 s. This fast sampling reduces the quality
of resultant DCE-MR images, limiting their spatial resolution and signal-to-noise ratio and
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resulting in images that include undersampling artefacts in the form of streaking. Moreover,
despite the robustness to respiratory motion, the resultant images are blurred during heavy
breathing, which is often observed in paediatric patients who exhibit nervousness during
imaging. In addition, babies who are imaged during their sleep often move during the
imaging, which results in signal dropout and artefacts.

Furthermore, regionally inhomogeneous intensity changes occur, particularly in the
presence of diverse renal abnormalities during the passage of the contrast through the
medulla and cortex.

Driven by a growing level of computer-aided systems in clinical practice, the research
literature has seen a rise in automated methods for whole-kidney and renal compartment
segmentation in the last decade. Commonly adapted approaches for whole-kidney seg-
mentation in DCE-MR images include active contours [12] and spatial regularisation using
discrete graph-cuts [13]. However, the disadvantages of such methods include limitations
for diverse kidney structures and sizes with abnormalities. Moreover still, in contrast with
methods for the whole kidney, the segmentation of renal compartments remains more
challenging due to the high variation in size and structure and the irregularity in shape,
especially with kidney abnormalities.

Combined with deep learning technology that utilises convolutional neural networks
(CNNs), inspired by the work described in [14] and extending upon [15], this paper presents
a fully modular framework with a translational impact for automatic segmentation of
kidney parenchyma and renal compartments, i.e., the cortex and medulla, in DCE-MR
images. The proposed approach addresses the challenges of segmenting imaged kidneys
with poor function and compares with a recent state-of-the-art [16] that reports higher
quantitative accuracies relative to other renal segmentation methods for DCE-MRI.

In the research literature for renal compartment segmentation, the authors of [17]
proposed a semi-automated method for DCE-MRI data with a temporal dimension. In this
approach, pixels relating to different internal kidney structures are classified in accordance
with time–intensity curves using a k-means clustering algorithm. There exist limitations
in automatically selecting the number of clusters in which spatially isolated greyscale
pixels are misclassified. A self-supervised method reported in [18] automatically detects
the initial seed points of internal kidney regions in the spatial domain and generates a
supervised classifier using temporal information to segment the medulla and cortex. In
some instances, the limitations of the weight function concerning the distance between
the neighbouring greyscale pixels impact the classifier’s performance. The authors of [19]
proposed a framework where the whole kidney is segmented using an approach based
on the maximally stable temporal volume (MSTV) [20]. Afterwards, a k-means clustering
is applied to separate segmented kidney voxels into multiple clusters that will define the
separate renal compartments, including the cortex and medulla. In some cases involving
clinically “abnormal” kidneys, the compartments are not always detected, and therefore,
these intensity features do not fully satisfy the same feature rules applicable to clinically
“normal” kidneys, which are relatively more consistent. Moreover, the authors suggested
that the evaluated kidney imaging data lack a broad range of structural variability, which
is essential in a clinical setting. The method proposed in [16] employs iterative graph
cuts [21] and a random forest classifier to segment renal compartments in 4D DCE-MRI
data, and it utilises a two-compartment model to estimate the GFR of each subject using
both automatically and manually generated segmentation maps. In some instances, the
automatic segmentation outcome fails to detect one kidney. Moreover, in a case where the
kidney is detected, the lack of significant medulla enhancement and the clinically unusual
location of the kidney result in a failed compartment segmentation outcome.

With the exception of the method described in [16], which utilised 26 paediatric scans,
the performance of the methods described in [17–19] was evaluated on smaller datasets of
8, 10 and 14 predominantly clinically “normal” kidney cases, respectively. The scarcity of
satisfactory renal compartment segmentation, particularly in paediatric cases from a broad
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age group with different abnormalities, drives the proposed fully modular and automated
framework. Thus, the main contributions in this paper are as follows:

• The proposed framework will (a) address whole-kidney segmentation in clinically
“normal” and “abnormal” DCE-MRI cases and (b) provide a strategy for renal com-
partment segmentation in cases involving (i) high temporal resolution and resultant
undersampling artefacts and (ii) a diverse range of kidney abnormalities.

• The proposed framework is modular in design, such that each module can be used
as an independent task to produce (a) whole-kidney segmentation and/or (b) renal
compartment segmentation with a given reference of localisation (bounding box).

• The renal compartment segmentation technique improves rigorous discrimination
between the medulla and cortex, particularly in “abnormal” paediatric cases compared
to the state of the art, and it achieves a higher mean quantitative accuracy.

• To the best of our knowledge, this paper is one of the first studies to address renal
compartment segmentation in a paediatric dataset of high variation in terms of age
and kidney condition and to image the intra-spatial domain complexity due to varying
artefacts. The proposed framework utilises a paediatric dataset acquired from patients
aged from 2 months to 17 years, in which the anatomical shape of their kidneys ranges
from clinically “normal” to sharp deformations of “abnormalities”.

• The improved segmentation of internal kidney regions could provide an opportunity
to explore large-scale time–intensity curves of the medulla and cortex and, in doing so,
could allow radiologists to differentiate clinically “normal” kidneys from conditions
caused by obstruction of urine flow and dilation of the ureter.

The progression of this paper is structured as follows. Section 2 describes the pro-
posed methods for whole-kidney and renal compartment segmentation in DCE-MRI 4D
volumes. Section 3 analyses the quantitative accuracy results obtained by evaluating the
segmentation outcomes against the expert-led, manual (delineated) ground truth. This
section also highlights the computation of markers for clinical application following seg-
mentation. Section 4 compares the segmentation quality in terms of quantitative accuracy
and statistical robustness of the proposed methods against state-of-the-art methods in the
research literature. Section 5 summarises the proposed method, including future work and
the impact on clinical decision making.

