
sensors

Article

Multiclass Image Classification Using GANs and CNN Based
on Holes Drilled in Laminated Chipboard

Grzegorz Wieczorek 1,* , Marcin Chlebus 2,* , Janusz Gajda 2 , Katarzyna Chyrowicz 3, Kamila Kontna 3,
Michał Korycki 3, Albina Jegorowa 4 and Michał Kruk 1

����������
�������

Citation: Wieczorek, G.; Chlebus, M.;

Gajda, J.; Chyrowicz, K.; Kontna, K.;

Korycki, M.; Jegorowa, A.; Kruk, M.

Multiclass Image Classification Using

GANs and CNN Based on Holes

Drilled in Laminated Chipboard.

Sensors 2021, 21, 8077. https://

doi.org/10.3390/s21238077

Academic Editors: Panagiotis E.

Pintelas, Sotiris Kotsiantis, Ioannis E.

Livieris and Anastasios Doulamis

Received: 28 September 2021

Accepted: 26 November 2021

Published: 2 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Information Technology, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland;
michal_kruk@sggw.edu.pl

2 Faculty of Economic Sciences, University of Warsaw, 00-927 Warsaw, Poland; jgajda@wne.uw.edu.pl
3 Data Juice Lab sp. z o.o., 00-503 Warsaw, Poland; k.chyrowicz@datajuicelab.com (K.C.);

k.kontna@datajuicelab.com (K.K.); m.korycki@datajuicelab.com (M.K.)
4 Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences—SGGW,

02-787 Warsaw, Poland; albina_jegorowa@sggw.edu.pl
* Correspondence: grzegorz_wieczorek@sggw.edu.pl (G.W.); mchlebus@wne.uw.edu.pl (M.C.)

Abstract: The multiclass prediction approach to the problem of recognizing the state of the drill by
classifying images of drilled holes into three classes is presented. Expert judgement was made on the
basis of the quality of the hole, by dividing the collected photographs into the classes: “very fine,”
“acceptable,” and “unacceptable.” The aim of the research was to create a model capable of identifying
different levels of quality of the holes, where the reduced quality would serve as a warning that the
drill is about to wear down. This could reduce the damage caused by a blunt tool. To perform this
task, real-world data were gathered, normalized, and scaled down, and additional instances were
created with the use of data-augmentation techniques, a self-developed transformation, and with
general adversarial networks. This approach also allowed us to achieve a slight rebalance of the
dataset, by creating higher numbers of images belonging to the less-represented classes. The datasets
generated were then fed into a series of convolutional neural networks, with different numbers of
convolution layers used, modelled to carry out the multiclass prediction. The performance of the
so-designed model was compared to predictions generated by Microsoft’s Custom Vision service,
trained on the same data, which was treated as the benchmark. Several trained models obtained by
adjusting the structure and hyperparameters of the model were able to provide better recognition of
less-represented classes than the benchmark.

Keywords: multi-class classification; laminated chipboard; GAN; CNN

1. Introduction

The quality of a drill and its impact on the quality of a final product, which was a piece
of furniture here, is of great importance in the production process. A drill that is not sharp
enough should be replaced in order to prevent it from damaging the products, which
would cause inconvenience and would generate costs to the producer.

The judgement of the state of a drill is not simple, and relying only on an expert’s eye
would be quite risky. A traditional approach to this problem is collecting and measuring
multiple signals produced by the drill, like the feed force, the cutting torque, the noise, the
vibration, or the acoustic emission and then estimating its quality based on these signals [1].
This approach gives acceptably accurate results, as it was shown in previous works [2–4],
but it requires the usage of multiple sensors. Many pre-processing operations have to
be performed on collected data, such as calculating a number of statistical parameters of
recorded signals or generating Fourier representations for specific feature selection [1].

In [5–7], it was shown that using only images of drilled holes and convolutional neural
networks (CNN) can give satisfying results, and it is a much simpler solution than that

Sensors 2021, 21, 8077. https://doi.org/10.3390/s21238077 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-1654-1982
https://orcid.org/0000-0002-9149-1065
https://orcid.org/0000-0002-3568-9747
https://orcid.org/0000-0002-8935-845X
https://orcid.org/0000-0002-3451-6879
https://doi.org/10.3390/s21238077
https://doi.org/10.3390/s21238077
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21238077
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21238077?type=check_update&version=3

Sensors 2021, 21, 8077 2 of 29

based on multiple sensors. In [5], only an original set of 242 images was used. Trying to
build simple CNN on dataset of this size achieved poor accuracy (35%) and required the
use of highly pretrained neural networks on the model data in order to achieve a high
value of said metric (around 93%). On the other hand, in [6,8], the data were expanded
by simple image operations and data-augmentation techniques, such as converting an
image to gray-scale values, adjusting the brightness of an image, adjusting its contrast,
changing the hue, adding Gaussian noise or salt and pepper noise, creating reflections,
or rotating and scaling an image. It was shown that expanding the dataset improved the
results. In [7], the Siamese network was used to build the main classifier and to obtain the
best classification results available.

Using only some types of transformations on existing data limits our final dataset to
some extent. However, using data-generation techniques, such as generative adversarial
networks (GAN), enables us to produce much more data. It was shown that the usage of
GANs improves the results significantly [9,10].

In previous works, related to the data and the subject of our interest [5,6], a well-
known AlexNet model was used to achieve accurate results. However, this model requires
substantial memory resources, computing power, and training time. Recently we could
observe an interesting trend of using relatively simple neural networks that can achieve
similar, and sometimes even better, results for certain problems compared to more-complex
networks, such as VGGNet, ResNet, and GoogleNet [11–14].

In the latest work on drill wear recognition [15], a set of models were compared to
classify images into three classes. It was proved that due to unsatisfactory results for three
classes of drill wear recognition, a division into two classes is sufficient from the business
perspective, as misclassifying the worst class with the best class generates the greatest loss.
However, a correct recognition of the middle class drill, which needs to be confirmed by an
operator, can generate significant savings. It can still turn out to be of good quality, and
a costly drill replacement may occur unnecessarily.

In this study, the usage of data-augmentation techniques and GANs was combined to
produce more data, and a CNN model was proposed, to solve the problem of classifying
drill images into three classes. What is more, unlike in the previous works, we did not
use the accuracy classification quality measure to assess the quality of the model built on
an imbalanced dataset, because this measure can erroneously reach high scores in the
case of the presence of an overrepresented class in the dataset (the measure is correct
only for that class) [16]. Instead, we compared models using measures better adopted to
classification problems with under-represented groups. The measures introduced in [17],
such as precision, recall, micro- and macro-area-under-the-ROC-curve (AUC) measures,
F1 micro, and F1 macro were taken into account when comparing the resulting models.
We also compared the results of the CNN model before and after adding more layers
and collated it with the results achieved by the Microsoft Custom Vision model, which is
much more complex than the CNN model. It was proved to be accurate in tasks of image
classification [18], while being relatively simple to use and easily accessible, even to people
unfamiliar with data science. In this study, we also proposed to use a correcting vector to
adjust the prediction of classification quality for less-represented classes.

2. Methodology

In the following section, we discuss the methods used in the paper. Firstly, the methods
used for data augmentation and the methodology of generative adversarial networks are
recalled. Then, the convolutional neural network model is explained. In the next subsection,
the Azure Custom Vision model is discussed. Finally, we present the testing framework
applied to the models.

Sensors 2021, 21, 8077 3 of 29

2.1. Data Augmentation

Data-augmentation techniques work well in image-analysis problems, improving the
results [19,20], which was also proved to be true in the case of drill wear recognition [6].
In this study, we chose to use the following operations on images for data augmentation:

1. Colour to grayscale—in our dataset, colours were very similar to black and white and
did not carry any relevant information that our model should learn. Since we chose to
use CNN to classify images, we did not want our model to focus on learning colours.
It was shown in [21] that using grayscale in CNN improves the results.

2. Horizontal and vertical flip—since our images were round holes placed in the centre
of an image, we could use flips with no harm done to the quality of the picture [22,23].

3. Width and height shifted in the range of [−2, 2]—a slight shift was used to make
sure that the model did not learn to recognize the class based on hole placement.
It is especially important when not every hole is placed in the very centre of the
picture [22,23].

The rotation was omitted, due to the rectangular shape of all pictures. Revolution of
an image erases the data in the corners. Introducing blank spaces will cause unwanted
distortion in the dataset, as depicted in Figure 1.

Gradient of original image. Gradient of rotated image.

Figure 1. Comparison of gradients. Rotated image has visible blank spaces.

Neither did we change the brightness or zoom, because we assumed that the pictures
were taken in a specific lighting and that the distance between a camera and the chipboard
with holes was set and stable. We did not want to artificially change a parameter that was
actually constant.

The disadvantage of using only simple data-augmentation techniques presented above
is that this can produce only a limited number of pictures. When all the combinations
were used, the images began to duplicate. The number of pictures generated was not
sufficient for applying GANs described in the next chapter. That is why, in order to boost
our dataset (especially to increase the number of observations in the class of very fine holes,
class 0), before applying data augmentation we made an additional transformation, which
we proposed in this study.

