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Abstract: The recent development in the area of IoT technologies is likely to be implemented
extensively in the next decade. There is a great increase in the crime rate, and the handling officers
are responsible for dealing with a broad range of cyber and Internet issues during investigation. IoT
technologies are helpful in the identification of suspects, and few technologies are available that use
IoT and deep learning together for face sketch synthesis. Convolutional neural networks (CNNs)
and other constructs of deep learning have become major tools in recent approaches. A new-found
architecture of the neural network is anticipated in this work. It is called Spiral-Net, which is a
modified version of U-Net fto perform face sketch synthesis (the phase is known as the compiler
network C here). Spiral-Net performs in combination with a pre-trained Vgg-19 network called the
feature extractor F. It first identifies the top n matches from viewed sketches to a given photo. F is
again used to formulate a feature map based on the cosine distance of a candidate sketch formed
by C from the top n matches. A customized CNN configuration (called the discriminator D) then
computes loss functions based on differences between the candidate sketch and the feature. Values
of these loss functions alternately update C and F. The ensemble of these nets is trained and tested on
selected datasets, including CUFS, CUFSF, and a part of the IIT photo–sketch dataset. Results of this
modified U-Net are acquired by the legacy NLDA (1998) scheme of face recognition and its newer
version, OpenBR (2013), which demonstrate an improvement of 5% compared with the current state
of the art in its relevant domain.

Keywords: smart cities; sketch synthesis; convolutional neural network; Vgg-19 net; U-Net; Spiral-
Net; face recognition; NLDA; OpenBR

1. Introduction

The Internet of Things (IoT) [1] has been playing a key role in the smart city sector, for
example, in the security of smart homes, where you, using your smartphone, can decide
who can enter your home [2]. Through IoT technology, it is easy to monitor your home at
any time from anywhere, and this process helps to develop efficient, safer smart cities [3].
The IoT technology integration with IT devices helps to ease the investigation process,
especially in the identification of people [4,5]. A very few studies are available on how
IoT and information technology (IT) techniques work together [6]. The major applications
where these technologies work together are biometric [7], video surveillance [8], Internet of
Vehicles [9], and biomedical [10,11].

The formulation of face sketches based on learning from the reference photos and their
corresponding forensic sketches has been an active field since the last two decades [12,13].
It helps the law enforcement agencies in the search, isolation, and identification of sus-
pects by enabling them to match sketches against possible candidates from the mug-shot
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library [14–16] and/or photo dataset of the target population [17,18]. Forensic or artist
sketches are also used in animated movies and/or during the development of CGI-based
segments [19]. Presently, many persons like to use a sketch in place of a personal picture
as an avatar or a profile image. Therefore, a ready-made scheme to furnish a sketch from
a personal picture, without involving a skilled sketch artist, would come in handy [20].
Since 2004, exemplar-based techniques incorporating patch-matching algorithms have
been most popular. Photos and corresponding sketches were identically divided into a
mosaic of overlapping patches. For each patch of the photo, its nearest patch in all training
sketches according to a given property, for example, the Markov random field (MRF) [21],
the Markov weight field (MWF), or spatial sketch denoising (SSD), was searched for and
marked. This principle was applied successively to all photos and sketches in the training
set. Hence, a dictionary was developed. For each test photo patch, a suitable patch was
first searched for in the photo and its corresponding patch in the dictionary was selected
as part of the resulting sketch [22]. On completion of this search, a resulting sketch was
formulated. In previous research, much effort has been devoted to reducing the time
spent on and resource overheads of these methods to effectively produce a sketch. Those
algorithms did not focus on capturing the subtle non-linearity between the original photo
and the forensic sketch. Their results were, however, only reliable for a dataset of subjects
devoid of the diversity of ethnicity; age; facial hair; and external elements, such as ear-
rings, glasses, and hairpins. While those methods could replicate major features of the test
photo, they did not reproduce minor details, such as contours of the cheekbones, edges
of mustaches/beards/hairstyles, or clear outlines of eyeglasses. Lately, neural networks
and other tools of deep learning have been employed to learn about the correspondence
between photo–sketch pairs, and they try to reproduce intricate features of the photo in the
resulting sketch. These methods also have their small inadequacies. Simple CNN-based
methods produce sketches that lack sharpness and focus [23,24]. On the contrary, GAN-
based methods do produce clear sketches but they are incomplete concerning the outline
of the test subject’s photo. This paper includes the following:

• A novel/modified structure of a residual network with skip connections forming a
spiral-like shape to act as a compiler entity in the proposed face sketch synthesis phase.
The overall scheme is motivated by [25], and a similar approach is presented in [26].