2. Materials and Methods

Section 2.1 describes the dataset for training and testing purposes. The remainder of
this section is divided into Section 2.2, which details the deep-learning-based approach
for automatic segmentation in 4D DCE-MRI volumes, and Section 2.3, which explains
the strategy for renal compartment segmentation by exploiting intensity-based contextual
information in the temporal dimension.

2.1. Data

A dataset of 60 4D DCE-MRI scans of paediatric patients was employed, acquired
at 3T (Tesla) for six minutes after injecting Gadavist (gadobutrol) using a motion-robust,
radial stack-of-stars 3D FLASH sequence: TR of 3.56 milliseconds (ms), TE of 1.39 ms and
Flip Angle (FA) of 12 degrees. A 4D volume is viewed as a stack of 3D volumes of the
same region of interest captured over a period of time, and therefore, a 4D scan has a
temporal dimension. Every 3D volume consists of 32 coronal slices of spatial size 224× 224
(voxel size 1.25× 1.25× 3 mm). The ground-truth labels for whole and internal kidney
regions were produced in the radiology department through expert-led manual delineation.
The annotations were performed using the Insight Toolkit (ITK) by a highly skilled and
experienced expert, and all annotations were verified by a senior radiologist.

The dataset included abdominal scans from a broad spectrum of ages (2 months to
17 years) with varying kidney conditions. Twenty-six DCE-MRI cases were evaluated for
experimental purposes, ten of which were taken from patients who had received MRI
scanning as part of their clinical protocol since 2017 and were diagnosed with conditions



Sensors 2021, 21, 7942 5 of 24

including hydronephrosis, multicystic dysplastic kidney (MCDK), obstruction of tubular
dysfunction, and calyceal diverticulum. This particular group depicted kidney anatomy
that deviated significantly from a clinically healthy shape. The remaining number of scans
were taken from patients recruited under a protocol approved by an Institutional Review
Board (IRB). This group of patients had already undergone contrast-enhanced MRI clini-
cally, but they also received 6 additional minutes of research-based imaging of their kidneys
within the same session to acquire the DCE-MRI. The acquisition protocol was optimised
to achieve a mean temporal resolution of 3.3 s for the arterial phase (2 min) and 13 s for the
remaining phase (4 min). The 4D dynamic image series were reconstructed offline using a
compressed sensing algorithm to subsequently reduce streaking artefacts [22].

2.2. Automatic Kidney Segmentation

An automatic kidney segmentation method embraces the advantages of 3D deep
learning, in which volumetric contextual information is utilised. The proposed approach
consists of a two-part process, where the first part detects and localises the kidneys, and the
second part performs a detailed kidney segmentation [14]. The training stage and testing
stage for each part are highlighted in Figure 1.
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Figure 1. Overview of the proposed automatic kidney segmentation approach. The training stage simultaneously develops
a network (3D Rb-UNet) for localising the organ and a segmentation network (3D FC-DenseNet) to predict the labels that
correspond to kidney and non-kidney tissue. The testing stage processes an original scan (a 4D volume), performs a coarse
segmentation to generate a bounding box capturing the main kidney region and then processes the cropped image volume
to predict the labels of that organ.

The first part of the training stage develops a model defined as 3D Rb-UNet. In this
model, the residual connections introduced in [23], with the advantage of alleviating the
vanishing gradient problem, are added at each block of a baseline U-Net [24] architecture, con-
necting the input of the convolutional layers at each scale to the outputs of the corresponding
layer. Consequently, this bypass with identity connections for convolutional blocks at each
scale improves the optimisation of convergence. Empirically tested, this model performed
significantly better than other popular deep learning architectures [24–26] in localising each
kidney, and is therefore employed at the testing stage when feeding an unseen (test) 4D
DCE-MRI volume. The second part of the training stage develops a 3D fully convolutional
dense net (FC-DenseNet) [27] using a uniformly cropped region of interest where the kidney
is present, discarding background information that is unrelated to the organ. Here, the 3D FC-
DenseNet provides a more diversified usage of concatenated features, which is appropriate
for more refined, detailed voxel-wise segmentation.

In the testing stage, the fully trained 3D Rb-UNet performs a coarse kidney segmenta-
tion that represents the region of interest encapsulating the organ in an unseen DCE-MRI
volume, and then generates a respective 3D minimum bounding box by fully enclosing
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this coarse segmentation against its “non-kidney” (background) class. Next, a cropped
DCE-MRI volume, now containing only the kidney region of interest, is processed through
the fully trained 3D FC-DenseNet model for voxel-wise predictions of intensity relating to
the “kidney” (foreground) or “non-kidney” (background) class.

2.2.1. Training Stage

The first phase of the training stage involves developing an object detection and
localisation approach to eventually generate a bounding box over each kidney in the
DCE-MRI volume and remove redundant information.

Detection and Localisation

The proposed network, 3D Rb-UNet, consists of an encoder of 4 blocks, a bottleneck
and a decoder stage of 5 blocks extending upon the U-Net architecture. Each block in
the encoder stage contains two 3× 3× 3 convolutions followed by a rectified linear unit
(ReLu). The input of a convolutional layer is subsequently added to the output of the
corresponding layer as a residual connection. Next, a 2× 2× 2 max-pooling is performed
with strides of 2 for down-sampling and a dropout regularisation to counteract overfitting
on high-resolution features. A bottleneck stage bridges the encoder and the decoder
via two 3× 3× 3 convolutions, each followed by a ReLU and separated by a dropout
regularisation. Next, each block in the decoder stage consists of a convolutional transpose
of 2× 2× 2 by strides of 2 and two 3× 3× 3 convolutions, each followed by a ReLu and
separated by dropout regularisation. Next, the layers with equal spatial resolution from
the encoder stage are concatenated to their corresponding layers in the decoder stage to
add high-resolution features to the latter stage. Next, the input of a convolutional layer
is subsequently added to the output of the corresponding layer as a residual connection.
Finally, batch normalisation enables faster convergence and reduced overfitting prior to a
1× 1× 1 convolution that reduces the number of output channels to the three classes in
the last layer referring to the “background”, “right” and “left” kidney.

