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Abstract: Statistical measurements of eye movement-specific properties, such as fixations, saccades,
blinks, or pupil dilation, are frequently utilized as input features for machine learning algorithms
applied to eye tracking recordings. These characteristics are intended to be interpretable aspects
of eye gazing behavior. However, prior research has demonstrated that when trained on implicit
representations of raw eye tracking data, neural networks outperform these traditional techniques.
To leverage the strengths and information of both feature sets, we integrated implicit and explicit
eye tracking features in one classification approach in this work. A neural network was adapted
to process the heterogeneous input and predict the internally and externally directed attention of
154 participants. We compared the accuracies reached by the implicit and combined features for dif-
ferent window lengths and evaluated the approaches in terms of person- and task-independence. The
results indicate that combining implicit and explicit feature extraction techniques for eye tracking data
improves classification results for attentional state detection significantly. The attentional state was
correctly classified during new tasks with an accuracy better than chance, and person-independent
classification even outperformed person-dependently trained classifiers for some settings. For future
experiments and applications that require eye tracking data classification, we suggest to consider
implicit data representation in addition to interpretable explicit features.

Keywords: eye tracking; attention; convolutional neural network; feature extraction; Markov
transition fields; Gramian angular fields; heterogeneous feature sets; implicit feature learning

1. Introduction

Early on, in the beginning of the 20th century, it was discovered that our eyes are
a real-time representation of numerous processes occurring in our brain [1]. Whether
we are trying to perceive and understand our surroundings, or whether we allow our
gaze to wander while our thoughts revolve around something past, eye movements are
characteristic of particular mental processes. Obviously of importance are moments when
the eyes remain fixed on a point (fixations), movements between fixations (saccades),
blinking, or pupil dilation. When it comes to visual perception, our eyes play the most
prominent role. In these moments, our attention is directed externally and we attempt
to process the sensory input provided by our surroundings. However, even when our
attention is directed internally—that is, to thoughts, memories, or ideas—our eyes do not
remain stationary [2]. On the contrary, previous research using eye trackers discovered that
different mental states result in diverse eye movement patterns [3,4]. Besides attentional
states, eye gaze behavior can also be used to classify cognitive or psychological disorders
(e.g., autism [5]). Machine learning is utilized to classify these eye movement patterns, and
the predictions are employed in a variety of applications [6–9]. In many circumstances, the
eye movements are defined for this purpose with features that quantify the aforementioned
fixations, saccades, blinks, and pupil dilations.

In this work, we suggest combining these statistical features that explicitly describe
known characteristic eye movement patterns with features that implicitly represent the raw
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data collected by the eye tracker. While the explicit features are extensively studied and
easily interpretable, the implicit features could contain additional information that can be
learned by a neural network to complement the presented information. This idea is based
on a previous study by Vortmann et al. [10], where the authors compared the classification
accuracies using implicit and explicit feature sets. We hypothesize that a heterogeneous
feature set that combines the implicit and explicit representations of the eye gaze behavior
outperforms the homogeneous feature sets. The classification approach is inspired by
feature ensemble learning that has been proven to be very efficient and versatile in a variety
of applications, as it deals with multiple classification paths simultaneously [11].

1.1. Eye Tracking-Based Attentional State Recognition

The detection of attentional states based on eye tracking data has been at the center
of several research works. A major advantage of eye tracking recordings compared to
other biosignals (e.g., EEG, fMRI, fNIRS) is the fast and unintrusive setup. Remote eye
trackers can be placed in front of a participant or user, and wearable eye trackers allow for
flexible recordings outside of standardized laboratory settings. Even webcams can be used
to record reliable eye tracking data [12].

Hutt et al. [13] classified mind wandering during lecture viewing significantly better
than chance level and discussed the advantages these methods have for massive open
online courses. For the classification, they extracted features, such as the number of fixations
and the fixation duration, and classified them using Bayesian networks. In [14], Xueling at
al. follow a similar motivation and detect internal thought during e-learning. Their features
are based on eye vergence information that is available when a binocular eye tracker is
used. The obtained results are reliable in times of math-solving, daily computer-based
activities (coding, browsing, reading), and free viewing of online lectures.

In this study, our data set will contain periods of internally and externally directed
attention. The eye gaze behavior during these attentional states was investigated and
analyzed in detail in Benedeck et al. [15]. The authors found significant differences during
goal-directed internal attention and external attention. Specifically, internally directed
attention was associated with less but longer fixations and blinks and an increased vari-
ability of eye vergence and pupil dilation. Additionally, the frequency of microsaccades
decreased compared to externally directed attention. In Annerer-Walcher et al. [16], an
LSTM was successfully used to classify raw eye tracking signals in times of internally and
externally directed attention with an accuracy of 75% on a single trials basis. Another
feature representation approach for eye gaze behavior was used in Elbattah et al. [17]. The
authors used eye tracking recording to detect autism spectrum disorder by describing the
gaze behavior using natural words and text strings (such as fixation and saccade). Methods
from natural language processing were then used to successfully classify the data.