The idea of the modification was to create additional observations by a combination
of features from different existing images. New examples were generated by taking the
linear combinations of corresponding points in a number of images.

This method was possible to apply only due to the fact that all examples used in the
training of the model were photographs taken in reproducible conditions and had equal
dimensions. What is more, it could be further explored by adding additional observations

Sensors 2021, 21, 8077 4 of 29

to every combination or by applying mixed weights to each of the contributing images,
either predetermined or generated by random means.

2.2. Generative Adversarial Networks

Generative adversarial networks (GANs) were introduced by Goodfellow et al. in 2014 [24].
They proposed a model that consists of two parts, G—a generator—and D— a discriminator—
which play a minimax two-player game. G learns to generate images possibly similar to
original ones to maximize the loss of D, which in turn is learning to recognize the images it
receives.

In order to create a fake example, which is represented by the generator’s distribu-
tion pg over data x, we had to define an input noise pz(z), mapping to the data space
as G(z; θg), where G is a differentiable function represented by a multilayer perceptron
with parameters θg. We can also define a second multilayer perceptron D(x; θd), where
D(x) is the probability that x came from the data rather than pg. D is trained to maximize
the probability of assigning the correct label to original examples and samples generated
by G, while G is trained to minimize log(1− D(G(z))). So, D and G play a two-player
minimax game with value function V(G, D):

min
G

max
D

V(D, G) = Ex∼pdata(x)[logD(x))] +Ez∼pz(z)[log(1− D(G(z)))] (1)

The training of a GAN model is not a simple task to perform, due to a complicated
nature of finding an optimal point upon which both G and D can converge on, which many
studies describe as an equivalent to the search for Nash equilibrium in a high-dimensional,
highly non-convex optimization space [25]. Both G and D need to be closely monitored
and trained in relation to each other. If G were trained too much in relation to D, the
results generated by G would be able to exploit specific local minima of D, converging
all generated results to only a few examples with minimal variety, also known as a mode
collapse [24]. With a too-exacting D, however, G will not be able to generate any results that
would be able to pass the selection made by D, rendering all further training useless, due
to aimless weight updates of G. This results in application of alternating both networks in
alternate manner, by using gradient descent with respect to a cross-entropical loss function.

In this study, we trained three different GAN models, one for every existing class.
This approach was chosen, even with multiple existing methods of generating multiclass
images within a single GAN model, known generally as conditional generative adversarial
nets (cGANs). CGANs, introduced by Mirza and Osindero [26], provide labels within the
process of training, within the structures of generators and discriminators, in order to form
a model that generates examples of a specific class, based on the provided noise input and
class label. It was used to provide a method to multiply the training dataset to problems
with a large number of available classes, without the need to train a network for every class
separately.

This approach was rejected, since the potential gain attained by generating all artificial
examples is not substantial, when the number of classes is relatively low, compared to other
multiclass labelling problems (such as labelling the MNIST dataset [26]). Moreover, cGAN
models are known to suffer from the tendency of overfitting the training data, in addition
to mode collapsing and being biased towards the most-represented classes [26–28]. This
approach also tends to have worse performance when compared to plain GAN models [26]
and should be used as a method to save resources rather than an avenue towards generating
better results.

2.3. Convolutional Neural Network Model

Convolutional neural networks are generally considered as the “go-to model” to
apply to problems related to image processing, and they have proven to work well for
image-classification tasks [29]. For the purpose of multi-class image classification, the CNN
algorithm receives image data and produces a series of probability scores, corresponding to

Sensors 2021, 21, 8077 5 of 29

each label. Application of data augmentation along with additional examples provided by
trained GAN models were able to fulfil the CNN’s requirement of having a broad dataset
of examples to be trained on [30].

The CNN model acts as a derivative of the multilayer perceptron and is built with a
series of convolutional blocks, which include convolutional layers, followed by activation
functions and pooling layers.

Convolutional layers generate n feature maps by the application of linear combinations
of several feature maps received as an input, where n is the number of filters in a layer.
Filters of size kw, kh have their weights adapted in the process of training [31]. Application
of filters of a size greater than 1 × 1 results in a reduction of size in the calculated feature
maps. Additional hyperparameters of convolutional layers include the stride of the filters,
the padding of the edges, and the choice of activation functions.

Subsequent convolutions of layers with a smaller size of the kernel are able to cover
the same effective field of influence as a singular layer with a larger kernel size. Granulation
allows the algorithm to determine more-complicated patterns with each passing layer,
while reducing the number of parameters needed to train the model [32]. Pooling layers
create a summary of p × p areas in feature maps created by previous convolutional layers.
If the stride of s ∈ N>1 is applied, the pooling layer reduces the spatial dimensions of
feature maps generated by convolutions, greatly diminishing the amount of parameters
needed for the CNN to train [31]. Pooling also allows the model to be indifferent to small
changes in input maps and to gain transactional indifference, allowing for recognition of
patterns that are not related to an exact placement where they appear [33].

The last block in the structure then connects to a number of dense, fully-connected
layers of a neural network to provide the output [33].

2.4. Azure Custom Vision Model

The Microsoft Custom Vision service uses a machine learning algorithm to analyse
images. Its functionality can be divided into two features, i.e., image classification and
object detection. In the image classification, one or more labels is assigned to an image. In
object detection, it is similar, but the coordinates in the image where the applied labels can
be found are provided. In our case, we used the tool for image classification, and the results
from this model were treated as a benchmark to compare with CNN models designed from
scratch.

Implementing the Azure Custom Vision model is very simple and can be done by
anyone, even by people unaccustomed to modern machine learning techniques. It can also
be used in industry or other sectors to analyse image data, giving high quality results [18,34].
The prediction from the model has the best accuracy when the provided data are balanced.
The task of the user is only to define class labels of the images when uploading the training
dataset and to select the proper domain of the data. Exemplary domains are general, food,
landmarks, retail, adult, and compact domains. The model is pretrained with data from the
selected fields. Then, the model is evaluated on an independent test dataset. The results
can be easily downloaded and explored.

Unfortunately, no further model description is available in Microsoft’s documentation
of Custom Vision, apart from the fact that it is a CNN model. However, we cannot provide
either the structure of the model or its hyperparameters.

2.5. Testing Framework

The original dataset was divided into the training set (60% of observations), the vali-
dation set (20%), and the testing set (20% of observations). The training dataset underwent
the process of data augmentation, with the final training dataset consisting of:

• original images described in Section 3.1;
• images generated by the combinations of original images, described in the end of

Section 2.1;
• images generated by traditional transformations described in Section 2.1 [22];

Sensors 2021, 21, 8077 6 of 29

• images generated by GAN models described in Section 2.2.

Training of the CNN model was performed by the means of the Keras framework [35],
with the loss metric set as a categorical cross-entropy loss (2), using the adam optimizer.

categorical cross-entropy loss = −
output

size

∑
i=1

yi · log ŷi , (2)

where ŷi — i-th prediction in the model output,
yi —correct target value.

The performance of different combinations of hyperparameters were scored in two
ways. Firstly, 10 models with the lowest categorical cross-entropy loss on the validation set
were selected and compared. Secondly, as we dealt with the multiclassification problem
and as we had a highly imbalanced dataset, we proposed an additional algorithm to select
the 10 best models based on the ROC curves for validation data for each class. In the first
step, we chose the minimum of the AUC values from all the three classes, and then we
selected the models with the highest AUC values.

Then, confusion matrices for the best models were presented and the precision, recall,
F1 score, and AUC measures were calculated for each class. Moreover, the accuracy (F1-
micro score), the F1-macro score, the micro-average ROC curve, and the macro-average
ROC curve were calculated to assess the overall performance of the model. These measures
were presented with the validation data. The formulas are defined in (3)–(8) below.

Accuracy =
TP + TN

TP + TN + FP + FN
= micro F1 Score , (3)

P(i) =
TPi

TPi + FPi
, (4)

TPR(i) = R(i) =
TPi

TPi + FNi
, (5)

FPR(i) =
FPi

FPi + TNi
, (6)

F1(i) =
2× P(i)× R(i)

P(i) + R(i)
, (7)

mF1 =
∑n

i=1 F1(i)
n

, (8)

where TP—the number of true positives.
TN—the number of true negatives.
FP—the number of false positives.
FN—the number of false negatives.
TPi —the number of true positives for class i.
TNi —the number of true negatives for class i.
FNi —the number of false positives for class i.
FNi —the number of false negatives for class i,.
P(i)—the precision for class i.
R(i)—the recall for class i.

TPR(i)—the true-positive rate for class i.
FPR(i)—the false-positive rate for class i.

F1(i)—the F-1 score for class i.
mF1—the macro F-1 score.

n—the number of classes.