• A pre-trained Vgg-19 network is used to help accomplish the exemplar-based tech-
nique of selecting the best possible candidate from the viewed sketches during the
training process. This part relies upon the distribution of the input photo into a mosaic
of overlapping patches and identical division of the sketches in the reference set.

• The patches are selected by the minimal cosine distance, and a candidate feature map
of the sketch is formulated.

• The feature sketch and the raw sketch by the compiler network are then compared
through a customized convolutional neural network applying the MSE loss function
to render a perceptual loss that monitors the training of the compiler network.

• The adversary loss function is also used to give sharpness to the resulting sketches.

The rest of the paper is arranged in this sequence: Section 2 covers the previous and
current works related to the proposed model. Section 3 describes the composition detail
of the suggested network. Section 4 provides implementation details and discusses the
evaluation and analysis of results. Section 5 gives the conclusion.

2. Related Work

The Internet of Things (IoT) and machine learning have shown improved performance
in many applications, such as facial recognition, biometrics, and surveillance [27,28]. Re-
cently, the blockchain-based multi-IoT method was presented by Jeong et al. [29]. The
presented method works in two layers (layer and layer) with the help of the blockchain
technology. Through these layers, information is sent to and received from local IoT groups
in more secure ways. Another multi-IoT method was presented by [30] for anomaly detec-
tion. They introduced forward and inverse problems to investigate the dependency of the
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inter-node distance and the size of the IoT network. A new paradigm, named social IoT,
was presented by Luigi et al. [31] for the identification of useful guidelines for institution
and social management. Khammas et al. [32] presented a cognitive IoT approach to human
activity diagnosis. In cognitive computing, the cognitive IoT is the next step to improving
the accuracy and reliability of the system. An IoT-based biometric security system was
presented by Bobby et al. [11]. In this system, the IoT allows the multiple sensors and
scanners to interact with human beings.

The recent developments in the CNN for scene recognition [33], object recognition [34],
and action recognition [35] have produced an impressive performance [36]. Tang and
Wang [37] introduced in their seminal work a new art of formulating human face sketches
based on Eigen transformation. The work is based on pairs of photos and their correspond-
ing viewed sketches. They developed a correlation between input photos and training
photos in the Eigenspace. Then, using this correlation, they proposed to construct a sketch
from the Eigenspace of the training sketches. Liu et al. [38] proposed the non-linear model
of sketch formulation based on locally linear embedding (LLE). In this model, the input
photo is divided into overlapping patches. Then, each patch is reshaped by a linear combi-
nation of training patches. The same relationship of photo patches was used to formulate
respective patches of the resulting sketch. Tang and Wang [39] used Markov random fields
(MRF) in the selection of neighboring patches and to improve their relationship. Zhou
et al. [40] proposed a model of sketch generation that further builds upon the MRF model.
They added weights to linear combinations of best possible candidate patches, and it was
called the Markov weight field (MWF). Song et al. [17] presented a model based on spatial
sketch denoising (SSD). Gao et al. [41] proposed an adaptive scheme based on the practical
benefits of sparse representation theory, and it was called the SNS-SRE method, which
relates to sparse neighbor selection and sparse-representation-based enhancement. Wang
et al. [42] formulated a solution of neighbor selection by building up a dictionary based on
a random sampling of the training photos and sketches. This model was called random
sampling and locality constraint (RSLCR). Akram et al. [43] carried out a comparative study
of all basic methodologies of the exemplar-based approach as well as two newer methods
of sketch synthesis, called FCN [44] and GAN [45], which are based on the convolutional
neural network and generative adversarial networks, respectively. The last two works may
be included among the pioneer efforts of “learning-based” algorithms of sketch synthesis.
Zhang et al. [46] introduced a model to address the problems of texture loss of the FCN
setup. Their scheme consisted of two-branched FCN. One computed a content image,
and the second branch calculated the texture of the synthesized sketch. This model also
inherited the inadequacy of distorted sketches since the two-branched network could not
present a well-unified output. Wang et al. [47] proposed a model to generate sketches
from training photos and photos from the training sketches by employing a multiscale
generative adversarial network. Wang et al. [48] proposed a model of anchored neighbor-
hood index (ANI) that incorporated correlation of photo patches as well as sketch patches
during sketch formulation. Moreover, similar to RSLCR, this algorithm also benefited from
the development of an off-line dictionary to reduce computational overheads during the
testing phase. Jiao et al. [49] presented a deep learning method based on a small CNN and
a multilayer perceptron. This work was successful in imparting continuous and faithful
facial contours of the input photo to its resulting sketch. Zhang et al. [50] proposed a model
based on adversarial neural networks that learned in photo and sketch domains with help
of intermediate entities called latent variables. Synthesized sketches of this model bear
improvement against blurs and shape deformations. Zhang et al. [51] proposed a model
called dual transfer face sketch-photo synthesis (FSPS). It is based on CNN and GAN and
realizes inter-domain and intra-domain information transfer to formulate a sketch from
the training pairs of photo-viewed sketches. Lin et al. [52] and Fang et al. [53] presented
individual works based on neural networks for face-sketch formulation involving the
identity of each subject photo. Yu et al. [54] proposed a model to synthesize sketches
from photos by GAN that is assisted by composition information of the input photos.
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Their work removed blurs and spurious artifacts from the result sketches. Similarly, Lin
et al. [55] presented a model to synthesize de-blurred sketches by deep CNN focusing on
the estimation of motion blur. Zhu et al. [56] presented a model involving three GANs, in
which each network gains knowledge of the photo–sketch pairs and imparts the learned
characteristics to resulting sketches directly by a teacher GAN or by the comparison of the
two student GANs. Radman et al. [57] proposed a sketch synthesis scheme based on the
bidirectional long-short term memory (BL-STM) recurrent neural network.