1.2. Implicit Feature Extraction

The usage of implicit features for classification processes has mainly been studied in
the context of text sentiment analysis [18]. In this literature, implicit features are described
as features that are not apparent and where the meaning has to be learned. For example,
obvious sentiment-describing adjectives are missing, but the structure and other words of
a sentence still convey a sentiment that can be learned through machine learning. This idea
can be transferred to gaze behavior. While the described eye tracking features represent
behavioral patterns that are explicit for eye gaze, there might be hidden information in
the time series data of the eye tracker (and in the combination of the eye gaze coordinates
and pupil diameter) that is not described by the explicit features or is lost during the
quantification of them (e.g., through statistical descriptions). The advantages of implicit
feature extraction methods for text-based analyses have been reported in [19–21].

Combining machine-learning-based features that were learned from implicit repre-
sentation of the data and modality-specific features explicitly describing the data into
a heterogeneous feature set was also done in previous studies. In the same context of
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sentiment analysis, Bandana [22] classified the combined feature set using Naive Bayes
and support vector machines and claims that the hybrid feature set can be as accurate as
other baseline systems.

1.3. Implicit vs. Explicit Eye Tracking Features for Attentional State Recognition

In a previous study by Vortmann et al. [10], three different data sets with several
tasks and different attentional states were classified. The main goal was to compare
classical statistical features of explicit eye gaze descriptions and image representations
of the time series data that implicitly describe the data (imaging time series approach,
ITS). To generate the implicit images, three different algorithms suggested by Wang and
Oates [23] were applied to the data. Wang and Oates [23] showed that the classification
of the generated images achieved results competitive with the nine best time series data
classification approaches, and the imputation mean square error was significantly reduced
compared to using raw time series data. The information contained in the images was
extracted and classified by a convolutional neural network, while the explicit features were
classified using several state-of-the-art machine learning algorithms. The results showed
that the classification accuracies were higher for the implicit features than for the features
that explicitly describe the gaze behavior. However, it can be assumed that the explicit
features represent different aspects of the data than the images that are used as implicit
input features. This additional information could improve the classification further. Thus,
in this study, we combine both feature sets.

2. Methods

In this work, we will built on the results presented in Vortmann et al. [10] that were
presented in Section 1.3. Our main hypothesis is that a combination of the eye tracking-
specific features and the imaging time series features as a heterogeneous input for a CNN
will improve the classification accuracy for attentional states, compared to homogeneous
input features. The results of the two individual feature sets were already compared
in Vortmann et al. [10]. They showed that imaging time series features that implicitly
describe the eye gaze behavior reached higher classification accuracies for almost all of
the performed analyses. Hence, in this study, we will test whether the results achieved
with the implicit features can be outperformed using a combined feature set of implicit and
explicit features.

As a preliminary analysis, the three different types of images that are generated using
the ITS approach will be evaluated further. We will test whether either imaging algorithm
alone would be sufficient to reach similar classification accuracies as their combination.

Moreover, the effect of reduced trial lengths on the classification accuracy will be
explored. Assuming that the human attentional state switches frequently, shorter time
windows would increase the accuracy of real-time predictions. All these aspects will be
analyzed for both person-dependent (PD) and person-independent (PI) models. While
person-dependent models are highly personalized and often more accurate because they
were trained on the data of the person they are also tested on, person-independent models
have the advantage that they do not require the previous collection of training data because
they are trained on other persons’ data. Real-time classification systems would benefit
from person-independent models because the model would work “out of the box” and
only require the calibration of the eye tracking device.

Finally, we test the best classification approaches for task independence. The usability
of a model highly increases if it can be applied for new tasks without requiring the labeled
training data of these tasks.

2.1. Data

For the following analyses, we used one of the data sets that was also used in the
previous work by Vortmann et al. [10]. The data and the task were originally recorded and
presented by Annerer–Walcher et al. [16] and is publicly available. A total of 172 partici-
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pants performed 16 runs of 6 different tasks (96 trials in total per participant). Of the six
tasks, three tasks required internally directed attention, and three tasks required externally
directed attention. The three tasks per condition were of different manners: numerical,
verbal, and visuospatial. Each task lasted 10–14 s, and the tasks were presented on a
computer screen in a randomized order. For a detailed description of the task and the
experimental setup, please refer to the original research paper [16].

The gaze direction (X- and Y-coordinates) and the pupil dilation of the participants
were recorded using an SMI RED250mobile system (SensoMotoric Instruments, Teltow,
Germany) with a temporal resolution of 250 Hz, spatial resolution of 0.03◦, and gaze
position accuracy of 0.4◦ visual angle.

Incomplete data sets were excluded, which resulted in 154 participants for the follow-
ing analyses. In Vortmann et al. [10], all trials were cut to a length of 10 s. In this study, we
evaluated the classification accuracies for 8 s and 3 s time windows (inspired by the results
of Vortmann et al. [24] who found that similar window lengths provided the best trade-off
between real-time and classification accuracy). For both versions, the first second of the
trial was discarded to exclude the possible contamination of task onset effects. Thus, the 8
s windows contained the recorded eye tracking data from the time interval [1, 9] and the 3
s windows from the time interval [1, 4] after trial onset.

In summary, the position and pupil data of 154 participant were analyzed. Eight-
and three-second windows were extracted for all 96 trials of each participant. Half of the
trials are labeled as internally directed attention and the other half as externally directed
attention; accordingly, the chance level for a correct classification is 0.5.

2.2. Feature Extraction

As mentioned before, two different feature extraction approaches were applied. For
the first feature set, the generation of features was inspired by eye gaze behavior and
characteristic movements. The features are explicitly designed to represent specific at-
tributes extracted from eye tracking data. In contrast, the algorithms used to design the
features for the second feature set were designed to visualize time series data in general.
Eye movements and pupil dilation are implicitly described through the resulting images
that will be used as features.