At the start of this training phase, the size of each image volume is reduced by down-
sampling to 64× 64× 64 to limit computational costs and still have sufficient resolution
necessary for localisation and near-isotropic resolution across the x, y and z dimensions.
Furthermore, experiments showed that reducing the temporal dimension from 150 samples
along time (i.e., 150 image volumes in a 4D scan) to 5 samples, with the highest variance
explaining 98% of the variance (i.e., 5 image volumes) using principal component analysis
(PCA) [28], improved performance while avoiding memory overload. We first compute
a list of the principal directions and magnitudes in each 4D volume and then transform
the volume to align with these principal directions, reducing the temporal dimension-
ality. The spatial–temporal features are exploited during network optimisation despite
the downsampling to identify unique features relating to kidney tissue. Moreover, data
augmentation is generated as images scaled and translated in the range of [1, 4] pixels.
Thus, the input data for the 3D Rb-UNet are 64× 64× 64 with 5 channels corresponding to
the time dimension of the 5 volumes following the PCA. The weighted cross-entropy loss
function, as in Equation (1), is employed to compensate for the class imbalance presented
by diverse kidney structures and variability in the training data.

Wcross−entropy = − 1
N

N

∑
i=1t

wc
i [ p̂i log pi + (1− p̂i) log(1− pi)] (1)

In Equation (1), N is number of voxels in an image volume, pi is the probability
of voxel i belonging to the foreground in each output channel and p̂i represents the
true ground-truth label in the corresponding input channel. The wc

i is fixed as inversely
proportional to the probability of voxel i belonging to the foreground class. Afterwards,
softmax with weighted cross-entropy loss is used for the comparison of the network output
and ground-truth labels.
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Segmentation

Using the training data, every kidney is “cropped out” using the corresponding
bounding boxes generated from the ground-truth labels. We initially interpolated and
resampled each 4D volume to a standard temporal resolution and used 5 min as the
maximum acquisition time. Hence, 50 samples from 5 min of acquisition were interpolated
to ensure maximum variance of the time–intensity curves. Next, the dimensions of every
image volume were reduced to 64× 64× 64 with a temporal dimension of 5 using PCA.
The modified data was fed into the 3D FC-DenseNet to train the main segmentation model
using the same weighted cross-entropy loss as in Equation (1).

The FC-DenseNet architecture builds upon DenseNet [25] to work as fully convolution
networks (FCNs) by adding an upsampling path to compensate for the entire input reso-
lution. The downsampling path performs a 3× 3× 3 convolution, followed by six dense
blocks containing 4, 5, 7, 10, 12 and 15 layers. Each of the first five dense blocks follows
a transition-down block consisting of batch normalisation, ReLU, 1× 1× 1 convolution,
dropout and 2× 2× 2 max-pooling with a stride of 1. Thus, each layer in a dense block
integrates batch normalisation, ReLU, a 3× 3× 3 convolution and a dropout regularisation.
Next, the upsampling path consists of five transition-up blocks, each of which follows a
dense block consisting of 12, 10, 7, 5, and 4 layers. Here, a transition-up block contains a
3× 3× 3 transposed convolution with a stride of 2. Finally, this path ends with a 1× 1× 1
convolution and a softmax function that predicts two classes of foreground (“kidney”) and
background (“non-kidney”).

2.2.2. Testing Stage

The fully trained 3D Rb-UNet performs a coarse segmentation, i.e., voxel-based
prediction on the organ of interest using an unseen (test) 4D DCE-MRI volume. The reader
is reminded that the prediction consists of two classes, “right” and “left”, relating to the
default setting of two distinct kidneys, as well as the third class for “background”. Using
the 4D test volume at its original size, two separate bounding boxes are generated to
“crop out” the right and left kidneys. In cases where a missing kidney is identified, the
corresponding bounding box is represented by the dimension of a single voxel.

The cropped test volume is fitted to the appropriate dimension of 64× 64× 64× 5
and processed through the fully trained 3D FC-DenseNet, which performs detailed voxel-
wise predictions of two classes, “kidney” (foreground) and “non-kidney” (background).
Afterwards, each predicted organ binary mask is resampled to its original size and inserted
into the corresponding spatial location in the test DCE-MRI volume.

2.3. Automatic Medulla and Cortex Segmentation

While the automatic kidney segmentation approach employs the latest advance-
ments in deep learning architectures, the renal compartment segmentation approach
exploits contrast-enhancing techniques to capture the internal kidney regions, including
the medulla and cortex. The fully automatic approach proposed for renal segmentation
consists of three main stages (processes), as summarised in Algorithm 1 and illustrated
in Figure 2 : Process 1 checks the existence of individual volumetric binary masks for
the left and right kidneys and performs localisation and segmentation via the automatic
deep-learning-based segmentation approach described in Section 2.2. Process 2 performs
medulla and cortex segmentation for all 3D volumes in the 4D DCE-MRI volume V, where
V = {V1, V2, ..., Vt, ..., VT} and t ∈ Z : 1 ≤ t ≤ T. The resulting 4D volume, L, contains a
sequence of 3D volumes, where L = {L1, L2, ..., Lt, ..., LT}, in which individual labels are
assigned to the medulla, cortex and background. This stage serves as a prerequisite to
identifying which volumes possess the highest-intensity contrast between the medulla
and cortex for further processing in the next stage. Process 3 analyses every Lt in L to
identify the “optimum” medulla segmentation, and thus generates the resulting 3D volume
segmentation, VmedCor, containing the renal compartment labels.
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Figure 2. Overview of the proposed automatic renal segmentation approach. Using the input 4D DCE-MRI series, Process 1
detects the individual left and right kidneys (if present) via the automatic kidney segmentation approach. For each identified
kidney, Process 2 performs medulla and cortex segmentation for all 3D volumes in the 4D DCE-MRI series. Process 3
generates the resulting single “optimum” volumetric medulla and cortex segmentation.