3. Materials and Methods

The proposed framework comprises two neural nets. The first part is a compiler net-
work C, which is based upon a residual network of two branches, and the skip connections
are made in a spiral fashion. It is derived from [58], which was employed for neural-style
transfer. For an input photo p, this part generates a raw sketch named s. The second part
of the scheme is a feature-extractor called F, based on a pre-trained Vgg-19 network [59].
These net and associated components formulate another intermediate entity, called feature-
sketch f. This composition is shown in Figure 1. The last step of the setup is a customized
convolutional neural network, called discriminator D, to undertake a comparison between
raw sketch s and feature sketch f. Their difference, combined with other loss functions,
is then used to modify the weights of C and D networks iteratively during the training
process. At end of the training, the C network is solely used to synthesize automated
sketches from the test photos.

Figure 1. Schematic diagram of the proposed method.

Phase-1. Treatment of Images: Photos/sketches of CUHK and AR datasets are already
aligned, and they are of size 250 × 200 pixels. Therefore, they do not need any pre-
processing. Photos and viewed sketches of XM2VTS and CUFSF datasets were not aligned.
The following operations are executed upon the photos/sketches:

• Sixty-eight face landmarks on the image are detected by the dlib1* library.
• The image is rescaled in a manner that the two eyes are located at (75; 125) and

(125; 125), respectively.
• The resulting image is cropped to a size of 250 × 200.
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Phase-2. Development of Feature Dictionary: Patch matching is a time-consuming pro-
cess. In addition, as already shown by the exemplar-based approaches, the computation
of features for patches is resource intensive when conducted at run-time. Therefore, a
dictionary of features of patches for all the images, including photos and viewed sketches
in the reference set, is pre-computed and stored as a reference bank. Moreover, the entire
length of reference sketches is not searched for a possible match. Instead, initially n top
suitable candidate sketches to each input photo are selected at run-time based on their
cosine distance at ReLU-5-1 features of the Vgg-19 net. Patch matching is then restricted
within these n reference photos (n = 5 was used in all training runs of all iterations).

3.1. Compiler Network C

This network is composed of two identical strains, and each strain is composed of three
stages. The first part consists of convolutional layers; it has residual blocks in the middle
section and up-sampling layers in the end part. The structure is shown in Figure 2. It is
a modified form of U-Net proposed by [58] for image style transfer and super-resolution.
To introduce diversity and depth in the network, in a novel fashion, the skip connections
in this model are added to an alternate strain instead of the original line. Therefore, each
stage of the network on the left side is connected to the corresponding stage on the right
side of the network and vice versa. The resulting shape looks similar to a spiral and,
therefore, this construct is called Spiral-Net. Skip connections are added in this manner
to (a) increase the width of each layer of the net, (b) augment feature matrices at different
layers with new feature values from the other strain, and (c) populate feature matrices
at different layers such that any half of the matrix vanishing due to ReLU and pooling
operations may be repopulated with feature values. The last objective breaks any build-up
of monotonous behavior due to ReLU and pooling operations. The compiler network C is
a decisive module of this framework, and it plays major role during the implementation
and operation phases. During the training phase, the training photo images are fed to this
network and a pseudo sketch is formulated at its end. This sketch is further compared by
the remaining parts of the overall scheme. Similarly, during the testing phase, a test photo
is input to this network and its output is a synthesized sketch.