2.2.1. Explicit Features

Features that can be explicitly designed to describe interpretable eye gaze behavior are
often used as the input for classification algorithms. These features are interpretable and
based on characteristic movements that have been studied and quantified extensively in past
experiments concerning attention. These explicit features include fixations, saccades, and eye
blinks [13,15,25–34], as well as pupil dilation [30,35–38] and eye vergence [14,15,31,39,40].

The explicit feature set in this study is identical to the statistical summary features
of the classical classification approach described in Vortmann et al. [10]. The format of
the variables and values recorded by the eye trackers throughout the studies limits which
features may be retrieved from the data sets. For the explicit features, we combined
fixations, saccades, blinks, residual vergence characteristics, and pupillometric data. The
data sequences of X- and Y-coordinates were assessed for fixations, saccades, and blinks in
order to extract these characteristics using the PyGaze Toolbox [41]. The blink detection
method has a threshold value of 50 ms. Fixations were detected following the dispersion
threshold identification algorithm (I-DT) by Salvucci et al. [42] (implementation on github
(https://github.com/ecekt/eyegaze, accessed on 2 December 2020)). As proposed by
Blignaut [43], the dispersion threshold was set to one degree. The vergence features that
could be generated were retrieved using the method outlined in Xuelin Huang et al. [14],
and the minimum bounding circles were computed using the nayuki-python project’s script
(https://www.nayuki.io/page/smallest-enclosing-circle, accessed on 2 December 2020).
We utilized the total value of the computed variable (i.e., number of fixations) as a feature
or generated statistical measures to characterize the variable throughout the trial (i.e., mean,
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standard deviation, median, maximum, minimum, range, kurtosis, and skewness of the
distribution of fixation durations). A comprehensive list of all features can be found in
Vortmann et al. [10].

2.2.2. Implicit Features

Three distinct algorithms were used to convert the continuous time series data
recorded by the eye tracker into images (see Figure 1). The images are a two-dimensional
representation of the time series dynamic through matrices. The matrices can be utilized as
input features for the classifier to extract meaningful features implicitly throughout the
classification process. These features could represent patterns of eye movement and pupil
dilation that are not described by the explicit eye tracking data. Because no information
about the X and Y coordinates is available, periods with identifiable blinks were filtered
from the data in the first stage. A full discussion of the approaches may be found in Wang
and Oates [23].

(a) (b) (c)

Figure 1. Implicit features: the three images that are generated to represent the X-coordinates of
the right eye in one trial with externally directed attention. (a) Markov Transition Field (MTF).
(b) Gramian Angular Summation Field (GASF). (c) Gramian Angular Difference Field (GADF).

We chose to generate images for each eye independently, with one image representing
the X coordinate, one representing the Y coordinate, and one representing the current
pupil diameter recorded by the eye tracker. This keeps us as near to displaying the raw
data as possible while still giving the neural net the ability to identify and learn from
differences and similarities between the eyes (following the notion of utilizing vergence
characteristics). The first transformation algorithm is the Markov transition field (MTF),
which creates a matrix based on transition probabilities. The data sequence is divided
into quantiles based on the magnitude of the values. Each data point is allocated to a
quantile, and a weighted adjacency matrix is built by counting the transitions from sample
to sample between quantiles along the time axis using a first-order Markov chain. This
Markov transition matrix is then normalized and spread out over the magnitude axis while
taking into account the temporal locations, yielding the MTF. The main diagonal depicts the
likelihood of self-transition at each time step. Figure 1a shows an example image generated
for the X coordinates of the right eye in one trial with externally directed attention.

Additionally, we use two variants of the Gramian angular field transformation algo-
rithm. The first is known as the Gramian angular summation field (GASF, see Figure 1b)
and the second as the Gramian angular difference field (GADF, see Figure 1c). The data
sequence is rescaled to [−1, 1] and then represented in polar coordinates by encoding the
data values as the angular cosine and the corresponding timestamp as the radius in both
approaches. As a result, the data series is moved from the Cartesian coordinate system to
the polar coordinate system, which has the advantage of preserving the absolute temporal
relationship for all points. To determine the temporal correlation within time intervals, we
calculate the trigonometric sum or difference pairwise between the points. As a result, the
Gramian matrix has the dimensions n × n, where n is the length of the raw time series. The
trigonometric difference/sum with regard to the time interval is represented by each cell.
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Each cell on the main diagonal has the original value/angular information and can be used
to reconstruct the original time series.

Piecewise aggregation approximation (PAA) can be used for blurring to reduce the
size of the output images [44]. The effect of blurring was discussed in Vortmann et al. [10].

The pyts-toolbox for python was used to turn the data sequences into the MTF, GASF,
and GADF images [45]. The image size was set to 48 × 48 pixels, and all pixel values
for individual images were normalized between [−1, 1]. Following this, all generated
images (3 transformations ∗ 2 eyes ∗ (X/Y-coordinates + pupil diameter) = 18 images)
were concatenated into a 3 × 6 image matrix. As mentioned before, this image generating
approach was used on valid (non-blink) data from single trials per condition [46].