Algorithm 1: Medulla and Cortex Segmentation Process
Data: DCE-MRI scan as a sequence of T 3D volumes:
V = {V1, V2, ..., Vt, ..., VT}, where Vt ∈ RH×W×D

and H is the height, W is the width and D is the depth of each volume;
Threshold parameters: δ (gain), µ (cut-off), γ (gamma correction);
Range parameters: r f , rl ;
Whole-kidney segmented binary mask: B ∈ ZH×W×D

2 where Z2 = {0, 1}.

Result:
3D volume segmentation mask of the medulla and cortex in the whole kidney:
VmedCor ∈ ZH×W×D

3 , where Z3 = {0, 1, 2}.

Process 1: Establish if the right kidney exists and if left kidney exists.
Process 2: Segment the medulla and cortex for all 3D volumes in V from t = 1 to

t = T.
Process 3: Fuse the “optimum” medulla and cortex from all segmentations
over time, t = 1 to t = T, into the final medulla and cortex 3D volume.

2.3.1. Segmenting the Medulla and Cortex for All 3D Volumes in 4D DCE-MRI

After the detection of the left and right kidneys (if present), Process 2 segments the
cortex and medulla in each 3D volume in the temporal series of volumes acquired. Process
2 begins by computing two distinct ranges that will contain a finite number of intensities
for preliminary contrast enhancement at a later stage in the algorithm. The first range,
[1..p f ], is based on p f , which represents the end position from the start of the slice depth,
D, and where p f = r f × D. The second range, [pl ..D], is based on pl , which represents the
start position towards the end of D and where pl = rl × D.

Next, given that d ∈ [1..D], every original d-th 2D image slice, sd, in every 3D volume
in the 4D volume, V is analysed to eventually label each relevant pixel as the medulla or
cortex. Figure 2, Process 2(a) shows an example of an original slice. From here, a number
of markers to serve as “numerical guides” are computed: ad, which contains the unique
non-zero intensities in sd, and the minimum and maximum values of ad as (ad)min and
(ad)max.

A number of contrast techniques that subsequently reduce noise artefacts are applied
to manipulate the slice, sd, through increasing contrast between the medulla and cortex, in
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which the former compartment’s intensities are, by default, darker (and numerically lower)
than the latter compartment’s intensities.

Initially, for all intensities sdi
∈ sd, where i ∈ [1..H ×W] represents the intensity index

position, the distribution in sd is updated using Equation (2):

sdi
← sdi

− (ad)min (2)

under the condition that (ad)min < sdi
< (ad)max and p f ≤ d ≤ pl . Next, given that d < p f

or d > pl , a gamma correction is performed on the region of sd that contains non-zero
pixel values, such that sγ

d ⊂ sd and sγ
d ∈ R+ by using a non-linear transformation, as in

Equation (3):

G(sd) =

(
sγ

d
255

)γ

× 255 (3)

where the value of gamma, 3
2 ≤ γ ≤ 7

4 , darkens the original brighter regions in sd.
An application of contrast enhancement [29] amplifies the intensity variation to “en-

hance” the medulla regions in sd by applying a sigmoidal transformation, as in Equation (4):

E(sd) =
1

1 + exp[δ(µ−sd)]
(4)

where δ is the gain, which controls the actual contrast, and µ is the cut-off value represent-
ing the normalised greyscale value about which the contrast level is changed. Figure 2,
Process 2(b) shows an example of an enhanced sd.

With sd having undergone a number of intensity-enhancing transformations, Otsu’s
method [30] is applied to binarise sd. Otsu’s method is an adaptive thresholding algorithm
that finds the optimal threshold value in sd, defined as σ2

b (τ). From here, the binarised
image of sd is defined as follows:

od = sd > σ2
b (τ) (5)

in which pixels of value 0 represent the medulla and pixels of value 1 represent the cortex,
as shown in Figure 2, Process 2(c). The following stages of Process 2 manipulate the labels
in od to generate the preliminary medulla and cortex labels:

1. The segmented binary mask of the kidney from Section 2.2 is defined as B ∈ ZH×W×D
2 ,

where Z2 = {0, 1}, as shown in Figure 2, Process 2(d). Here, a 2D image, bd ⊂ B, is
fully closed to obtain bclose

d , as shown in Figure 2, Process 2(e).
2. Possible false positives in od are eliminated by updating the background in od to the

same background as in bclose
d , as shown in Figure 2, Process 2(f).

3. If the initial pixel value is 0 and 1 in od and bd, respectively, then this pixel is labelled
as “medulla”, as shown in dark grey in Figure 2, Process 2(g). Otherwise, this pixel is
labelled as “cortex”.

Finally, od, now containing the updated medulla, cortex and background labels, is set
to Lt(d), where L = {L1, L2, ..., Lt, ..., LT}.