Figure 2. Architecture of Spiral-Net as a sketch compilation network.
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3.2. Feature Extractor F

A pre-trained model of Vgg-19 is used to extract features of the top n candidates of
viewed sketches from the reference dataset for each train photo, where n can be set to any
value, preferably between 5 and 10. Then input photos and the sketches are divided into
identical maps/matrices of overlapping patches. An exemplar approach of the Markov
random fields from [60] is preferred here, and it dictates that for each patch of the input
photo, any of the candidate patches from the five sketches are selected based upon the
shortest distance. This procedure is repeated from the first to the last patch of the input
photo. Hence, F shapes up corresponding patches in a proper sequence to yield a feature
map that is a representation of the intermediate sketch and is not exactly an image. It is used
for comparison with the output of the compiler C through the discriminator D. The loss
functions based on these comparisons are used to alternately update C and D networks.

Consider the given dataset as a universal setR composed of p photos and s sketches,
where R =

{(
pRi , sRi

)}N
i=1. Here, N is the total number of photo–sketch pairs in the

dataset. F aims at formulating a feature map θl(p) for the input photo p. θl(p) is used to
augment the synthesis of the sketch ŝ. The MRF principle of [39] is applied to compose a
local patch representation of p. It consists of the following stages:

• To begin with, p is input to the pre-trained Vgg-19 net.
• The feature map θl(p) is extracted at the l-th layer, where l = (1, 2, 3, 4, 5), correspond-

ing to (relu1− 1, relu2− 1, relu3− 1, relu4− 1, relu5− 1) of F.
• A dictionary/look-up repository of reference representations is built for the entire

dataset in the form of
{

θl(pRi
)}N

i=1
and

{
θl( sRi

)}N

i=1
.

• Let us assume an r ∗ r patch centered at point j of θl(p) as T = Ωj

(
θl(p)

)
. Let us also

assume corresponding patches P = Ωj

(
θl(pRi )) and S = Ωj

(
θl(sRi )) from the entire

dataset.
• For every patch Tj , where j = {1, 2, 3, . . . , u} and u is explained by the relation

u =
(

Hl − r
)
∗
(

Wl − r
)

, where Hl and Wl are the height and the width of the map

θl(p), respectively, we find its closest patch Pj′ = Ωj′
(
θl(pRi′ )) from the look-up

repository or dictionary based on the cosine distance.
• The cosine distance is defined with the help of Equation (1).

(i′, j′) =
Tj∗Pj′∣∣Tj
∣∣
2 ∗
∣∣Pj′
∣∣
2

(1)

(i′, j′) = argmaxi∗=1∼N
j∗=1∼m

[
Ωj

(
θl(p)

)
·Ωj∗

(
θl(pRi∗ ))]

||Ωj

(
θl(p)

)
||2· ||Ωj∗ ,

(
θl(pRi∗ )) ||2 (2)

• Photos and sketches are aligned in the reference set. We index directly the correspond-

ing feature patches Mj′ = Ωj′
(
θl(sRi′ )) for identified patches Pj′ = Ωj

(
θl(pRi′ )) by

Equation (2).
• Successively, Mj′ = Ωj′

(
θl(sRi′ )) is used in place of every Tj = Ωj

(
θl
(

pj

))
to formu-

late a complete feature representation or the feature sketch at given layer l. Therefore,

F = Ωj′
{
θl(s)

}u

j=1
.

3.3. Discriminator D

It is a basic convolutional network composed of six layers. Outputs of C and F
networks are input to this net. This error, in addition to the other factors discussed later, is
used to train the C network.
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3.4. Loss Function

Feature Loss: The difference between the raw sketch s and the feature map f is
expressed by a feature loss.

Fp =
5

∑
l=3

m

∑
j=1

[
Ωj

(
θl(ŝ)

)
−Ω′j

(
θl(p)

)]2

2
(3)

where l = 3, 4, 5 refers to layers relu3-1, relu4-1, and relu5-1, respectively. High-level fea-
tures after relu3 1 are better representations of textures and more robust against appearance
changes and geometric transforms [60]. Features of the initial stages, such as relu1-1 and
relu2-1, do not contribute to sketch textures well. Features extracted at a higher stage of
the network, e.g., relu5-1, can better preserve textures. As a trade-off, r = 3, 4, 5 is set to
improve the performance of the setup and to decrease the computational overhead cost of
patch matching procedures.

GAN Loss: The least-squares loss was employed when training the neural networks
of the proposed setup. It is called LSGAN according to [61]. Equations (4) and (5) give the
mathematical relationship of loss parameters/terms.