The AUC measure was determined by plotting the true-positive rate (5) against the
false-positive rate (6) from confusion matrices generated at various threshold values. In this
study, five different ROC curves were generated for every model. Three ROC curves were

Sensors 2021, 21, 8077 7 of 29

generated by examining predictions generated for every existing class. The micro-average
values of the true-positive rate and the false-positive rate were calculated by concatenating
all predictions and scores into a binary classification problem, thus generating a ROC curve
that displays weighted average of previously mentioned ROC curves. The macro-average
ROC curve displays the mathematical average of ROC curve graphs generated for every
class and was generated by averaging all true-positive rates for every present point on the
false-positive rate axis [36].

The output of the model for each image is a vector of probabilities pi = [p0, p1, p2],
where p0, p1, p2 is the probability that the observation i belongs to class 0, class 1, and
class 2, respectively. The default assignment of an observation to a class is the class with
the highest probability (max{pi}).

As our dataset was imbalanced between classes, the appropriate method of reducing
the bias happening within the CNN network is introduced. An ensemble of methods
known as threshold moving or post-scaling involves adjusting the probabilities retrieved
from the output of the model by an artificial measure, usually based on prior class proba-
bilities [37,38]. In this study, the correcting vector was defined as π:

π = [π0, π1, π2] ,

πn =
1
|cn|

,
(9)

where |cn|—size (number of objects) of class n.
The probabilities after the correction was done took values resulting from Equation (10).
The final allocation again assigns the class with the highest probability to the observation.

pcorr
i = porig

i × π, (10)

where pcorr
i —vector of probabilities after correction,

porig
i —vector of original probabilities,

π—correcting vector.

As we changed the proportion of observations in each class in the training set, we
applied the correcting vector in two ways and selected the one with the more-rewarding
results. Firstly, we took the size of the original dataset with the created combined images
(class 0: 19; class 1: 162; and class 2: 93) and then the size from the fully augmented training
dataset (class 0: 3201; class 1: 7887; and class 2: 4601).

The final model selection was made by re-comparison of all the measures for the
three models after application of correcting vectors, and the best performing solution
was benchmarked with the solution proposed by the Microsoft Custom Vision tool. As
we did not want to favour any solution, the correcting vector was also applied for the
Custom Vision model. The selection of the vector was made based on the independent
validation set.

3. Experiment

Within this section, the conducted experiment is described. Firstly, a description
of the original dataset is provided. Secondly, the results of data augmentation and data
generation with GANs are presented. What is more, we discuss the outcomes from the
Azure Custom Model and the CNN model built from scratch.

3.1. Data Description

The initial dataset consisted of 459 images of drilled holes for three classes. The
data were collected in cooperation with the Faculty of Wood Technology of the Warsaw
University of Life Sciences—SGGW, using a standard Buselatto JET 100 CNC vertical
machining centre. Holes were drilled in a standard laminated chipboard (KronopolU
511 SM) with dimensions 150 × 35 × 18 mm by using a regular 12 mm FABA drill
equipped with a tungsten carbide tip.

Sensors 2021, 21, 8077 8 of 29

Appointed experts assessed the state of every photograph taken at the workstation,
based on the condition of each hole, thus dividing the dataset into three classes:

• Class 0—finest quality among the classes; it showed little or no damage around the
edges.

• Class 1—few instances of bigger fuzz/ripping present; the quality of the hole was still
acceptable but should be confirmed by an operator.

• Class 2—larger damage around the perimeter of the hole; larger cases of torn material;
unacceptable condition; drill should be replaced.

Example images from class 0, 1, and 2 are shown in Figure 2. Sizes of classes in the
original dataset are shown in Table 1.

Table 1. Sizes of the classes in the dataset.

Class Description Number of Objects

Class 0 very fine 33

Class 1 acceptable 271

Class 2 unacceptable 155

Total 459

Class 0 Class 1 Class 2
Figure 2. Exemplary images from original dataset.

We divided the original dataset to the training, validation, and testing sets as shown
in Table 2. The validation dataset was created to choose the optimal structure of CNN, and
the test dataset was used to assess the selected models on independent observations. The
number of observations in the validation and test sets were pretty low, but we wanted to
keep original images in these samples, as we believed that the evaluation of the model
should be done on real data. Diminishing the number of original observations in the
training set would also be a harm to the diversity of new images created using data-
augmentation techniques and GANs and, as a result, could reduce the performance of
the models.

Table 2. Number of observations in the dataset and its distribution between classes.

Class Train Validation Test

Class 0 19 7 7

Class 1 162 54 55

Class 2 93 31 31

Sum 274 92 93

Attempts to create a CNN model only on the original training dataset were not
successful, as the most common result was for the model to converge on only predictions
of the most-represented class as seen in the confusion matrix in Table 3. Increasing the

Sensors 2021, 21, 8077 9 of 29

number of epochs did not influence the performance of the model, as it reached the plateau
quickly, and the predictions for the validation set were the same for each epoch, as seen in
Figures 3 and 4. The reason for that is probably the highly imbalanced dataset.

Table 3. Confusion matrix for CNN Model on validation set trained on original dataset (274 observations).

True/Predicted Class 0 Class 1 Class 2

Class 0 0/7 7/7 0/7

Class 1 0/54 54/54 0/54

Class 2 0/31 31/31 0/31

Figure 3. Model accuracy for the training and validation sets in relation to different number of epochs
used to train the CNN.

Figure 4. Model loss for the training and validation sets in relation to different number of epochs
used to train the CNN.

The training dataset was enlarged with the transformations described in Section 2.1.
As the images of the drilled holes were not very complicated and detailed, we decided
to reshape them to the size of 80 × 80, which made the computation less expensive and
faster, especially in the case of training the GANs and the CNN model. We found out that
GANs are better in producing lower-resolution images, and we concluded that 80 × 80 is
an optimal resolution for our dataset. It is low enough for a GAN to train and to achieve
satisfying results but high enough to capture the features specific for each class and to
distinguish well between them. In the following subsections, the results of the application
of the data-augmentation and the GANs techniques is presented.

Sensors 2021, 21, 8077 10 of 29

3.2. Data Augmentation

Before we trained GANs to produce more data, we wanted to broaden our initial
dataset by combining images using the described transformation and by performing
a few simple data-augmentation operations on it. For class 0, due to a small number
of observations in the original dataset, the data were multiplied by combining images
with the application of different sets of weights for both components, as described in
Section 2.1. The usually used weight of (1/2, 1/2) will create images equally different
from both pictures and is a better solution than applying for example (1/4, 3/4), where the
transformation favours the picture with a larger weight equal to 3/4. However, class 0 has
only 19 observations, and applying equal weights did not produce enough observations;
so, for this class, we used two sets of weights: (1/2, 1/2) and (1/4, 3/4). Then, the data
augmentation was applied.

Classes 1 and 2 were multiplied only once with the weights equal to (1/2, 1/2), and,
again, data-augmentation techniques described in Section 2.1 were applied. An example of
an image generated by this method is presented in Figure 5.

Image 1 Image 2 Combined image
Figure 5. Creation of additional data entry for images belonging to class 2.

The operation of combining halves of images produced many new observations if
the original dataset was numerous (e.g., for class 1 with 162 original images we obtained
13,041 new pictures), so we randomly chose 11% of images created for class 1 and 10% for
class 2. The percentage of images selected was dependent on the result of data augmen-
tation. If the number of duplicated images was too high, it was necessary to increase the
number of data produced by the transformation. The dataset consisting of original images
with additional instances created by this transformation is described in Table 4.

Table 4. Number of observations in the training dataset after the combination of images was applied
to original data.

Class Train

Class 0 361

Class 1 1597

Class 2 521

Sum 2479

Since the process of data augmentation, described in Section 2.1, is performed using
randomly chosen sets of limited number of transformations on randomly selected images,
created dataset can seldom produce duplicated images. We filtered unique observations
to be assigned to final training set. The parameters described before were set to obtain
the multiplication of observations in class 0 and 2 four times and in class 1 two times,
compared to original counts of images. A decision on the number of multiplied images was
made after applying many tests which aimed to find the optimal number of observations
required for training GANs. Trade-off between data originality and minimum number of

Sensors 2021, 21, 8077 11 of 29

observations needed to train GANs had to be found. As a result, in the final training dataset
we reduced the effect of imbalanced dataset. Finally, we got a train dataset consisting of
the number of observations described in Table 5. Exemplary images generated using these
operations are shown in Figure 6.

Class 0 Class 1 Class 2
Figure 6. Images generated using simple data augmentation techniques.

Table 5. Number of observations in the train dataset and its distribution between classes after data
augmentation.

Class Train

Class 0 1440

Class 1 3190

Class 2 2080

Sum 6710

3.3. Data Generation Using GANs

We decided to use GANs to expand our initial dataset further, as it can bring more
diversity to the training data than simple transformations, and the generated images should
be similar to the original ones. We constructed the generator and the discriminator model
having the structures shown in Tables 6–8.