2.3. Classifier

As the classification algorithm, we chose an adapted version of the SimpleNet in
Vortmann et al. [10] that was designed using the suggestions of Yang et al. [47]. In Vortmann
et al. [10], it was shown that the classification accuracies achieved by this convolutional
neural network (CNN) using the implicit ITS features were state-of-the-art results. To suit
the current study, the CNN was adjusted to be trained on the heterogeneous input features.
The first two layers are convolutional layers with a kernel size of 5 × 5 processing only
the implicit images of the trial. After the second convolution, a two-dimensional max
pooling is applied to the signal. Next, a dropout layer [48] was included that temporarily
zeros out two-dimensional channel data with a probability of 0.5 to avoid overfitting,
followed by a fully connected layer. Thus far, only the implicit features were processed
in the CNN. This first stage allows for the network to learn important features from the
images that implicitly describe important eye gaze behavior for the discrimination between
the attentional states. After the first linear layer, the explicit features that statistically
describe the classical eye movement characteristics are optionally added (only during the
classification of the combined feature set). After applying a batch normalization [49] with a
momentum of 0.1 to the explicit features, the two preprocessed feature sets are internally
concatenated. The signal is passed through two linear layers, another dropout layer, and
two final linear layers. The number of units of the output layer is identical to the number
of possible classification labels (in our cases: 2). The layers of the network, the output
shapes, and the number of learnable parametery for each layer are described in Table 1. As
can be seen in the table, the number of parameters changes slightly if the explicit features
are added (combined feature set). In the first stage, before adding the explicit features,
a rectified linear unit (ReLU) was used as the activation function after each layer. In the
second part of the CNN, the hyperbolic tangent (tanh) was used. These settings proved to
reach the highest classification accuracies for our data. The neural net was implemented
using PyTorch for Python [50].

Table 1. Layer types, output shapes, and the number of parameters for the CNN that was used to
classify the data. For the combined feature sets, the explicit features were added intermediately at
the indicated layer.

Layer (Type) Output Shape Param #

Conv2d [−1, 60, 44, 44] 27,060
Conv2d [−1, 120, 18, 18] 180,120

Dropout2d [−1, 120, 18, 18] 0
Linear [−1, 500] 4,860,500

Combined feature set? No Yes N Yes

BatchNorm1d [−1, 75] 150
Linear [−1, 300] [−1, 300] 150,300 172,800
Linear [−1, 120] [−1, 120] 36,120 36,120

Dropout [−1, 120] [−1, 120] 0 0
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Table 1. Cont.

Layer (Type) Output Shape Param #

Linear [−1, 20] [−1, 20] 2420 2420
Linear [−1, 2] [−1, 2] 42 42

Total 5,256,562 5,279,212

3. Results

The comparison of implicit and explicit eye tracking features for the classification
of attentional states from this data set was already discussed in Vortmann et al. [10] and
showed that our ITS features that implicitly describe the eye gaze in times of internally or
externally directed attention outperformed explicit, statistical features describing common
eye movement characteristics. We will first report a comparison of the three algorithms that
were used for the image generation in the implicit feature set. Secondly, the classification
accuracies using a homogeneous feature set of only the ITS features and a heterogeneous
feature set that combines the ITS and the classical eye tracking features will be analyzed.
Afterward, the results of a person-independent classifier will be presented, as well as
the analysis of task independence. In a final step, the differences between the 8 and 3 s
windows for all aforementioned comparisons will be analyzed for significance.

For all participant-dependent results, the average fold accuracy of a five-fold cross-
validation with a shuffled, stratified split will be reported. For the person-independent
results, the classifier was trained in a leave-one-out fashion. For each of the 154 available
full data sets, the classifier was trained on 153 data sets and tested on the left out 154th
data set. Further methodological details will be explained in the following.

The achieved accuracies will be evaluated based on the suggestion by Müller-Putz
et al. [51] to calculate a threshold above which the classifier performs better than a random
one with a confidence of 95%. All statistical analysis will be corrected for multiple testing
assuming a false detection rate (FDR) of α = 0.05 following Benjamini and Hochberg [52].
For all statistical tests, a significance threshold of 0.05 will be assumed.

3.1. Analysis of Implicit Features

The ITS features that implicitly represent the X- and Y-coordinates and the pupil
diameter of both eyes were generated using three different algorithms: Markov transition
fields, Gramian angular summation fields, and Gramian angular difference fields. In the
first step, we analyzed if either of the three image generating algorithms alone reaches
classification accuracies better than chance for the majority of participants. The described
CNN was trained and tested per person in a five-fold cross-validation using only the
images generated using each of the algorithms alone. Hence, an image matrix consisting
of six images (three for each eye) was used as the input feature set. Figure 2 shows
the distribution of achieved average fold accuracies for each algorithm on the 3 and 8 s
windows.

For the 3 s windows, the lowest average accuracy across participants of 0.616 ± 0.135
was obtained using only the GASF features. The classifier only performed better than a
random one [51] for 27.3% of the data sets. Using only the MTF features improved the
average accuracy to 0.636 ± 0.12, and the best results were achieved using only the images
that were calculated using the GADF algorithm. The mean accuracy reached 0.682 ± 0.11.
The 95%-confidence interval for a classification using only GADF features is [0.664, 0.699],
and the classifier was significantly better than a random one [51] for more than half of the
data sets.
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Figure 2. Average fold accuracy per participant represented as histograms. As input features, only
the features that were generated using either of the presented algorithms were used. The histograms
on the left show the results for the 3 s windows, while the histograms on the right represent the 8 s
windows.