EGAND =
1
2
Qs∼Fsketch(s)

[
(D(s)− 1)2

]
+

1
2
Qp∼Fphoto(p)

[
(D(G(p)))2

]
(4)

EGAN_G =
1
2
Qp∼Fphoto(p)

[
(D(G(p))− 1)2

]
(5)

Total Variation Loss: Sketches generated by a CNN network, used here as the discrimi-
nator D, may be noisy; and they may also contain unwanted artifacts. Therefore, according
to previous studies [58,60,62], the total variation loss term was used. It was included to
offset the possibility of noise and to improve the quality of the sketch. Its relationship is
given by Equation (6).

Etv(ŝ) = ∑
x,y

((
ŝx+1,y − ŝx,y

)2
+
(
ŝx,y+1 − ŝx,y

)2
)

(6)

Here, ŝx,y denotes the intensity value at (x, y) of the synthesized sketch ŝ.

EG = δpFp + δadvEGAN_G + δtvEtv (7)

ED = EGAN_D (8)

4. Results

In this section, a detailed account of the implementation scheme is given. Moreover, it
mentions the quality parameters used during this project and, finally, it elaborates upon
the evaluation of the performance of the proposed and reference methods.

4.1. Datasets

Initially, two public datasets, namely CUFS and CUFSF [63], were employed. Then,
the implementation was repeated with the augmentation of these two datasets by part
of another set, called DIIT [64]. The details of repeated implementation are provided in
Section 4.8 and onward. The composition and training–testing split of these datasets is
given in Table 1. CUFSF is more challenging since its photos were captured under different
lighting conditions and its viewed sketches show deformations in shape versus the original
photos to mimic inherent properties of forensic sketches.
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Table 1. Details of initial datasets.

Dataset Total Pairs Train Test

CUFS

CUHK [37] 188 88 100

AR [65] 123 80 43

XM2VTS [66] 295 100 195

CUFSF 1194 250 944

Total Pairs 1800 518 1282

4.2. Performance Measures

This section describes those parameters that were selected to gauge the performance
of existing and proposed methodologies.

Structure Similarity Index: The SSIM [67] gives a measure of visual similarity between
two images. It is included here due to its prevalent use in state of the art, but we did not
rely upon it as the decisive factor. The mathematical relationship of the SSIM is reproduced
here, as Equation (9), from [67]. The value of the SSIM varies between −1 (for totally
different inputs) and +1 (for completely identical inputs). Generally, an average value of
SSIM scores for respective techniques over a specific dataset is computed to enable their
direct comparison with each other.

SSIM(P, Q) =
(2hphQ + K1)

(
2ZPQ + K2

)
(h2

p + h2
Q + K1)(Z2

P + Z2
Q + K2)

(9)

Feature Similarity Index: The FSIM [68] is a measure of perceptual similarity between
two images. It is based upon phase congruence and gradient computations and their
comparison in respect of the given images. The FSIM is considered here as a reliable
measure of similarity between synthesized sketches and their viewed sketch counterparts.
The Feature Similarity Index (FSIM) [68] is a quality metric for two images based on their
respective frequency dynamics, called phase congruency (PC), which is then scaled by
the gradient magnitude (GM) of light variations of sharp edges at the feature boundaries.
It is based on the premise that the human vision system (HVS) is more susceptible to
frequency variations (PC) of low-level features in the given image. PC is, however, contrast
invariant, whereas information of color or contrast affects the HVS perception of image
quality. Therefore, the image gradient magnitude (GM) is employed as the second feature
in the FSIM. Inherently, the FSIM is largely invariant to magnitude diversity.

PC and GM play complementary roles in characterizing the image’s local quality. PC
is a dimensionless parameter defining a local structure. The GM is computed by any of
the convolutional masks, such as Sobel, Prewitt, or any other gradient operator. The SSIM
compares two images based on their luminance components only, while the FSIM considers
the chromatic information in addition to the luminance of colored images.

The FSIM is computed by the following relations according to [66]: p(x) and q(x) are
two images. PCp and PCq are their phase congruency maps, and Gp and Gq are their
gradient magnitudes, respectively. SimPC is the similarity between these two images at
point x, given by Equation (10) here. SimG, as mentioned in Equation (11), is their similarity
based on the GM only, and SimL is their combined similarity at the point of consideration.
SimL is measured by the relation given in Equation (12).

SimPC(x) =
2PCp(x).PCq(x) + C1

PC2
p(x) + PC2

q(x) + C1
(10)

C1 is a constant to ensure the stability of Equation (10).

SimG(x) =
2Gp(x).Gq(x) + C2

G2
p(x) + G2

q(x) + C2
(11)
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C2 is a constant to ensure the stability of Equation (11).