3.3.1. Generator

The structure of the generator takes any number of images of size 80 × 80 as an input.
This data gets transformed into a fully connected layer that gets reshaped into 128 examples
of downscaled-to-5 × 5 images that were generated as a base for the output image. Each
channel then gets upscaled in both dimensions within the process of deconvolution. After
achieving proper dimensions, the final convolution layer transforms data from all channels
into a variable number of generated images of size 80 × 80. It has to be noted here that the
model described in Table 6 was not compiled and trained on its own, as the output of this
model was fed directly into the discriminator, as described in Table 8.

Table 6. Structure of GAN generator model.

Layer Output Shape Parameters

Dense (None, 3200) 259,200

LeakyReLU (None, 3200) 0

Reshape (None, 5, 5, 128) 0

Conv2DTranspose (None, 10, 10, 128) 262,272

Sensors 2021, 21, 8077 12 of 29

Table 6. Cont.

Layer Output Shape Parameters

LeakyReLU (None, 10, 10, 128) 0

Conv2DTranspose (None, 20, 20, 128) 262,272

LeakyReLU (None, 20, 20, 128) 0

Conv2DTranspose (None, 40, 40, 128) 262,272

LeakyReLU (None, 40, 40, 128) 0

Conv2DTranspose (None, 80, 80, 128) 262,272

LeakyReLU (None, 80, 80, 128) 0

Conv2D (None, 80, 80, 1) 1153

Total params 1,309,441

Trainable params 1,309,441

3.3.2. Discriminator

The discriminator serves its purpose as the expert deciding whether the generated
image comes from a real dataset or was generated artificially, by feeding the data through
a convolutional neural network, as described in Section 2.3. The structure of the network
from Table 7 shows that the discriminator takes the generated image of size 80×80 from
the generator; filters it twice through two convolutional layers with the stride equal to 2,
thus reducing their dimension size by the factor of 2 with every convolution; and then
decides in a single fully connected layer whether the image is real or fake.

Table 7. Structure of the GAN discriminator model.

Layer Output shape Parameters

Conv2D (None, 40, 40, 64) 640

LeakyReLU (None, 40, 40, 64) 0

Dropuot (None, 40, 40, 64) 0

Conv2D (None, 20, 20, 64) 36,928

LeakyReLU (None, 20, 20, 64) 0

Dropuot (None, 20, 20, 64) 0

Flatten (None, 25, 600) 0

Dense (None, 1) 26,601

Total params 63,169

Trainable params 0

Non-trainable params 63,169

3.3.3. Final Model

In the final model, described in Table 8, it has to be noted that only the weights
belonging to the generator model were trained for this specific model configuration. As
described in Section 2.2, the discriminator had to be trained beforehand on a manufactured
collection of real examples mixed with outputs of the GAN model from the previous epoch.
Here, the next iteration of the generator model was adjusted, in order to minimize losses
by generating images that passed as real to the previously trained discriminator. The final
model was compiled with an Adam optimizer (learning rate = 0.0002 and beta = 0.5) and
with the binary cross-entropy loss function.

Sensors 2021, 21, 8077 13 of 29

Table 8. Structure of the GAN model.

Layer Output Shape Parameters

Generator model (None, 80, 80, 1) 1,309,441

Discriminator model (None, 1) 63,169

Total params 1,372,610

Trainable params 1,309,441

Non-trainable params 63,169

Three GANs were trained separately, one for each class. They were trained on the
training set described in Table 5. Each GAN had the same structure and hyperparameters
described above, but they differed in batch size and the number of epochs. For each class,
the best model was chosen based on the values of discriminator and generator loss and
expert’s opinion on the quality of images produced. The goal was to produce images
possibly similar to original ones, having features characteristic for each class and possibly
different between classes.

The first GAN was trained for class 0 on 1440 images from the broadened train set. The
optimal batch size for this model occurred to be 16, and the best results were achieved after
40 epochs of training. Discriminator loss turned out to be 0.797 and generator loss 0.607;
the values were close to each other, which means that neither model dominated the other
one. The Second GAN was trained for class 1 on 3190 images from the broadened train
set. The optimal batch size for this model occurred also to be 16, and the best results were
achieved after eight epochs of training with a discriminator loss of 0.720 and a generator
loss of 0.722. The values are even closer to each other than in the case of class 0, which
may come from the fact that GAN was trained on a larger dataset. The third GAN was
trained for class 2 on 2080 images from the broadened training set. The batch size chosen
for this model was again 16, and the number of epochs was 65. The loss value for the
discriminator was 0.684 and for the generator was 0.750, which again is quite close to one
another. Exemplary images produced by the trained GANs are shown in Figure 7.

Class 0 Class 1 Class 2
Figure 7. Images generated by the GANs.

We can see that the generated pictures definitely differed from each other between
classes, and the characteristic features for every class were preserved. The edge in the first
class is clearly the smoothest as in the original data, and it is getting progressively worse
for classes 1 and 2. It is worth noticing that, for class 2, the generated images differed
significantly from the original ones, and this can be a problem in the process of training the
final model. Exaggerated features generated by the GAN network can skew the model into
the state where real data will be assigned to the milder class. This was tested within the
analysis of the model responses on the validation and testing datasets.

The distribution of data generated by the GANs is shown in Table 9. The number
of observations in each class was set to be similar to the number of images after data
augmentation. We did not want to create too many pictures from classes with a small

Sensors 2021, 21, 8077 14 of 29

amount of original observations, as it would cause the danger of creating many images
that do not differ in any way from each other. After many tests, the selected proportions
were treated as optimal.

Table 9. Number of classes in the training dataset generated by the GANs.

Class Train

Class 0 1400

Class 1 3100

Class 2 2000

Sum 6500

3.3.4. Final Training Dataset

We slightly changed the distribution of data between classes in comparison to the
proportions of the dataset consisting only of original images (Table 1). In this situation, it
has to be noted that generating many images from a small number of pictures in a less-
represented class can create small variance in the resulting pictures, while generating
images in a better-represented class can increase the variance in images in this class. On
the other hand, boosting the number of observations in a less-represented class may help
the model to better recognize the class. The final distribution of data in each class and the
dataset is presented in Table 10.

Table 10. Number of observations in the dataset and its distribution between classes.

Class Train Validation Test

Class 0 3201 7 7

Class 1 7887 54 55

Class 2 4601 31 31

Sum 15,689 92 93

The number of observations used in modelling may be questionable, as the dataset
was still not fully balanced. We could have produced more images for classes 0 and 2,
but, as mentioned before, we did not want to affect the variance between the observations.
It may also result in overfitting the model. Moreover, by keeping class 1 as the most-
numerous one and class 0 as the least-numerous one, we taught the model to be sensitive
to the disproportion in data, which also occurs in the validation and test sets and, what is
more important, in real data, if the model is be used in production in the future.

3.4. Azure Custom Vision Model

In order to set up a hard benchmark, we used Microsoft’s Custom Vision service
for image classification and trained it on our final training dataset. We are aware of the
fact that the model should be trained on the balanced dataset, but it was impossible in
the case of our data, which was explained in previous sections. Moreover, real data are
rarely balanced, so the model would be tested on more real business environments. We
applied the correcting vector to the predictions to reduce the impact of this drawback. The
following results are shown on the validation dataset, on the basis of which we would
choose the best version of the model. This provided the possibility to compare the final
CNN model with the Azure model on an independent dataset for both solutions.

The ROC curves presented in Figure 8 suggest that the model is of a good quality,
and it was able to predict all the classes. Both micro- and macro-average ROC curves are
located high in the coordinate systems, which means that the model is not focused on
predicting only the observations from the largest group.

Sensors 2021, 21, 8077 15 of 29

From the confusion matrices presented in Table 11, we can see that, on the validation
set, the model with default predictions favoured class 1. This is understandable, since the
dataset was imbalanced and class 1 was overrepresented. After applying the correcting
vector, the results were slightly more satisfying; the model could predict more images from
classes 0 and 2. The model with original predictions tended to generalize its responses
towards marking ambiguous examples with the most-common class. This is not a desired
behaviour, which is why the corrected models are considered as superior when compared
to the default results, even if the predictions that deviate from class 1 are not entirely correct.

Table 11. Confusion matrices for the Custom Vision model on the validation set with different
correcting vectors.

Custom Vision Model, Default Results

True/Predicted Class 0 Class 1 Class 2

Class 0 1/7 6/7 0/7

Class 1 0/54 54/54 0/54

Class 2 0/31 19/31 12/31

Custom Vision Model, Original Training Vector

True/Predicted Class 0 Class 1 Class 2

Class 0 3/7 4/7 0/7

Class 1 2/54 52/54 0/54

Class 2 0/31 16/31 15/31

Custom Vision Model, Multiplied Training Vector

True/Predicted Class 0 Class 1 Class 2

Class 0 2/7 5/7 0/7

Class 1 2/54 52/54 0/54

Class 2 0/31 16/31 15/31

Figure 8. ROC curves for the Microsoft Custom Vision model.