Compared to the CNN that is trained on the 18 images of all algorithms (M = 0.687,
SD = 0.115), the MTF- and the GASF-based classifiers perform significantly worse (MTF:
t(154) = −7.63, p < 0.001; GASF: t(154) = −12.44, p < 0.001). The results of the GADF-
based classification for 3 s data windows do not differ significantly from the results of a
classifier trained on all images, t(154) = −0.806, p = 0.4215.
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Similarly, for the 8 s windows, the best individual results are achieved using only
the GADF features. An average accuracy of 0.694 ± 0.12 with a 95%-confidence interval
between [0.676, 0.713] and 53.1% of data sets better than random [51] are achieved. In
comparison, the MTF-based classifier had a mean accuracy of 0.655 ± 0.13 and the GASF
classifier of 0.654 ± 0.138.

All of the single-algorithm classifiers for the 8 s windows perform worse than a
classifier trained on their combination (M = 0.714, SD = 0.13). The differences are highly
significant for the MTF features (t(154) = −9.122018, p < 0.001) and the GASF features
(t(154) = −8.411133 p < 0.001) and significant for the GADF features (t(154) = −3.351624,
p = 0.001).

Despite there being no significant accuracy difference for classifiers trained on only
GADF features and all three algorithms for 3 s data windows, we will perform all following
studies using the combined image matrix of the MTF, GASF, and GADF as input features.
The best results were achieved using all 18 images. As the main goal of the study is the
exploration of a heterogeneous feature set of implicit and explicit eye tracking generation
for attentional state classification, we want to use optimized feature sets. A reduction of the
number of images would reduce the computation time, but this will be evaluated further
in future work.

3.2. Comparison of Homogeneous and Heterogeneous Feature Sets

The main hypothesis of this research is the superiority of a heterogeneous feature set
that combines implicit and explicit eye tracking features for attentional state classification
compared to a homogeneous feature set containing either implicitly generated or explicitly
designed features. As a first within-person analysis, we trained and tested the described
CNN in a five-fold cross-validation either on the ITS image matrix only or added the explicit
features for a combined feature set. This was done for 3 s and 8 s data windows. The statistical
values describing the average fold accuracies across participants can be seen in Table 2.

Table 2. Statistical values representing the classification results of all 154 participants for 3 and 8 s
windows to compare the implicit and combined feature sets.

Feature Set
Window Length Statistic Implicit Combined

3 s

Mean 0.687 0.706
Standard deviation 0.115 0.118
Minimum 0.458 0.405
Maximum 0.99 1.0
95%-Confidence Interval [0.668, 0.705] [0.688, 0.725]
Better than chance (absolute) 79 89
Better than chance (relative) 0.513 0.578
Above 75% accuracy 36 47
Above 90% accuracy 11 15

8 s

Mean 0.714 0.745
Standard deviation 0.125 0.122
Minimum 0.448 0.48
Maximum 0.99 1.0
95%-Confidence Interval [0.693, 0.734] [0.725, 0.764]
Better than chance(absolute) 94 108
Better than chance (relative) 0.61 0.701
Above 75% accuracy 58 65
Above 90% accuracy 15 22

For 3 s windows of eye tracking data, the classification accuracy on combined features
(M = 0.706, SD = 0.118) improved the results of 57.8% of the participants compared to only
the implicit features (M = 0.687, SD = 0.115). The difference between these two approaches
is highly significant (t(154) = −3.976, p < 0.001). An analysis of the correlation between
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the classification results using the Pearson correlation yields a strong positive correlation
of r = 0.86 (see Figure 3, upper left).

For the 8 s windows, an accuracy improvement using the combined feature set
(M = 0.745, SD = 0.122) in comparison to the implicit features only (M = 0.714,
SD = 0.125) was found for 66.2% of the participants. Again, the difference between the two
approaches is highly significant with t(154) = −5.499, p < 0.001, and the accuracies are
strongly correlated with r = 0.837. The exact distribution can be seen in Figure 3 (upper right).

In summary, the CNN that was trained and tested on the combined feature set out-
performed a CNN with the homogeneous input features for both window lengths. This
supports our main hypothesis and suggests including implicit eye tracking features during
the classification process for attentional states. In a next step, the results of this person-
dependent classification approach will be tested for person and task generalizability. A
classifier that is trained person-independently and used to label previously unseen partici-
pants would exclude the need for person-specific training data. This would highly increase
the usability of such a classification system.

Figure 3. The distributions of implicit and combined feature sets represented as histograms and
scatter plots including a visualization of the correlation. The 3 s windows are displayed on the left,
and the 8 s windows are displayed on the right. PD = Person-dependent; PI = Person-independent.

3.3. Person-Independent Classification

To evaluate the results that are achieved when the CNN is trained and tested across
participants, we chose a leave-one-participant-out approach for training and testing. Hence,
the classifier was always trained on all but one data set and tested on the data set of the
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remaining participant. Following the main research question of the study, we compare the
results of a combined feature set to the results of implicit input features only.