2.3.2. Generating the “Optimum” Medulla and Cortex 3D Volume

After the completion of Process 2, the 4D volume of L now contains T medulla
and cortex segmented 3D volumes. Process 3 aims to generate the “optimum” renal
compartment 3D volume segmentation by analysing every slice, ld, in Lt over the temporal
period, t = 1 to t = T. First, the ranges [1..p f ] and [pl ..D] are established similarly to
in Process 2. Next, as shown in Figure 2, Process 3(a), a 2D labeled image kd ⊂ Ltx is
selected, where tx = x × T and where x is a constant. The labels in kd are updated by
analysing against ld. For every ld, the following markers that serve as numerical “guides”
are computed:
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• Total area where ldi
> 0 as aread =

∣∣∣{ldi
}i∈{1,...,H×W}

∣∣∣.
• Medulla area in ldi

as medd =
∣∣∣{ldi
}i∈{1,...,H×W}

∣∣∣.
• Percentage of medulla in total kidney area, rMA = medd

aread
× 100.

Next, for every ld(i) ∈ ld | {ld(i) = “medulla” ∧ kd(i) = “cortex”}, the label in kd is
updated to “medulla” given a set of satisfied conditions, such that (α < rMA < β), where
α and β are constants and (p f ≤ d ≤ pl). Figure 2, Process 3 (b) shows an example of an
updated kd.

The cortex labels in kd are improved by considering the closed binarised 2D image at
tx as Θtx (d) ⊂ Θt and the closed binarised 2D segmented image that was achieved using
the automatic kidney segmentation approach, Υ(d) ⊂ Υ.

In order to boost the classification of accurate cortex labels, Υout(d) describes the
difference between the dilation and erosion of Υ(d). The value in kd(i) ∈ kd is updated to
“cortex”, under the condition that the following criteria are satisfied: Υ(d, i) = “cortex”,
Θtx (d, i) = “background” and kd(i) = “medulla”. Furthermore, the cortex labels in kd are
updated to have the same cortex labels as in Υ(d)out.

Finally, the resultant kd, now containing the updated labels for the medulla, cortex and
background, is set to VmedCor(d), where VmedCor is the final medulla and cortex segmentation
3D volume.

3. Results

The segmentation framework was implemented using Python 3.0 and Matlab (Re-
lease 2016b) on a PC running on an NVIDIA Quadro P6000 GPU via Centos 7.0 OS. The
implementation is available at https://github.com/med-seg/kidney-mc Accessed on:
27 November 2021.

3.1. Experimental Setup

In order to develop the 3D FC-DenseNet deep learning model, as in Section 2.2, the
training and testing dataset were split into 34 and 26 image volumes, respectively. The
training dataset combined both clinically “normal” and “abnormal” cases. The optimisation
algorithm used for training was Adam [31] with an initial learning rate of 0.0001. The
hyperparameters included reduction rate (0.8), growth rate (12), momentum (0.9), weight
decay (10−8) and dropout rate (0.2); the learning rate drop period was 50 and the learning
rate drop factor was 0.5. The maximum number of epochs was 400 and the size of the
mini-batch to use for each training iteration was set to 4. The training time for the network
was approximately 3 h, and the testing time for a single DCE-MRI case was approximately
one minute.

The thresholding parameters implemented in Process 2 were as follows: δ (gain) and
µ (cut-off) values were 2 and 1.5, respectively. The value of γ (gamma correction) was 1.5.
Empirically tested, the parameters for ranges r f and rl were 0.3 and 0.7, respectively. The
parameters for ranges r f and rl implemented in Process 3 were 0.3 and 0.7, respectively.
The medulla-to-full-area percentages of α and β were 30 and 60, respectively. Furthermore,
the value of x in selecting tx lay between 0.25 and 0.50.

Evaluation

The performance of the proposed approach was evaluated using the dice similarity
coefficient (DSC), precision (PC) and recall (RC). Should G represent the volumetric ground
truth and should S represent the corresponding automatic segmentation labels, the DSC
accuracy of S relative to G is defined as: DSC = 2(|G ∩ S|)/(|G| + |S|). The precision
normalises the true segmentation against the entire segmentation: PC = (|S ∩ G|)/|S|.
The recall (i.e., sensitivity) normalises S ∩ G against the ground truth, G and is defined as:
RC = (|S ∩ G|)/|G|.

https://github.com/med-seg/kidney-mc
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3.2. Renal Segmentation

The proposed fully automated kidney segmentation method delivered a mean
DSC ± standard deviation (SD) of 88.20± 6.41% for all 26 test cases. The relatively low
standard deviation demonstrates statistical stability in the segmentation method, especially
considering the diversity of kidney abnormalities and imaging artefacts. Considering a
subset of 16 clinically “normal” cases achieved 89.77± 4.79% and evaluating a subset of
10 “abnormal” cases achieved 85.70± 7.75%. Table 1 highlights corresponding precision
and recall accuracy scores, demonstrating the robustness in predicting true-positive labels
and avoiding false-negative predictions.

Table 1. Comparison of the whole kidney segmentation accuracies.

Kidney
Condition

Accuracy
Result

Proposed
Approach

3D Rb-UNet +
3D U-Net [26]

All
DSC 88.20± 6.41 84.41± 7.87
PC 87.24± 6.37 83.24± 7.25
RC 89.46± 7.90 86.49± 10.4

Normal
DSC 89.77± 4.79 85.30± 8.49
PC 87.69± 6.15 83.98± 7.02
RC 92.20± 5.16 87.98± 12.0

Abnormal
DSC 85.70± 7.75 82.97± 8.95
PC 86.52± 6.64 82.05± 7.45
RC 85.07± 9.41 84.09± 6.56

Quantitative accuracies obtained using the proposed approach and the state-of-the-art 3D U-Net [26] approach in
terms of the mean dice similarity coefficient (DSC), precision (PC) and recall (RC) ± standard deviation (SD).