The precision and recall values calculated for each class shown in Table 12 imply that
the model with the correcting vector and with the original ratio should be applied, since it
gave higher values both for precision and recall for all classes. It had the lowest values of
false negatives for classes 0 and 2, which means it works best in recognizing those classes.
The recall for class 1 was slightly worse, compared to the results for the default outcome;
but, in the case of that class, we were highly concerned about false positives, as we did

Sensors 2021, 21, 8077 16 of 29

not want to badly classify images from classes 0 and 2. We can confirm the proposal by
calculating the F1 micro- and macro-scores.

Table 12. Precision and recall per class for the Microsoft Custom Vision model on the validation set
with different correction vectors.

Microsoft Custom Vision Class 0 Class 1 Class 2

Precision (default) 1.00 0.68 1.00
Recall (default) 0.14 1.00 0.39

Precision (original ratio) 0.60 0.72 1.00
Recall (original ratio) 0.43 0.96 0.48

Precision (training ratio) 0.50 0.71 1.00
Recall (training ratio) 0.29 0.96 0.48

The F1 micro- and macro-scores presented in Table 13 indicate that our assumption
was correct, and the correcting vector with original training ratio should be applied. Even
though the effect of applying the correcting vector to Custom Vision model was not
significant, since the number of observations in classes 0 and 2 might have been too small to
teach the model to recognize that classes and its certainty that observations belong to class 1
is too high, the results from that the test dataset would be adjusted by it and compared
with the CNN model selected in the next section.

Table 13. F1 scores for the Custom Vision model on the validation set with different correcting vectors.

Model F1 Micro F1 Macro

Model with default results 0.73 0.54
Model with original training vector 0.76 0.66
Model with multiplied training vector 0.75 0.61

3.5. CNN Model
3.5.1. Structure

We proposed a CNN model with the application of a convolution block consisting of
two subsequent convolutional layers with a kernel size of (3 × 3) and stride = 1, detected
by the rectified linear unit activation function and summarized by a (2 × 2) max pooling
layer. The exact details of the model structure are shown in Table 14.

So, we have four sections: (Conv2D, Conv2D, and MaxPooling), the flattened layer,
two shrinking dense layers, and a final classification dense layer. We tested models having
four different structures:

• Basic model: [Conv2D, Conv2D, and MaxPooling] × 1, flattened, dense × 3
• Model layers2: [Conv2D, Conv2D, and MaxPooling] × 2, flattened, dense × 3
• Model layers3: [Conv2D, Conv2D, and MaxPooling] × 3, flattened, dense × 3
• Model layers4: [Conv2D, Conv2D, and MaxPooling] × 4, flattened, dense ×3

So, in each model, we added one (Conv2D, Conv2D, and MaxPooling) section. For
each of these models, we tested different batch sizes from the range (8, 16, 32, 64, 128,
256, 512) and trained it for 12 epochs. Then, we chose the six best models, based on
two criteria: the categorical cross-entropy loss and the highest minimum AUC value,
described in Section 2.5. Based on both scores, we chose the six best models and generated
more-detailed results to determine the best one.

Sensors 2021, 21, 8077 17 of 29

Table 14. Structure of the proposed CNN model; example of a model with 4 layers.

Layer Output Shape Parameters

Conv2D (None, 78, 78, 32) 320

Conv2D (None, 76, 76, 32) 9248

MaxPooling (None, 38, 38, 32) 0

Conv2D (None, 36, 36, 64) 18,496

Conv2D (None, 34, 34, 64) 36,928

MaxPooling (None, 17, 17, 64) 0

Conv2D (None, 15, 15, 128) 73,856

Conv2D (None, 13, 13, 128) 147,584

MaxPooling (None, 6, 6, 128) 0

Conv2D (None, 4, 4, 128) 295,168

Conv2D (None, 2, 2, 128) 590,080

MaxPooling (None, 1, 1, 128) 0

Flatten (None, 256) 0

Dense (None, 128) 32,896

Dense (None, 64) 8256

Dense (None, 3) 195

Total params 1,213,027

Trainable params 1,213,027

Non-trainable params 0

3.5.2. Optimization

We observed validation loss during training of each model described in Section 3.5.1.
Then, we chose hyperparameters’ configurations giving the lowest loss on the validation
set. The validation-loss criterion achieved the best results when the batch size of data
applied in each training step was large, albeit with a small number of epochs, as seen in
Figures 9 and 10. The model performance measured as a log loss gained no improvement
after adding more epochs for the training set, and it was worse in the case of the validation
sets. Even though the convergence did not appear, models trained on a small number of
epochs can give satisfying results.

Figure 9. Model accuracy for the model with 1 layer and a batch size of 256 in relation to different
number of epochs used to train the CNN.

Sensors 2021, 21, 8077 18 of 29

Figure 10. Model loss for the model with 1 layer and a batch size of 256 in relation to different
number of epochs used to train the CNN.

The top three models had only one convolution layer, which concluded that the models
with larger structures were overfitting with more epochs of training. One reason for the
better performance of shallow networks, when compared to deep networks, could be the
fact that the input data were created in a reproducible environment. All the photographs
were centred and appropriately cropped, which allowed shallow networks to base their
prediction on simple patterns, and the process did not need the advantages that deeper
structures of neural networks provide. The results for the 10 best models are presented in
Table 15.

Table 15. Parameter configuration and model loss for the training and validation sets.

Number Batch Epochs Train Validation
of Layers Size Loss Loss

1 256 1 0.51 0.72

1 512 1 0.86 0.89

1 128 1 0.33 0.90

4 512 3 0.44 0.92

3 512 2 0.59 0.93

4 16 4 1.03 0.93

2 512 1 0.88 0.93

4 128 2 0.29 0.97

1 512 5 0.05 0.98

3 512 4 0.23 0.98

Similarly, we calculated the minimum AUC for each model and the results for the ten
best solutions, based on this criterion; they are presented in Table 16. The minimal AUC
criterion revealed an affinity for models with smaller batch sizes, where nowhere in the top
scoring models could a model with only one convolution layer be found. The number of
training epochs did not seem to matter for this criterion, as both smaller and larger values
appeared within the top-scoring solutions.

Based on this information, we chose six models, which are listed in Table 17. Re-
garding further analysis of other means of model evaluation, we checked which of the
aforementioned criteria produced better results when taking into consideration the overall
performance of the model on the testing data.

Sensors 2021, 21, 8077 19 of 29

Table 16. Parameter configuration, AUC for each class, and minimum AUC for the validation set.

Number of Batch Epochs AUC AUC AUC min
Layers Size Class 0 Class 1 Class 2 AUC

2 8 4 0.70 0.72 0.80 0.70

3 8 6 0.69 0.73 0.78 0.69

3 8 1 0.73 0.68 0.78 0.68

4 8 11 0.68 0.71 0.77 0.68

3 8 11 0.67 0.71 0.76 0.67

3 16 8 0.67 0.68 0.79 0.67

3 8 5 0.67 0.66 0.79 0.66

4 8 10 0.69 0.66 0.75 0.66

2 8 6 0.66 0.68 0.77 0.66

3 16 3 0.66 0.75 0.80 0.66

Table 17. Description of chosen models based on the validation loss and the highest minimal
AUC value.

Model Number Batch Epochs Validation min
of Layers Size Loss AUC

1 1 256 1 0.72 0.53

2 1 512 1 0.89 0.46

3 1 128 1 0.90 0.55

4 2 8 4 2.61 0.70

5 3 8 6 2.11 0.69

6 3 8 1 1.76 0.68

For the best six models listed above, we tested them by also removing the first dense
layer. The results in Table 18 show that we achieved better scores without this layer for
two models: 3 and 6. We chose the best option of each model for further analysis.

We present further results for the chosen six of the best models. Figure 11 gathers the
ROC curves based on the results generated by all models on the validation dataset.

As described in Section 2.5, five AUC models allowed us to assess the quality of the
models, based on the characteristic for every single class with two supplemental metrics,
which allowed us to summarize the performance of every model on the whole dataset.

The AUC scores for class 0 were usually low, except for models 4 and 5. For the other
models, the characteristic for this class could even be described as a random model when
taking the finest drilled holes into consideration. This was unwanted, but inevitable, as the
validation dataset consisted only of seven observations, which may be very similar to the
examples provided in class 1. The scores achieved for this class were notably higher for
models 4–6, which were chosen based on their minimum AUC values.

The scores of classes 1 and 2 were solid in all models, with higher scores almost
always achieved in models 1–3, which were chosen based on the loss criteria. Good model
recognition between classes 1 and 2 indicated that the data generated by the GANs were
not misleading.

The performance of one model (model 2) could already be discarded from this anal-
ysis, since its micro- and macro-averages were substantially lower than for the other
models, which means that, on average, the predictions generated from this model were of
lower quality.

Sensors 2021, 21, 8077 20 of 29

ROC values for Model 1
1 layer, batch size of 256, 1st epoch

ROC values for Model 1
1 layer, batch size of 512, 1st epoch

ROC values for Model 1
1 layer, batch size of 128, 1st epoch

ROC values for Model 1
2 layers, batch size of 8, 4th epoch

ROC values for Model 1
3 layer, batch size of 8, 6th epoch

ROC values for Model 1
3 layers, batch size of 8, 1st epoch

Figure 11. ROC curves for the 6 best models.