Using 3 s data windows and the homogeneous feature set containing the implicit
image features, an average accuracy of 0.717 ± 0.098 was achieved. The data sets of 90.91%
of the participants could be classified with an accuracy better than random [51]. With a
confidence of 95%, the accuracy was within the interval [0.701, 0.732]. These results were
better than the results when the explicit features were added to the feature set (M = 0.708,
SD = 0.103) where the 95%-confidence interval was [0.691, 0.724]. For the combined feature
set, only 83.12% of the data sets were classified with an accuracy better than random [51].
However, the difference is not significant, t(154) = 1.768, p = 0.079. Using the combined
feature set improved the classification results for 43.51% of the participants. The accuracies
of both approaches were strongly correlated with a Pearson’s correlation of r = 0.805 (see
Figure 3, lower left).

The accuracy distributions using the implicit and combined feature sets on 8 s win-
dows of eye tracking data can be seen in Figure 3 (lower right). For the classification on
the homogeneous feature set of only the image features (M = 0.76, SD = 0.1), the 95%-
confidence interval was [0.744, 0.776]. For the classification on the heterogeneous feature
set of implicit and explicit features (M = 0.767, SD = 0.094), the 95%-confidence interval was
[0.752, 0.782]. Both approaches classified 96% of the data sets with an accuracy better than
random classification [51], but the combined feature set improved the results for 50.65% of
the participants. The difference between the two feature sets was modest but significant
with t(154) = −2.15, p = 0.033, and the correlation was strong with r = 0.916.

Using a leave-one-participant-out cross-validation, the advantages of a combination
of implicitly and explicitly designed features are not as strong as for person-dependently
trained models. Strikingly, as already found in Vortmann et al. [10], the results using the
person-independently trained CNN are more accurate than for within-participant training
and testing.

The classification accuracy using only the implicit image features generated on 3 s
data improved for 62.99% of the data sets when the person-independent classifier was
applied. This improvement was mainly present for participants with a mediocre person-
dependent classification accuracy. While the number of data sets exceeding 75% accuracy
raised from 36 to 57, the number of data sets above a threshold of 90% accuracy dropped
from 11 to 8 using the independently trained CNN. The accuracy difference is signifi-
cant (t(154) = −3.287, p = 0.0013), and the results are moderately positively correlated
(r = 0.44). Figure 4 shows the independent and dependent results per participant ordered
by ascending person-dependent classification accuracies.

Similar effects can be seen for the combined feature set computed on the 3 s windows.
The classification accuracy of 55.2% of the participants was higher for an independently
trained network compared to person-dependent training (see Figure 4). The results were
moderately correlated (r = 0.518), but the differences were not significant (t(154) = −0.152,
p = 0.88).

On the 8 s data windows, an improvement was achieved for 70.13% of the data sets
using the person-independent combined feature set compared to the ITS image-based
classification. Again, mediocre accuracies were raised; the number of participants with
an accuracy above 75% increased from 58 to 82, whereas the number of participants
with an accuracy above 90% dropped from 15 to 9. The difference was highly significant
with t(154) = −5.315, p < 0.001, and the results were again moderately correlated with
r = 0.566 (see Figure 4).

If the combined heterogeneous feature sets were used for 8 s windows, the indepen-
dent classifier outperformed the dependent classifier on 59.74% of the data sets. Figure 4
shows the ordered dependent and independent results per participant. The difference
was significant (t(154) = −2.564, p = 0.011), and the results are moderately correlated
(r = 0.559).
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Except for the combined feature set of the 3 s windows, the person-independent
classification was significantly better than the person-dependent classification. The main
improvements were observed for lower and mediocre person-dependent classification ac-
curacies. Data sets with a high person-dependent accuracy usually had a slightly decreased
person-independent accuracy.

Figure 4. Person-dependent and person-independent classification accuracies per participant. Each
plot is sorted individually by ascending person-dependent classification accuracy.

3.4. Task Independence

As in the original paper by Annerer-Walcher et al. [16], we tested the task generaliz-
ability of a classifier trained on the heterogeneous feature set. A classifier that can label
data from previously unseen tasks has a higher usability and is highly desirable. In this
analysis, the training set was made up of four of the six tasks, two internal and two external.
The remaining internal and external tasks were used as the test data. This was done for all
nine possible combinations of internal and external tasks. The data sets of all participants
were combined in this analysis. We report the average classification accuracy of the nine
classifications using the combined feature set.

For the 3 s data windows, the average classification accuracy reached 0.587 ± 0.027.
Despite the lowest accuracy of 0.53, all of the combinations led to classification accuracies
better than random (following Müller-Putz et al. [51]). With a confidence of 95%, a data
set combined of previously unseen internal and external tasks will be classified correctly
between [0.566, 0.61].

The accuracy increased to 0.624 ± 0.03 for the 8 s windows, and all combinations were
classified with an accuracy between 0.591 and 0.676.
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3.5. Trial Length Comparison

All analyses in this study were performed on 3 s and 8 s windows. Lastly, we will com-
pare the classification accuracies achieved on both of these settings for significant differences.

Figure 5 shows the distribution for person-dependent and independent classifiers
of both window lengths using the combined and the implicit feature sets. For the im-
plicit image features, the differences between the 3 s and 8 s windows were highly sig-
nificant for person-dependent (t(154) = −4.096, p < 0.001) and person-independent
(t(154) = −8.068, p < 0.001) classification. The 8 s windows were always classified
with a higher accuracy on average. The same is true for the combined features with
t(154) = −5.802, p < 0.001 for the person-dependent classifier and t(154) = −9.156,
p < 0.001 for the independent-classifier.