SimL(x) = [SimPC(x)]α.[SimG(x)]β (12)

The values of α and β are adjusted according to the importance of PC and GM
contributions. Having determined the SimL at a given point x, the FSIM is computed for
the overall domain of p(x) and q(x) images.

FSIM =
∑x∈Ω SL (x) . SimPCm (x)

∑x∈Ω SimPCm (x)
(13)

where SimPCm (x) = max
{

PCp(x).PCq(x)
}

is the maximum value in Equation (13).

4.3. Face Recognition

Face recognition is an important step in the existing state of the art to either determine
or validate the efficacy of a proposed methodology of face sketch synthesis. Null-Space
Linear Discriminant Analysis (NLDA) was employed to compute the quality of synthesized
sketches for face recognition. Training and testing split of the total images to train and run
the NLDA scheme is given in Tables 2 and 3. Identical parameters were used during the
application of the NLDA process to all sketch methodologies under test. In the repeated
implementation OpenBR methodology [69] of face, recognition was additionally employed
to ascertain the efficacy of proposed and existing schemes of face sketch synthesis.

Table 2. Parameters for processing.

S No Item CUFS CUFSF

1 Hardware Core i-7 ®, 7th Gen, NVIDIA 1060 (6GB)
GPU

2 OS Ubuntu Linux

3 Environment PyCharm (CE), Torch 1.4.0

4 Moderating Weights

δp 1 1

δadv 103 103

δtv 10−5 10−2

5 Learning Weights 10−3 to 10−5 reducing by a factor of 10−1

6 Batch Sizes 4 to 2 for different iterations

7 Processing Time See respective tables

Table 3. Distribution of synthesized sketches by the NLDA procedure of face recognition.

Dataset Total Pairs Train Test

CUFS 338 150 188

CUFSF 944 300 644

4.4. Hardware and Software Setup

The compiler C and the discriminator D were updated alternately at every iteration.
Neural networks were trained in two parts. In the first run of the setup, the CUFS reference
style was used, and in its second part, the system was trained with the CUFSF reference
style. In each case, however, the training photo–sketch pairs from both datasets were used.
The different parameters and the associated information of training processes are given in
Table 2.
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4.5. Evaluation of Performance on Public Benchmarks

During the evaluation, we used photos from the CUFS dataset only to test the setup
trained in the CUFS reference style. Similarly, photo–sketch pairs of the CUFSF dataset
were used to test the proposed model trained in the CUFSF style. To determine the effec-
tiveness of this model, results were compared with nine techniques of face sketch synthesis.
They are MRF [39], MWF [40], SSD [17], LLE [38], FCN [44], GAN [45], RSLCR [42],
Face2Sketch [25] (which contained a U-Net called SNET by its authors), and BiL-STM [57].
Synthesized sketches of the first seven techniques are available at [70]. We implemented
the eighth method, Face2Sketch, ourselves in the PyCharm/UBUNTU environment as-
sisted by NVIDIA GPU, mentioned in Table 2. The sketches were synthesized according
to the training/testing parameters specified by its original work. Then SSIM, FSIM, and
face recognition scores were computed by using these results of the eight techniques and
reference sketches in MATLAB/Windows environment. Moreover, training and testing
splits were fixed and identical for all the methods during computation of face recognition
scores by the NLDA procedure. This detail is given in Tables 4 and 5.

Table 4. Comparison of SSIM and FSIM Values for CUFS.

Type MRF [10] MWF [11] LLE [9] SSD [4] FCN
[15]

GAN
[16]

RSLCR
[13]

Face2Sketch
[6]

BiL-STM
[28]

Proposed
Spiral-Net

Proc Time
(msec/photo) Not presented by the original works 7.57

SSIM 51.31 53.92 52.58 54.19 52.13 49.38 55.71 54.41 55.19 54.42

FSIM 70.46 71.45 70.32 69.59 69.36 71.54 69.66 72.59 67.77 72.50

Table 5. Comparison of face recognition scores for CUFS.

Type MRF [10] MWF [11] LLE [9] SSD [4] FCN
[15]

GAN
[16]

RSLCR
[13]

Face2Sketch
[6]

BiL-STM
[28]

Proposed
Spiral-Net

NLDA
Score

(Equal/Best)
87.34 92.10 90.61 90.61 96.99 93.48 98.38 97.82 94.87 97.04/97.23

No. of
Features

(Equal/Best)
138 148 144 144 137 139 142 95 - 95/148

4.6. Results of CUFS Dataset

Table 6 shows that the SSIM values of SSD, Face2Skecth, RSLCR, and Spiral-Net are in
the same range. Other methods scored less. The SSIM is a too generic a quality parameter
to ascertain the visual similarity of images [47,71,72]. It was included in our work for
comparison with the results of the previous works. Additionally, the feature similarity
measure was computed for these sketch generation methods. Table 6 indicates that the
FSIM metrics achieved by Face2Sketch and Spiral-Net are almost identical to each other
and slightly higher than the other algorithms. Their difference from other methods’ FSIM
score is 1–3% higher. In general, all these methods performed fairly similarly in terms of
the CUFS dataset, where the viewed sketches lack any difference from the original photos
and any variation in light intensity. Computations of the CUFS dataset were included to
maintain a harmony of comparison with the previous works.