Based on the confusion matrices shown in Table 19, we can see that, for all models,
class 1 was well represented, while class 2 was best predicted for the first, the third, and
the fifth model. Moreover, only the fifth model was able to recognize correctly class 0 and
seemed to be the best in terms of this criterion.

The precision and recall per class for all models are shown in Table 20. The numbers
again suggest that only model 5 could predict class 0. Models 1, 3, and 5 had the best
statistics of recall for class 2 (a small number of false negatives) and did not overpredict
class 1 (a small number of false positives). The F1 micro- and macro-scores should confirm
our assumptions.

Sensors 2021, 21, 8077 21 of 29

Table 18. Validation loss for the 6 best models after removing the third dense layer.

Model Number Batch Epochs 3rd Dense Validation
of Layers Size Layer Present Loss

1 1 256 1 Yes 0.72

1 1 256 1 No 1.05

2 1 512 1 Yes 0.89

2 1 512 1 No 1.00

3 1 128 1 Yes 0.90

3 1 128 1 No 0.75

4 2 8 4 Yes 2.61

4 2 8 4 No 3.27

5 3 8 6 Yes 2.11

5 3 8 6 No 2.89

6 3 8 1 Yes 1.76

6 3 8 1 No 1.55

Table 19. Confusion matrices for models 1–6.

Model 1

True/Predicted Class 0 Class 1 Class 2

Class 0 0/7 5/7 2/7

Class 1 5/54 46/54 3/54

Class 2 0/31 10/31 21/31

Model 2

True/Predicted Class 0 Class 1 Class 2

Class 0 0/7 7/7 0/7

Class 1 0/54 54/54 0/54

Class 2 0/31 29/31 2/31

Model 3

True/Predicted Class 0 Class 1 Class 2

Class 0 0/7 7/7 0/7

Class 1 8/54 46/54 0/54

Class 2 2/31 8/31 21/31

Model 4

True/Predicted Class 0 Class 1 Class 2

Class 0 0/7 7/7 0/7

Class 1 1/54 49/54 4/54

Class 2 0/31 14/31 17/31

Sensors 2021, 21, 8077 22 of 29

Table 19. Cont.

Model 5

True/Predicted Class 0 Class 1 Class 2

Class 0 1/7 5/7 1/7

Class 1 1/54 47/54 6/54

Class 2 0/31 11/31 20/31

Model 6

True/Predicted Class 0 Class 1 Class 2

Class 0 0/7 6/7 1/7

Class 1 2/54 51/54 1/54

Class 2 0/31 16/31 15/31

Table 20. Precisions and recalls for models 1–6.

Model 1 Class 0 Class 1 Class 2

Precision 0.00 0.75 0.81
Recall 0.00 0.85 0.68

Model 2

Precision 0.00 0.60 1.00
Recall 0.00 1.00 0.06

Model 3

Precision 0.00 0.75 1.00
Recall 0.00 0.85 0.68

Model 4

Precision 0.00 0.70 0.81
Recall 0.00 0.91 0.55

Model 5

Precision 0.50 0.75 0.74
Recall 0.14 0.87 0.65

Model 6

Precision 0.00 0.70 0.88
Recall 0.00 0.94 0.48

In case of the F1 micro- and macro-scores presented in Table 21, which show the ability
to differentiate the less-represented class, the highest values were noticed for models 1, 3,
and 5. The F1 macro-score was very low for each model, which was not surprising, since
in confusion matrices almost none of the models were able to classify class 0 correctly. In
the next subsection, we focus on applying the correcting vector to this model to boost the
results for less-represented classes.

Sensors 2021, 21, 8077 23 of 29

Table 21. F1 scores for the 6 best models.

Model F1 Micro F1 Macro

Model 1 0.73 0.51
Model 2 0.61 0.29
Model 3 0.73 0.54
Model 4 0.72 0.48
Model 5 0.74 0.57
Model 6 0.72 0.48

3.5.3. Further Results for the Best Models with Correcting Vector

In the previous section, we saw that, although precision and recall were fairly high for
classes 1 and 2, the results for class 0 were not satisfying. Judging by the AUC score and
the ROC curve, it may be possible to find a better metgod to map the probabilities returned
by the model to classes.

After multiplying each vector of probabilities pi by the correcting vector π created
in two ways (with the original training ratio and with the multiplied training ratio), we
obtained the confusion matrices for the selected models shown in Tables 22 and 23. We
can see that the classification of classes 0 and 2 was better now for all the models except
model 5 and that the classification for class 1 was always worse. Applying the correcting
vector based on the multiplied training ratio makes no sense for any model. It seems that
there is no correction needed for model 5 and that the correction with the original ratios
would best improve the result for models 1 and 3. To confirm our assumptions and to
select the best final model, we compared the precision, the recall, and the F1 micro- and
macro-scores for each model.

Table 22. Confusion matrices for models 1, 3, and 5, corrected with the original training vector on the
validation set.

Confusion Matrix, Model 1, Original Training Vector

True/Predicted Class 0 Class 1 Class 2

Class 0 4/7 1/7 2/7

Class 1 37/54 12/54 5/54

Class 2 5/31 3/31 23/31

Confusion Matrix, Model 3, Original Training Vector

True/Predicted Class 0 Class 1 Class 2

Class 0 3/7 2/7 2/7

Class 1 37/54 15/54 2/54

Class 2 7/31 2/31 22/31

Confusion Matrix, Model 5, Original Training Vector

True/Predicted Class 0 Class 1 Class 2

Class 0 1/7 5/7 1/7

Class 1 3/54 43/54 8/54

Class 2 0/31 11/31 20/31

Sensors 2021, 21, 8077 24 of 29

Table 23. Confusion matrices for models 1, 3, and 5, corrected with multiplied training vector on the
validation set.

Confusion Matrix, Model 1, Multiplied Training Vector

True/Predicted Class 0 Class 1 Class 2

Class 0 1/7 4/7 2/7

Class 1 14/54 35/54 5/54

Class 2 2/31 5/31 24/31

Confusion Matrix, Model 3, Multiplied Training Vector

True/Predicted Class 0 Class 1 Class 2

Class 0 1/7 4/7 2/7

Class 1 16/54 36/54 2/54

Class 2 2/31 6/31 23/31

Confusion Matrix, Model 5, Multiplied Training Vector

True/Predicted Class 0 Class 1 Class 2

Class 0 1/7 5/7 1/7

Class 1 1/54 45/54 8/54

Class 2 0/31 11/31 20/31

The comparison of precision and recall presented in Table 24 suggests that if we want
to choose the model that has the minimal false-positive ratio for class 0, we should choose
model 5, but in our case we believe that it is more important to have the minimum number
of false negatives predicted. If we take into account the statistics for class 2, our aim was
again to reach the highest possible value for recall, so model 1 with the correcting vector
of the original ratio performed the best. In the case of class 1 we wanted to minimize the
value of false positives and maximize the precision, so the numbers suggest that models 1
and 3 worked the finest. Summing up, it seems that model 1 best accomplished all of
our requirements.

Table 24. Precisions and recalls for models 1, 3, and 5 with correcting vectors applied.

Model 1 Class 0 Class 1 Class 2

Precision (default) 0.00 0.75 0.81
Recall (default) 0.00 0.85 0.68

Precision (original ratio) 0.09 0.75 0.77
Recall (original ratio) 0.57 0.22 0.74

Precision (training ratio) 0.06 0.80 0.77
Recall (training ratio) 0.14 0.65 0.77

Model 3 Class 0 Class 1 Class 2

Precision (default) 0.00 0.75 1.00
Recall (default) 0.00 0.85 0.68

Precision (original ratio) 0.06 0.79 0.85
Recall (original ratio) 0.43 0.28 0.71

Precision (training ratio) 0.05 0.78 0.85
Recall (training ratio) 0.14 0.67 0.74

Sensors 2021, 21, 8077 25 of 29

Table 24. Cont.

Model 5 Class 0 Class 1 Class 2

Precision (default) 0.50 0.75 0.74
Recall (default) 0.14 0.87 0.65

Precision (original ratio) 0.25 0.73 0.69
Recall (original ratio) 0.14 0.80 0.65

Precision (training ratio) 0.50 0.74 0.69
Recall (training ratio) 0.14 0.83 0.65

In Table 25, the comparison of the F1 micro- and macro-scores for each model is
presented. The statistics here were relatively low, which comes from the fact that the
measures take into account both the precision and the recall for all the classes, while in
our case we wanted to maximize the recall for classes 0 and 2 and the precision for class 1.
Therefore, we are not bound by the results of this measure and selected model 1 for the
comparison with the Microsoft Custom Vision tool.

Table 25. F1 micro- and macro-scores for the best models with different correcting vectors.