Looking at the task-independently trained and tested classifiers, the differences be-
tween both window lengths are also significant (t(9) = −3.343, p = 0.01). Only for the
comparison of the individual image generation algorithms, not all differences were signifi-
cant. While the MTF and GASF on 3 and 8 s windows resulted in significantly different
accuracies (MTF: t(154) = −2.767, p = 0.006; GASF: t(154) = −5.75, p < 0.001), the GADF
results did not differ (t(154) = −1.91, p = 0.058).

Figure 5. Comparison of the 3 and 8 s windows for person-dependent and independent classifiers
using the combined and the implicit feature sets. PD = Person-dependent; PI = Person-independent.

Overall, the results using 8 s eye tracking windows were higher compared to the 3 s
windows for all analyses except for the classification on GADF-generated images only.

3.6. Summary

The best results were achieved using a person-independently trained classifier of the
heterogeneous feature set that combines implicit and explicit features generated for 8 s eye
tracking windows. The average accuracy for all 154 participants was 76.7%. In summary,
we found that

• A feature set that only contains MTF, GASF, or GADF images results in a decreased
accuracy compared to all three algorithms.

• A combined feature set outperforms a homogeneous feature set.
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• Person-independent classification improves the results for participants with low or
mediocre person-dependent classification results.

• On average, the person-independent classifiers outperformed the person-dependent
classifiers.

• Task-independent classification is possible with an accuracy above chance.
• Eight-second data windows result in a higher classification accuracy than 3 s data

windows for almost all settings.
• Both 3 s and 8 s data windows allow for reliable classification using person-dependent

or person-independent classifiers.

4. Discussion

In the presented study, we evaluated the hypothesis that the combination of explicit
eye tracking features with implicitly designed features that describe the raw time series
data improves the classification accuracy for attentional states. Implicit features could
contain information that was lost during the extraction of the explicit features. In Vortmann
et al. [10], it was shown that an implicit feature set of images generated using the imaging
time series approach by Wang et al. [23] resulted in higher classification accuracies than ex-
plicitly extracted eye tracking-specific features that are used in state-of-the-art approaches.
We used a convolutional neural network for the classification of either the homogeneous
implicit feature set or a heterogeneous combined feature set. The hypothesis was tested
for person-dependent and person-independent classifiers, 3 s and 8 s windows, and task
independence. Our results on a data set of 154 participants collected by Annerer-Walcher
et al. [16] proved that a combination of implicit and explicit features further improves the
achievable classification accuracies.

A comparison of the results from this study with the results in Vortmann et al. [10] is
only possible to a limited extent because some settings of the feature generation and the
CNN were altered. While the results in the previous paper were only reported for 10 s
windows, we report 8 s and 3 s windows in this work. Furthermore, the ITS images were
only created for the left and right eye’s X- and Y-coordinates. We have included images
obtained for the pupil diameter of both eyes in the presented study.

Overall, the main hypothesis was proven to be correct for this eye tracking data set. A
heterogeneous feature set of explicitly designed and implicitly describing features improves the
achievable classification accuracies compared to homogeneous feature sets of either modality.

4.1. Implicit Features

The feature generation algorithms used in this and the previous work are only one option
to implicitly represent the eye tracking recordings. Other time series representations can be
chosen as input features for the classification of attentional states based on eye tracking data
(e.g., scanpath images, raw time series data). Future work will explore other algorithms.

We generated images from the recorded time series as implicit features. The three
approaches (MTF, GASF, GADF) each depict a distinct component of the data that may
not be reflected in the explicitly extracted statistical features that define fixations, saccades,
blinks, and other eye tracking-specific properties. Certain patterns of eye movement or
pupil diameter variations, for example, may be portrayed in images that are lost during
classical feature generation. The analysis of classification accuracies on single algorithm
feature sets showed that their combination increases the preciseness of the predictions for
attentional states. We found that the best results can be achieved using the GADF algorithm.
However, for 8 s windows, the combination of all three image generation algorithms is
still significantly better. Reducing the amount of features would be beneficial in terms of
reducing computation time and memory requirements, but there appears to be a trade-off
because it degrades the results. A combination of two of the three algorithms is needed to
identify the optimal feature set for the implicit features. Moreover, the significance of each
time series (X- and Y-coordinates, pupil diameter) should be evaluated, and the impacts of
simply utilizing the right or left eye should be investigated. The focus on high accuracies
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or low computing times can be altered depending on the context in which the classifier
will be used, and the feature set should be chosen accordingly.

4.2. Window Length

The same philosophy holds for the chosen window length. In this study, we compared
8 and 3 s windows. While the 8 s windows resulted in significantly higher classification
accuracies on average, 3 s windows might be beneficial for certain classification contexts.
For tasks and applications in which a frequent switch of attentional states can be expected,
shorter data windows are required for precise labeling. In general, the optimal window
length is highly dependent on the study goal. For online real-time classification systems,
shorter shifting windows should be considered, while the offline analysis of more controlled
experiment settings can be performed on longer windows. Another aspect that has to be
considered for the real-time application of the results is the computational time that is
needed to generate the images and perform the classification. Future work should explore
this direction more. For the representation of the data as images using the MFT, GADF, and
GASF algorithms, the sampling rate of the data and the resolution of the images also need
to be considered. In this work, 3 s and 8 s windows were both represented as 48 × 48 pixel
images. This means that the data of the 8 s windows are downsampled to a higher extent
in the representation than the 3 s windows.