Figure 3a and Figure 3b, respectively, show four different 3D segmentation recon-
structions of “normal” and “abnormal” whole-kidneys (green) overlapping the ground
truth (red), with an accompanying coronal slice highlighting the boundary contouring. As
shown across the slices in the first row of Figure 3a, the change in greyscale intensity, noise
and blurring impacted the rate of true-positive predictions, but continued to minimise
false-negative predictions successfully. The slices in the first row of Figure 3b capture the
true-positive predictions in a diverse range of abnormal kidney sizes and structures.

Considering all 26 test cases, the proposed fully automated renal segmentation method
delivered a mean DSC ± SD of 72.34± 6.09% for all averaged medulla and cortex accu-
racy scores and revealed statistical significance using a permutation paired-sample test
(p < 0.0001). Table 2 lists the respective individual DSC scores, reflecting significant ro-
bustness in the methodology considering the variety of kidney sizes and structures and
imaging intensities, artefacts and textures.

As shown in Table 3, evaluating a subset of 16 clinically “normal” cases achieved
62.40± 6.69% and 81.87± 8.21% for the medulla and cortex, respectively, and evaluating
a subset of 10 “abnormal” cases achieved 63.41± 5.16% and 81.90± 6.31%. A box-and-
whisker plot representation for both datasets is displayed in Figure 4. Analysing the
“abnormal” cortex segmentation, a broader range between the median and lower quartiles
in comparison to the “normal” segmentation confirms the higher degree of variation
in the kidneys’ outer shapes and sizes. In contrast, a smaller interquartile range in the
“normal” cortex segmentation reflects a lower degree of error between individual cortex
segmentation cases. Due to the varied levels of motion-based and noise artefacts in
the “normal” DCE-MRI dataset, there was a higher variation in corresponding medulla
segmentation accuracies in comparison to the “abnormal” medulla accuracies.
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(ii)(i) (iii) (iv)

DSC: 98.05% DSC: 97.78% DSC: 96.93% DSC: 85.21%

DSC: 87.86%DSC: 95.79% DSC: 87.29% DSC: 83.81%

(a)

DSC: 96.87%DSC: 94.73% DSC: 90.18%

DSC: 87.29% DSC: 83.81%DSC: 89.12%

DSC: 96.40%

DSC: 94.04%

(iii)(ii) (iv)(i)

(b)

Figure 3. Whole-kidney segmentation results in eight different DCE-MRI scans (4D volumes). Every
column corresponds to one MRI volume. The first row displays a sample DCE-MRI coronal slice with
the segmentation outcome (green) overlapping the ground truth (red) and dice similarity coefficient
(DSC). The second row displays a 3D reconstruction of the kidney and DSC. (a) Segmentations in
four clinically “normal” cases; (b) Segmentations in four clinically “abnormal” cases.
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Table 2. Individual medulla and cortex segmentation accuracies.

Kidney Condition DCE-MRI Case Compartment Proposed Yoruk et al. [16]

Normal

1 Medulla 73.67 66.83
Cortex 88.28 79.61

2 Medulla 64.62 23.86
Cortex 83.01 26.70

3 Medulla 63.56 1.665
Cortex 78.50 21.43

4 Medulla 60.08 63.25
Cortex 75.90 81.79

5 Medulla 67.54 69.03
Cortex 86.10 71.75

6 Medulla 63.36 36.18
Cortex 66.63 29.67

7 Medulla 69.90 65.20
Cortex 92.32 72.07

8 Medulla 54.08 47.20
Cortex 83.25 75.31

9 Medulla 68.02 0.831
Cortex 86.84 17.95

10 Medulla 68.56 74.97
Cortex 88.41 78.18

11 Medulla 67.60 2.933
Cortex 89.59 38.65

12 Medulla 54.17 48.95
Cortex 61.62 53.62

13 Medulla 51.04 65.67
Cortex 76.64 79.52

14 Medulla 63.51 65.49
Cortex 86.64 72.92

15 Medulla 53.43 61.57
Cortex 87.50 78.19

16 Medulla 55.29 63.57
Cortex 78.68 63.06

Abnormal

1 Medulla 67.34 64.52
Cortex 74.54 74.57

2 Medulla 63.16 61.06
Cortex 82.88 76.21

3 Medulla 64.40 63.90
Cortex 89.08 65.94

4 Medulla 69.44 72.76
Cortex 89.00 72.17

5 Medulla 61.17 72.44
Cortex 84.29 83.62

6 Medulla 62.40 49.79
Cortex 80.98 59.27

7 Medulla 69.37 69.51
Cortex 87.13 78.21

8 Medulla 59.56 59.29
Cortex 74.14 76.28

9 Medulla 51.18 50.55
Cortex 70.64 79.41

10 Medulla 66.11 69.54
Cortex 86.37 79.30

A total of 16 clinically “normal” and 10 clinically “abnormal” cases (4D DCE-MRI volumes) were evaluated, and
the individual dice similarity coefficient (DSC) results are listed.
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Figure 4. Box plots for two datasets depicting the medulla and cortex dice score coefficients (DSCs)
for clinically “normal” and “abnormal” kidneys.

Table 3. Mean medulla and cortex segmentation accuracies.