Sensors 2021, 21, 8178 11 of 17

Table 6. Comparison of SSIM and FSIM Values for CUFSF.

Type MRF [10] MWF [11] LLE [9] SSD [4] FCN
[15]

GAN
[16]

RSLCR
[13]

Face2Sketch
[6]

BiL-STM
[28]

Proposed
Spiral-Net

Proc Time
(msec/photo) Not presented by the original works 4.37 - 7.89

SSIM 35.36 40.83 39.66 41.88 34.39 34.81 42.69 38.97 44.56 38.32

FSIM 66.06 66.76 66.89 64.81 62.91 67.05 63.16 66.87 68.04 68.10

Table 7 records face recognition scores of these methodologies with help of the NLDA
procedure, constituted of 142 features/dimensions of the images. Its graphical presentation
is in Figure 3. RSLCR, Face2Sketch, and Spiral-Net performed superior to other methods.
It is also evident that sketches synthesized by Face2Sketch and Spiral-Net contain more
subtle information of the subject persons as compared to other methods since the former
two algorithms attain 97% accuracy at 95 dimensions versus the 98% score of RSLCR at
142 dimensions. This improvement in the result also means lesser time complexity of the
two methods to reach a rank-1 recognition level.

Table 7. Comparison of Face Recognition Scores for CUFSF.

Type MRF [10] MWF [11] LLE [9] SSD [4] FCN
[15]

GAN
[16]

RSLCR
[13]

Face2Sketch
[6]

BiL-STM
[28]

Proposed
Spiral-Net

NLDA
Score

(Equal/Best)
46.03 74.15 70.92 61.76 70.14 71.48 73.05/75.94 73.05 71.35 73.14/78.42

No. of
Features

(Equal/Best)
223 293 266 274 226 164 102/296 217 - 44/184

Figure 3. Comparative view of NLDA scores by different techniques on CUFS dataset.
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4.7. Results of CUFSF Dataset

SSIM, FSIM, and NLDA scores were computed for all eight methodologies. keeping
reference parameters identical and intact for all. These values of BL-STM [34] were copied
from the original paper. Table 8 records SSIM and FSIM scores of these algorithms for the
CUFSF dataset. This dataset contains a diversity of age and ethnicity. Moreover, the viewed
sketches were drawn with slight intentional deformations from the photos to render them
similar to the properties of forensic sketches. It was observed that SSIM values did not
convey any decisive information about the efficacy of the methodologies. RSLCR scored
the highest in comparison to other algorithms. The FSIM was considered to be more robust
a quality measure. Some of the exemplar-based methods, such as MRF, MWF, and LLE,
achieved a 66% score, at par with the Face2Sketch method, which is based on a learning
algorithm. The GAN method scored 67%, and it is also based on the neural network. It is
seen that the proposed method of Spiral-Net achieved the highest value, of 68%, indicating
that sketches synthesized by these methods contain more information of edges, contours,
and shapes according to the original photo–sketch pairs.

Table 8. Details of augmented datasets.