In the future, a more detailed analysis of the interplay of sampling rate, window
length, and image resolution should be performed. An important aspect to keep in mind is
that the appropriate representation of the data could also depend on the attentional states
that are to be classified.

Compared to the implicit image results for the 10 s windows in Vortmann et al. [10],
the results using 8 s windows were better for person-dependent and person-independent
classifiers. However, as mentioned before, these improvements might be due to the
adjusted settings.

4.3. Classification Approaches

We trained and tested the CNN using two different approaches: person-dependent
and person-independent. Usually, due to inter-participant differences, person-dependently
trained classifiers are expected to achieve higher classification accuracies. However, the
available training data for the person-independent classifier is much higher. A larger variance
in the training data can reduce the bias in the classifier and enhance the label prediction on
unseen data. In our results, the average preciseness of the classification was higher using
person-independent classifiers. Looking at the results per participant, it was shown that
the improvement is mainly present for data sets where the person-dependent classification
accuracy was lower. Especially for participants with a person-dependent classification accu-
racy of above 90%, the person-independent classifier decreased the results. The classification
approach used in future tests is determined by the quantity of accessible data sets and the
desired application. The most significant advantage of person-independently trained classi-
fiers is that they do not necessitate the acquisition of training data for each participant. This
means that a classification may be conducted “out-of-the-box” in a real-time online system.
The utility of such a system would be greatly enhanced if person-independent classification
was reliably possible. However, training would very certainly require a large training data set
that would need to be recorded beforehand.

The strong decrease of accuracy for some participants when an independent classifier
is used compared to personalized classification is possibly due to the inter-person differ-
ences than can be observed in most eye tracking experiments. The precise nature of these
fluctuations and which features are most valuable for both classification approaches could
be studied further in future experiments. In general, a thorough examination of the feature
importances would be really beneficial. On the one hand, classification accuracies for all
approaches might be compared using only subsets of the features in order to discover
the most valuable features. Explainable AI methods, on the other hand, may be used
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to comprehend the weights and parameters learned by the CNN for both classification
approaches. An analysis of relevant patterns in the implicit image features can shine a light
on the additional information included in the implicit but not the explicit features.

It can be observed in this study that the improvement for the heterogeneous feature set
compared to the the implicit feature set is not as high for person-independent classification
as it is for person-dependent classification. This hints at the higher importance of the
explicit features during the person-independent classification. This is in accordance with
the findings of Vortmann et al. [10], where the person-independent classification based on
implicit features (M = 0.743) outperformed the explicit features (M = 0.689) for this data
set. Thus, in this study, adding the explicit features does not lead to a significant increase
in classification accuracy for 3 s windows and only to a slight increase for 8 s windows
(increase of 0.7% on average).

To bridge the gap between person-dependent and person-independent classifiers, the
next step would include transfer learning approaches. A pretrained classifier on person-
independent data could be retrained using person-specific data to increase the accuracy for
each participant further. The usefulness of such an approach is, once again, strongly reliant
on the context in which the classifier is to be used.

The convolutional neural network that was used in this study was chosen because
the implicit features are represented by images. CNNs are very successful in image
classification tasks [53]. However, the CNN could be optimized further, and other deep
learning approaches could be tested to classify the feature sets. Alongside the exploration
of other implicit data representations, as suggested before, other classification algorithms
might further improve the achievable accuracies.

4.4. Generalizability of the Results

A first attempt at evaluating the generalizability of the results was performed through
task-independent training and testing. First, it needs to be noted that the results cannot be
compared to the results of Vortmann et al. [10] because the splitting into test and training
data was different. The previous study only used one of the tasks as the test set, while
this study used all possible combinations of an internal and an external task as the test set.
This approach was also used in Annerer-Walcher et al. [16], and they report an average
accuracy of 61.1% using the LSTM as reported before. Our results on the 8 s data windows
(M = 62.4%) outperform the classifier in terms of task independence. For future studies,
additional data sets need to be evaluated to reproduce the results. As mentioned before, this
includes other sampling rates for the data and also other available time series combinations
provided by eye trackers.

The comparisons performed in Vortmann et al. [10] suggested that the implicit features
work well for internally and externally directed attention discrimination. However, the
results for the classification of attention on real and virtual objects was not possible for
person-independent classifiers based on the implicit features. The generalizability of our
results in this study to other attentional states needs to be tested in the future.

Concerning the generalizability of the results to new participants, we are confident that
the reported results are representative for new recordings. The high number of participants
and performed cross-validations reduce a possible bias in the data. This is also visible
in the calculated 95%-confidence intervals that usually span a rather narrow frame for
expectable classification accuracies. For example, with a certainty of 95%, a participant’s
data will be classified with an accuracy between 0.744 and 0.776 if the person-independent
8 s classifier with the heterogeneous feature set is used.

4.5. Contribution to the Field

Following the findings of this work, we propose that during the classification of eye
tracking data, implicit data representations should be used as input characteristics in
addition to explicitly designed features. While this study was conducted on a data set
that included different attentional states, it is plausible to infer that the findings may be
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applied to other mental states as well. We investigated person-dependence and person-
independence, as well as different window lengths, and discussed the results in the context
of various applications or use cases.

To summarize, while the decisions on window length, training approach, and feature
choice are context dependent, the combination of implicit and explicit features is always
advisable.
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