Model F1 Micro F1 Macro

Model 1 (default) 0.73 0.51
Model 1 (original ratio) 0.42 0.42
Model 1 (training ratio) 0.65 0.52

Model 3 (default) 0.73 0.54
Model 3 (original ratio) 0.43 0.43
Model 3 (training ratio) 0.65 0.53

Model 5 (default) 0.74 0.57
Model 5 (original ratio) 0.70 0.54
Model 5 (training ratio) 0.72 0.56

4. Results

In this section, we compare our model chosen as the best one, that is, model 1, against
the Microsoft Custom Vision model with the correction vectors classifying observations on
the independent test set.

Comparing the Custom Vision Solution and the CNN Model

The first step is the comparison of confusion matrices presented in Table 26. Classes 0
and 2 were considerably better predicted by the CNN model built from scratch. If we take
into account class 1, it is definitely better predicted by the Custom Vision tool. In the next
step, we look at the precision and recall for each class.

Based on infromation from Table 27, class 0 had higher values for precision in the
Custom Vision model, but recall was higher in the CNN model, which means that the
model built from scratch more often assigned observations to class 0. In the CNN model,
the observations from class 1 were often mistaken with class 0. The same pattern can be
seen for class 2; the CNN model had a higher true-positive rate. If we want to maximize
recall for classes 0 and 2 and precision for class 1, the CNN Model should be chosen.

In the Table 28, we can see that the Custom Vision model was better than CNN model
built from scratch in terms of the averaged F1 micro- and macro- scores. The value was
higher, because the Azure model was much more accurate in predicting class 1, which was
the most numerous.

Sensors 2021, 21, 8077 26 of 29

Table 26. Confusion matrices for best CNN Model and Custom Vision model corrected with original
training vector on test set.

Confusion Matrix, Best Cnn Model, Original Training Vector

True/Predicted Class 0 Class 1 Class 2

Class 0 6/7 1/7 0/7

Class 1 19/55 26/55 10/55

Class 2 1/31 2/31 28/31

Confusion Matrix, Custom Vision Model, Original Training Vector

True/Predicted Class 0 Class 1 Class 2

Class 0 4/7 3/7 0/7

Class 1 1/55 52/55 2/55

Class 2 0/31 11/31 20/31

Table 27. Precisions and recalls for best CNN Model and Custom Vision model corrected with
original training vector on the test set.

CNN Model Class 0 Class 1 Class 2

Precision 0.23 0.89 0.74
Recall 0.86 0.47 0.90

Custom Vision Model

Precision 0.80 0.79 0.91
Recall 0.57 0.95 0.65

Table 28. F1 micro- and macro-scores for the best CNN Model and the Custom Vision model.

Model F1 Micro F1 Macro

CNN Model 0.65 0.60
Custom Vision Model 0.82 0.76

Considering all of the statistics and analyses that were made, it is hard to unambigu-
ously assess which solution is the best. It highly depends on the business condition that
should be fulfilled by the model. If we want to focus on classifying the best and the worst
class, the proposed CNN model is considerably superior. Correct assignment of theses
classes seem to be more important in a given task. What is more, the designed model is
relatively simple and easy to build and train, and it gives satisfying results with a relatively
small amount of data. On the other hand, the Azure model works better with the most
numerous class and requires no statistical knowledge to be built. As we do not have
access to the documentation of the Azure solution, it is hard to say how many images were
provided to pretrain the tool, but we can assume with a high degree of certainty that it was
much more than the 15,689 observation given to the CNN model.

5. Conclusions

The aim of this study was to adopt a simple convolution neural network to a multi-
classification problem and to compare it with the model provided by the Microsoft Azure
platform (Microsoft Custom Vision). What is new is that we exploited many measures based
on the confusion matrix instead of comparing the accuracies between models. Moreover,
a correcting vector was applied and evidenced to be legitimate to adjust the predictions of
less-represented classes.

Sensors 2021, 21, 8077 27 of 29

In order to train the model, some data-augmentation techniques were applied. First of
all, we developed the method of combining features from existing images, by taking the
mathematical average of corresponding points in numerical matrices of two images. It was
mostly useful in the case of the least-represented classes, which could not by multiplied
sufficiently with data-augmentation transformations proposed in the study. What is more,
it was proved that the general adversarial networks worked well for multiplication of such
data like the drill images. The generated data turned out to be of good quality and were
sufficiently accurate to be used to train the model, which was able to correctly predict the
quality of the drill from an independent sample, which was evinced both by application of
the Azure Custom Vision model and the CNN model built from scratch.

Moreover, in case of such uncomplicated images like drill holes, the simple CNN
model with only one layer was sufficient to correctly solve the multiclassification problem.
More sophisticated solutions, like CNN models with multiple layers or Microsoft Custom
Vision tool gave no or small improvements in model performance, while it is highly more
complicated to understand their mechanisms and structures.

The results could be improved if the provided dataset of real images was more
substantial. This approach was originally rejected, in favour of multiplying smaller datasets
with data augmentation, due to the high amount of manual cost and the tedious work that
is required to generate photographs with corresponding labels.

One way to discard this high business cost potential would be to use an automated
method of generating labels on unknown real-life samples. The concept of semi-supervised
learning assumes that fully labelled data existing for only fraction of the database (like
0.08% of examples, as described in [39]) gets passed as an input to a neural network that,
after training, is able to generate mostly accurate labels on the unknown piece of gathered
data. Labels generated in this way are then used as an input for further process of training
other models. The results from this method are promising [40,41] and are left as an avenue
for further research.

There is still a significant amount of work to be done on the analysed dataset. The
model can be trained on a fully balanced dataset, which can improve the result for classes 0
and 2, or with the use of semi-supervised learning and other data augmentation techniques,
like applying additional transformations that would extract specific regions of interest
from the provided images. What is more, the legitimacy of classifying images into three
classes should be tested, both from the business and the statistical point of view. Binary
classification is much simpler and can give better results, especially when the number of
images in class 0 is dramatically low.

Author Contributions: Conceptualization, M.C., J.G., G.W., K.C., K.K. and M.K. (Michał Korycki);
methodology, M.C., J.G., G.W., K.C., K.K. and M.K. (Michał Korycki); software, K.C., K.K., M.K.
(Michał Korycki) and G.W.; validation, M.C., J.G. and G.W.; formal analysis, M.C. and J.G.; inves-
tigation, M.C., J.G., G.W., K.C., K.K. and M.K. (Michał Korycki); resources, G.W., A.J. and M.K.
(Michał Kruk); data curation, A.J., M.K. (Michał Kruk) and G.W.; writing—original draft preparation,
K.C., K.K., M.K. (Michał Korycki) and G.W.; writing—review and editing, K.C., K.K., M.K. (Michał
Korycki), G.W., M.C. and J.G.; visualization, K.C., K.K., M.K. (Michał Korycki); supervision, M.C.;
project administration, K.C., G.W. and M.K. (Michał Kruk); All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2021, 21, 8077 28 of 29

References
1. Kurek, J.; Kruk, M.; Osowski, S.; Hoser, P.; Wieczorek, G.; Jegorowa, A.; Górski, J.; Wilkowski, J.; Śmietańska, K.; Kossakowska, J.

Developing automatic recognition system of drill wear in standardlaminated chipboard drilling process. Bull. Pol. Acad. Sci.
2016, 64, 633–640.

2. Jemielniak, K.; Urbański, T.; Kossakowska, J.; Bombiński, S. Tool condition monitoring based on numerous signal feature. Int. J.
Adv. Manuf. Technol. 2012, 59, 73–81. [CrossRef]

3. Panda, S.S.; Singh, A.K.; Chakraborty, D.; Pal, S.K. Drill wear monitoring using back propagationneural network. J. Mater. Process.
Technol. 2006, 172, 283–290. [CrossRef]

4. Kuo, R.J. Multi-sensor integration for on-line tool wear estimation through artificial neural net-works and fuzzy neural network.
Eng. Appl. Artif. Intell. 2000, 13, 249–261. [CrossRef]

5. Kurek, J.; Wieczorek, G.; Świderski, B.; Kruk, M.; Jegorowa, A.; Osowski, S. Transfer learning in recognition of drill wear using
convolutional neural network. In Proceedings of the 18th International Conference on Computational Problems of Electrical
Engineering (CPEE), Kutna Hora, Czech Republic, 1–13 September 2017; pp. 1–4.

6. Kurek, J.; Antoniuk, I.; Górski, J.; Jegorowa, A.; Świderski, B.; Kruk, M.; Wieczorek, G.; Pach, J.; Orłowski, A.; Aleksiejuk-Gawron,
J. Data Augmentation Techniques for Transfer Learning Improvement in Drill Wear Classification Using Convolutional Neural
Network. Mach. Graph. Vis. 2019, 28, 3–12. [CrossRef]

7. Kurek, J.; Antoniuk, I.; Świderski, B.; Jegorowa, A.; Bukowski, M. Application of Siamese Networks to the Recognition of the
Drill Wear State Based on Images of Drilled Holes. Sensors 2019, 20, 6978. [CrossRef] [PubMed]

8. Kurek, J.; Świderski, B.; Jegorowa, A.; Kruk, M.; Osowski, S. Deep learning in assessment of drill condition on the basis of images
of drilled holes. In Proceedings of the SPIE 10225 Eighth International Conference on Graphic and Image Processing (ICGIP
2016), Tokyo, Japan, 29–31 October 2016; pp. 375–381.