Compartment Proposed (%) Yoruk et al. [16] (%)

N-16 cases
Cortex 81.87 ± 8.21 58.78 ± 22.85

Medulla 62.40 ± 6.69 47.32 ± 25.27

A-10 cases
Cortex 81.90 ± 6.31 74.50 ± 6.79

Medulla 63.41 ± 5.16 63.34 ± 7.86
Comparison of the proposed approach and a baseline approach referred to as Yoruk et al. [16]. A total of 16 clinically
“normal” (N) and 10 clinically “abnormal” (A) 4D DCE-MRI volumes were evaluated. The results are presented as
the mean dice similarity coefficient (DSC) ± standard deviation (SD).

The first columns of Figures 5 and 6 display the medulla (red) and cortex (green)
segmentation results in four coronal slices from a single DCE-MRI scan depicting clinically
“normal” and “abnormal” kidneys, respectively. Using contrast enhancement via gamma
correction and sigmoidal transformation maintained the contextual information while
differentiating kidney regions; this occurred mainly in temporal instances where the
contrast between DCE-MR imaged renal compartments was low but enough to capture
boundary differences where the medulla and cortex edges were in contact.

Time–Intensity and Tracer Concentration Curves

Figure 7 shows, in total, six examples of the relative contrast-enhancement time–
intensity plots of clinically “normal” (a, b, c) and “abnormal” (d, e, f ) medulla and cortex
segmentation. Moreover, Figure 8 highlights six corresponding examples of the level of
radioactive (tracer) concentration in kidney tissue over time, specifically in the clinically
“normal” and “abnormal” segmentations. The segmented whole kidney can be used to
estimate MRI-derived perfusion parameters and the GFR.
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(a) Proposed (b) Yoruk et al. (c) Ground truth

(d) Proposed (e) Yoruk et al. (f) Ground truth

(g) Proposed (h) Yoruk et al. (i) Ground truth

Figure 5. Medulla and cortex segmentation results of three different clinically ”normal” kidneys. The first column
(a,d,g) shows the results from the proposed approach; the second column (b,e,h) shows the respective results using the
baseline approach from Yoruk et al. [16]; the third column (c,f,i) shows the respective ground truth.
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(a) Proposed (b) Yoruk et al. (c) Ground truth

(d) Proposed (e) Yoruk et al. (f) Ground truth

(g) Proposed (h) Yoruk et al. (i) Ground truth

Figure 6. Medulla and cortex segmentation results of three different clinically “abnormal” kidneys. The first column
(a,d,g) shows the results from the proposed approach; the second column (b,e,h) shows the respective results using the
baseline approach from Yoruk et al. [16]; the third column (c,f,i) shows the respective ground truth.
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Figure 7. Graphs (a–f) represent clinically “normal” and “abnormal” cases (scans or 4D volumes), respectively. The relative
contrast intensity enhancement of the (automatically segmented) medulla and cortex in both the left and right kidneys is
shown over time (minutes).
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Figure 8. Graphs (a–f) represent clinically “normal” and “abnormal” cases (scans or 4D volumes), respectively.The tracer
concentration is shown over time for both the right (blue) and left (red) kidneys; the corresponding kidney percentage,
volume (mL) and GFR (mL/min) were computed to discern and evaluate separate kidney functions.

4. Discussion

In order to evaluate the proposed automatic segmentation model against the state of
the art, the 3D U-Net serves as a baseline method to compare the proposed approach’s
effectiveness and statistical stability. The encoder–decoder architecture in the 3D U-Net
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has served as the foundation for subsequent deep learning technologies [25,32,33] and was
therefore chosen as a suitable comparative model.

Using 3D Rb-UNet, the localisation stage performs a coarse segmentation in order to
identify the main region encapsulating the kidney and discard background information.
Furthermore, we aim to limit computational costs and improve time efficiency, since the
network’s primary input is 4D data.

The integrated 3D FC-DenseNet utilises the benefits of DenseNet and therefore has
fewer parameters than 3D U-Net, and it avoids overfitting. Not only does the 3D FC-
DenseNet extend upon DenseNet by adding an upsampling path to recover the full input
spatial resolution, but this architecture also employs dense skip connections on skip path-
ways to improve gradient flow. Consequently, the temporal dimension of primary input
data is harnessed, allowing deep feature supervision for learning kidney boundaries.

The identity shortcuts of the residual blocks in 3D Rb-UNet allow faster training and
improved convergence in comparison with the 3D FC-DenseNet, which is excellent for
localisation. In contrast, the 3D FC-DenseNet provides the advantage of higher capacity
with multi-layer feature concatenation and achieves very detailed and fine boundary-
preserving segmentation given localised kidneys as the primary input.

As shown in Table 1, the proposed model outperforms the baseline with prior locali-
sation using 3D Rb-UNet by approximately 3.8% in mean DSC and demonstrates higher
statistical stability by approximately 1.5%. Similarly, the proposed model surpasses the
baseline approach by approximately 4.5% and 2.7% in mean DSC when evaluating the
clinically “normal” and “abnormal” cases as two separate datasets, respectively. The ro-
bust consistency of the proposed approach is highlighted in a standard deviation that is
relatively lower by approximately 3.7% and 1.2% in the “normal” and “abnormal” datasets,
respectively.

The second and last column in Figure 3b highlights a relatively higher false-negative
prediction of the right kidney, arguably proving a need to optimise data augmentation
and training data where abnormalities are present in the imaged organ of interest. In
addition, downsampling the input volume in the training stage of the segmentation model
could easily result in the loss of contextual information and, thus, impact the network
optimisation. It could be useful to incorporate a higher frequency of feature selection to
reduce the high bias during network training while maintaining the computational costs
that arise from downsampling.