Dataset Total Pairs Train Test

VSC

CUHK [37] 188 88 100

AR [65] 123 80 43

XM2VTS [66] 295 100 195

IIIT-D 234 94 140

Total Pairs 840 362 478

VSF
CUFSF 1194 250 944

IIIT-D 234 94 140

Total Pairs 1428 344 1084

The NLDA procedure was conducted using up to 300 features/dimensions as a
validation step of face recognition in respect of all eight methods. Table 9 highlights those
scores, and it is also shown graphically by Figure 4. Of the exemplar-based methods,
MWF and RSLCR gained high scores, with 74.15% and 75.94% at 293 and 296 dimensions,
respectively. Spiral-Net gained a competitive score of 73.14% at 44 dimensions, and it
is equal to the Face2Sketch method, which scored equally at 217 dimensions. Therefore,
Spiral-Net synthesizes sketches with enhanced features for a dataset that is considered
challenging in the state of art. The best score of Spiral-Net is 78.4% at 184 features, and
it further establishes the fact that the proposed method can imitate and “learn” subtle
properties of the drawing style of the artist during this method’s training phase with photo-
viewed–sketch pairs. It achieved 3–7% improvement over competitive methods from the
exemplar-based domain (MWF, RSLCR) and the learning domain (GAN, Face2Sketch). It
is seen that layers of the compiler C network from the first stage to the later stages were
connected in a novel manner as alternate connections. This feature reduced the possibility
of the development of monotony of values at subsequent stages since dissimilar layers were
connected to each other progressively. As a result, the values in the matrices of layers bear
significance, containing information of high-level features of the input photo or a sketch.
This, in turn, preserves subtle information of each image throughout the progress of the
network. Therefore, as a performance measure, sketches synthesized by Spiral-Net match
better with the test photos at lesser dimensions by the NLDA scheme of face recognition as
compared to sketches by other techniques.
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Table 9. Comparative values of performance for augmented datasets using SNET and proposed
Spiral-Net.

Type VSC-SNET VSC-Spiral-Net VSF-SNET VSF-Spiral-Net

Proc Time
(msec/photo) 4.3033 8.5619 4.3113 8.1858

SSIM 38.18 46.81 40.33 40.51

FSIM 67.65 68.34 70.25 70.13

NLDA Score
(1998) (%) 67.82 69.61 65.99 65.44

OpenBR_FR
Score (2013) (%) 66 71.3 30.7 30.4

Figure 4. Comparative view of NLDA scores by different techniques on CUFSF dataset.

4.8. Augmented Dataset and New Implementation

We introduced a new dataset from DIIT [64] and added its 234 photo–sketch pairs
to the CUFS and CUFSF datasets. This exercise aimed to test our reference and modi-
fied schemes on hybrid datasets to verify their accuracy and to check their comparative
performance. Detail is given in Table 8.

Preprocessing of Augmented Datasets. Phase-1. Treatment of Images. Pre-processing
steps of alignment and rescaling of the images were conducted according to Section 4.2,
discussed above. Phase-2. Development of Feature Dictionary. The initial run was conducted
for each scheme of SNET and Spiral-Net to compute feature files for both photo sets and
their corresponding sketch sets at layers relu3-1, relu4-1, and relu5-1. The pre-computed
files provided by [25] were not useful since they did not cover an additional part of the
dataset introduced by this work. NOTE: The remaining parts of the implementation were
conducted similar to Sections 4.2–4.4, as discussed above.

4.9. Evaluation of Augmented Datasets

The following text discusses the analysis of the results from experiments conducted
on the augmented dataset.
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� It is important to note that we cannot compare newer results with any previous work
since our modified or augmented dataset is put to use for the first time.

� The setup was implemented for two schemes, namely Face2Sketch (containing SNET
as its component) and Spiral-Net. Therefore, the results may be compared between
these two techniques.

� The second and third columns of Table 9 relate to these results. The second column
gives values of the SNET technique, and the third column depicts result values for the
Spiral-Net technique. It is seen that values of the SSIM and the FSIM for Spiral-Net
are superior to those of SNET, which means that the proposed setup imparts more
accuracy of features to the formulated sketches. Similarly, the face recognition values
by NLDA and OpenBR methods for Spiral-Net are better than those for SNET by
almost 2% and 5%, respectively. However, this improvement is achieved at the cost of
processing time per photo since Spiral-Net contains almost double the layers of SNET
(see Table 9).

� It is also observed from columns fourth and fifth, related to the VSF data component
employed by SNET and Spiral-Net, respectively, that there is no marked difference of
values between the two techniques. It indicates that CUFSF is inherently a challenging
dataset since it copies the characteristics of real-life forensic sketches. Therefore, more
research effort is required to fine-tune proposed and other new techniques to improve
upon results of a singular CUFSF dataset or any combination of sets involving CUFSF.

5. Conclusions

In this work, a novel architecture of U-Net comprising two strains instead of one
for the forward pass was proposed. Moreover, the skip connections were made cross-
wise between the two strains to reduce the possibility of any monotonous build-up of
feature values due to ReLU and pooling operations. Experimental results in comparison to
exemplar-based and learning-based schemes indicated that the proposed setup enhances
the performance benchmark of sketch synthesis by around 5%. Moreover, a newer approach
of augmented datasets comprising conventional sets from CUFS/CUFSF and a part of the
DIIT photo–sketch dataset was also applied. Then, it was demonstrated that our modified
Spiral-Net achieves a superior performance by 5% compared to its original framework of
U-Net. In the future, the authors plan to conduct further experimentation to improve the
discriminator D neural network of this framework so as to further refine the loss functions
of the technique. Moreover, the currently used feature extractor may be replaced with the
neural architecture proposed by Li et al. [73,74].
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