9. Bowles, C.; Chen, L.; Guerrero, R.; Bentley, P.; Gunn, R.; Hammers, A.; Dickie, D.; Hernández, M.; Wardlaw, J.; Rueckert, D. GAN
Augmentation: Augmenting Training Data using Generative Adversarial Networks. arXiv 2018, arXiv:1810.10863.

10. Salimans, T.; Goodfellow, I.; Zaremba, W.; Cheung, V.; Radford, A.; Chen, X.; Chen, X. Improved Techniques for Training GANs.
In Advances in Neural Information Processing Systems; Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R., Eds.; Curran
Associates, Inc.: Cambridge, MA, USA, 2016; Volume 29.

11. Hossein, H.S.; Mohammad, R.; Mohsen, F.; Mohammad, S. Lets Keep It Simple: Using Simple Architectures to Outperform
Deeper and More Complex Architectures. arXiv 2018, arXiv:1608.06037.

12. Ba, J.; Caruana, R. Do Deep Nets Really Need to be Deep? In Advances in Neural Information Processing Systems; Ghahramani, Z.,
Welling, M., Cortes, C., Lawrence, N.,Weinberger, K.Q., Eds.; Curran Associates, Inc.: Cambridge, MA, USA, 2014; Volume 27.

13. Hinton, G.; Vinyals, O.; Dean, J. Distilling the Knowledge in a Neural Network. In Proceedings of the NIPS Deep Learning and
Representation Learning Workshop, Montreal, QC, Canada, 7–12 December 2015.

14. Wu, F.; Souza, A.; Zhang, T.; Fifty, C.; Yu, T.; Weinberger, K. Simplifying Graph Convolutional Networks. In Proceedings of the
36th International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; Volume 97, pp. 6861–6871.

15. Jegorowa, A.; Kurek, J.; Antoniuk, I.; Dołowa, W.; Bukowski, M.; Czerniak, P. Deep learning methods for drill wear classification
based on images of holes drilled in melamine faced chipboard. Wood Sci. Technol. 2021, 55, 271–293. [CrossRef]

16. Mahani, A.; Ali, A.R.B. Classification problem in imbalanced datasets. In Recent Trends Computational Intelligence; IntechOpen:
London, UK, 2019; pp. 1–23.

17. Wang, L.; Han, M.; Li, X.; Zhang, N.; Cheng, H. Review of Classification Methods on Unbalanced Data Sets. IEEE Access 2021,
9, 64606–64628. [CrossRef]

18. Pejčinović, M. A Review of Custom Vision Service for Facilitating an Image Classification. In Proceedings of the Central European
Conference on Information and Intelligent Systems, Faculty of Organization and Informatics, Varaždin, Croatia, 2–4 October
2019; pp. 197–208.

19. Taylor, L.; Nitschke, G. Improving Deep Learning using Generic Data Augmentation. arXiv 2017, arXiv:1708.06020.
20. Gu, S.; Pednekar, M.; Slater, R. Improve Image Classification Using Data Augmentation and Neural Networks. In SMU Data

Science Review 2.2; SMU: Dallas, TX, USA, 2019.
21. Bui, H.; Lech, M.; Cheng, E.; Neville, K.; Burnett, I. Using Grayscale Images for Object Recognition with Convolutional-Recursive

Neural Network. In Proceedings of the IEEE Sixth International Conference on Communications and Electronics (ICCE), Ha
Long, Vietnam, 27–29 July 2016; pp. 321–325. [CrossRef]

22. Perez, L.; Wang, J. The effectiveness of data augmentation in image classification using deep learning. arXiv 2017, arXiv:1712.04621.
23. Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. J. Big Data 2019, 6, 1–48. [CrossRef]
24. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial

Nets. In Advances in Neural Information Processing Systems; Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger,
K.Q., Eds.; Curran Associates, Inc.: Cambridge, MA, USA, 2014; Volume 27.

25. Durall, R.; Chatzimichailidis, A.; Labus, P.; Keuper, J. Combating Mode Collapse in GAN training: An Empirical Analysis using
Hessian Eigenvalues. arXiv 2020, arXiv:2012.09673.

26. Mirza, M.; Osindero, S. Conditional generative adversarial nets. arXiv 2014, arXiv:1411.1784.
27. Shu, R.; Bui, H.; Ermon, S. AC-GAN Learns a Biased Distribution. In Proceedings of the NIPS Workshop on Bayesian Deep

Learning, Long Beach, CA, USA, 4–9 December 2017; Volume 8.

http://doi.org/10.1007/s00170-011-3504-2
http://dx.doi.org/10.1016/j.jmatprotec.2005.10.021
http://dx.doi.org/10.1016/S0952-1976(00)00008-7
http://dx.doi.org/10.22630/MGV.2019.28.1.1
http://dx.doi.org/10.3390/s20236978
http://www.ncbi.nlm.nih.gov/pubmed/33291345
http://dx.doi.org/10.1007/s00226-020-01245-7
http://dx.doi.org/10.1109/ACCESS.2021.3074243
http://dx.doi.org/10.1109/CCE.2016.7562656
http://dx.doi.org/10.1186/s40537-019-0197-0

Sensors 2021, 21, 8077 29 of 29

28. Zhou, P.; Xie, L.; Ni, B.; Geng, C.; Tian, Q. Omni-GAN: On the Secrets of cGANs and Beyond. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, Nashville, TN, USA, 19–25 June 2021; pp. 14061–14071.

29. Simard, P.Y.; Steinkraus, D.; Platt, J.C. Best practices for convolutional neural networks applied to visual document analysis. In
Proceeedings of the International Conference on Doc- ument Analysis and Recogntion (ICDAR), Edinburgh, UK, 6 August 2003;
Volume 3, pp. 958–962.

30. Mikołajczyk, A.; Grochowski, M. Data augmentation for improving deep learning in image classification problem. In Proceeedings
of the 2018 International Interdisciplinary PhD Workshop (IIPhDW), Świnoujście, Poland, 9–12 May 2018; pp. 117–122.

31. Thoma, M. Analysis and optimization of convolutional neural network architectures. arXiv 2017, arXiv:1707.09725.
32. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
33. Goodfellow, I.; Bengio, Y.; Courville, A.; Bengio, Y. Deep Learning; MIT Press: Cambridge, UK, 2016; Volume 1.
34. Ali, O.; Ishak, M.K. Bringing intelligence to IoT Edge: Machine Learning based Smart City Image Classification using Microsoft

Azure IoT and Custom Vision. J. Phys. Conf. Ser. 2020, 1529, 042076. [CrossRef]
35. Documentation Page for Keras Deep Learning Library for Python. Avaliable online: https://keras.io (accessed on 2 June 2021).
36. Documentation Page for Scikit-Learn Package Regarding Receiver Operating Curve Available online: https://scikit-learn.org/

stable/auto_examples/model_selection/plot_roc.html (accessed on 30 June 2021).
37. Buda, M.; Maki, A.; Mazurowski, M.A. A systematic study of the class imbalance problem in convolutional neural networks.

Neural Netw. 2018, 106, 249–259. [CrossRef] [PubMed]
38. Richard, M.D.; Lippmann, R.P. Neural network classifiers estimate Bayesian a posteriori probabilities. Neural Comput. 1991,

3, 461–483. [CrossRef]
39. Protopapadakis, E.; Doulamis, A.; Doulamis, N.; Maltezos, E. Stacked autoencoders driven by semi-supervised learning for

building extraction from near infrared remote sensing imagery. Remote Sens. 2021, 13, 371. [CrossRef]
40. Tarvainen, A.; Valpola, H. Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised

deep learning results. arXiv 2017, arXiv:1703.01780.
41. Baur, C.; Albarqouni, S.; Navab, N. Semi-supervised deep learning for fully convolutional networks. In Proceedings of the

International Conference on Medical Image Computing and Computer-Assisted Intervention, Quebec City, QC, Canada, 11–13
September 2017; pp. 311–319.

http://dx.doi.org/10.1088/1742-6596/1529/4/042076
https://keras.io
https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html
http://dx.doi.org/10.1016/j.neunet.2018.07.011
http://www.ncbi.nlm.nih.gov/pubmed/30092410
http://dx.doi.org/10.1162/neco.1991.3.4.461
http://dx.doi.org/10.3390/rs13030371

	Introduction
	Methodology
	Data Augmentation
	Generative Adversarial Networks
	Convolutional Neural Network Model
	Azure Custom Vision Model
	Testing Framework

	Experiment
	Data Description
	Data Augmentation
	Data Generation Using GANs
	Generator
	Discriminator
	Final Model
	Final Training Dataset

	Azure Custom Vision Model
	CNN Model
	Structure
	Optimization
	Further Results for the Best Models with Correcting Vector

	Results
	Conclusions
	References