The proposed renal segmentation approach outperforms a baseline method [16] for
extracting the medulla and cortex by approximately 9.3% and 17.1% in mean DSC, re-
spectively, and it boasts higher statistical stability by approximately 15.7% and 12.4%, as
shown in Table 3. An available implementation [34] is utilised to reproduce the baseline
method. Whereas the baseline method utilises computer vision to extract the whole kid-
ney, the approach proposed in this report employs advancing deep learning to predict
highly diverse kidney features, especially of abnormalities. As shown in Figure 6e,h, the
algorithm in [16] fails to detect one of the clinically “abnormal” kidneys, whereas the
proposed approach has accurately identified the entire organ, as illustrated in Figure 6d
and Figure 6g, respectively. Moreover, the baseline approach completely breaks down
in a clinically “normal” case, as shown in Figure 5e. In contrast, the robustness of the
deep-learning-based model captures both kidneys before renal segmentation is performed,
as shown in Figure 5d. A limitation of this particular case (Figure 5d) includes a relatively
higher false-negative cortex prediction, resulting in a higher false-positive medulla com-
pared to the ground truth in Figure 5f. Therefore, thresholding parameters would require
optimisation to ensure a more robust generalisability. Thus, it would be helpful to expand
upon nature-inspired algorithms such as the firefly and swarm intelligence algorithms to
determine multilevel thresholds and enhance the compartment segmentation efficiency.
In Figure 5h, the binary dilation and erosion strategy in the baseline approach predicts
false-positive labels of renal parenchyma, whereas the proposed trained deep learning
model accurately localises the kidney. Furthermore, the relatively high concentration of
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false-negative medulla labels demonstrates the limitations of incorporating the GrabCut
and SVM classifier, as in [16]. In comparison, the proposed renal segmentation method
exploits intensity enhancement throughout the full temporal dimension of the DCE-MRI to
generate the “optimum” medulla labels for the resultant segmentation, as highlighted in
Figure 5g.

Application

The accurate segmentation of the whole and internal kidney regions can be used to
extract clinically important markers of renal function. For example, these markers could
optimise clinical decision making for whether a patient with hydronephrosis needs imme-
diate surgery to preserve renal function, or whether a conservative method of treatment
will be selected. This section provides two examples of clinical application in which the
delineated kidney and renal compartments are used to generate graphical representations
of kidney activity.

For example, as shown in Figure 7, the change in greyscale intensity over time indicates
the rate at which the gadolinium contrast agent reaches the kidney and, thus, an insight into
the condition of this organ. Moreover, it might be useful to explore a large-scale analysis
of the medulla and cortex time–intensity curves against corresponding DCE-MRI scans
in order to develop a method that guides the clinical classification of each kidney directly
from the curves [35,36] and, thus, help to establish the likelihood of ureteral obstruction
quickly. The respective comparison with ground-truth plots can be located in Appendix A.

Furthermore, the tracer concentration of the contrast in each kidney, which is depen-
dent on properties of kidney tissue including perfusion, basement membrane and the
cumulative concentration in arterial blood, is computed using the GRE sequence Bloch
equations. As shown in Figure 8, the GFR is computed by fitting a kinetic tracer model to
the signal averaged over each kidney, as described in [37]. For example, the kidney volume
is used as a biomarker in autosomal dominant polycystic kidney disease (ADPKD), and
GFR measurements are used to evaluate disease progression [38].

5. Conclusions

Kidney-based disorders are a growing global problem. Therefore, there is mounting
demand for methods that accurately monitor, stratify and improve the assessment of renal
function. Conventional techniques produce clinical chemistry measures, but may generate
an overestimate and fail to target the disease location. In contrast, DCE-MRI scanning
enables the accurate classification and evaluation of localised renal function without the us-
age of ionising radiation. The computer-aided analysis of DCE-MRI could generate reliable
biomarkers for clinical practice, for which an essential prerequisite involves segmenting
the whole kidney and renal compartments, such as the cortex and medulla. This paper
presents a fully modular and automated framework with a translational impact for kidney
parenchyma segmentation, incorporating 3D deep learning and contrast enhancement of
renal contextual information in the temporal dimension. Unlike the previous literature
in renal compartment segmentation, the methodology proposed in this paper utilises a
more extensive paediatric dataset and achieves outperforming quantitative accuracy scores,
demonstrating stability in performance.

Considering limitations relating to a higher instance of higher false-negative or false-
positive cortex segmentation in a subset of cases, future work will expand upon nature-
inspired algorithms [39] to determine improved thresholding parameters. Another di-
rection of future work will explore the usage of unsupervised deep learning for renal
compartment segmentation, especially in light of limited ground-truth data. Methods
that include feature hierarchy [40], deep representation [41] and autoencoders [42] will be
investigated. Moreover, given the high level of motion-related artefacts, the advantage of
developing a noise removal or suppression technique using deep learning [43] could have
a significant impact on the resultant segmentation accuracy.
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Appendix A

As initially referenced in Section 4, Figures A1 and A2 display the change in greyscale
intensity over time using the automatic medulla and cortex compartment segmentation
and ground truth for clinically “normal” and “abnormal” cases, respectively, indicating the
rate at which the gadolinium contrast agent reaches the kidney.
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Figure A1. Graphs (a–f) represent the time–intensity curves of three clinically “normal” cases (scans or 4D volumes).
The first column shows the relative contrast intensity enhancement of the automatic renal compartment segmentation
in both the left and right kidneys over time (minutes). The second column shows the corresponding ground-truth (GT)
time–intensity curves.
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Figure A2. Graphs (a–f) represent the time–intensity curves of three clinically “abnormal” cases (scans or 4D volumes).
The first column shows the relative contrast intensity enhancement of the automatic renal compartment segmentation
in both the left and right kidneys over time (minutes). The second column shows the corresponding ground-truth (GT)
time–intensity curves.
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