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Abstract: With the rapid increase in encrypted traffic in the network environment and the increasing
proportion of encrypted traffic, the study of encrypted traffic classification has become increasingly
important as a part of traffic analysis. At present, in a closed environment, the classification of
encrypted traffic has been fully studied, but these classification models are often only for labeled data
and difficult to apply in real environments. To solve these problems, we propose a transferable model
called CBD with generalization abilities for encrypted traffic classification in real environments.
The overall structure of CBD can be generally described as a of one-dimension CNN and the
encoder of Transformer. The model can be pre-trained with unlabeled data to understand the
basic characteristics of encrypted traffic data, and be transferred to other datasets to complete the
classification of encrypted traffic from the packet level and the flow level. The performance of the
proposed model was evaluated on a public dataset. The results showed that the performance of the
CBD model was better than the baseline methods, and the pre-training method can improve the
classification ability of the model.

Keywords: encrypted traffic classification; deep learning; transfer learning; nature language processing;
unlabeled pre-training

1. Introduction

In recent years, with the rapid development of network technology and people’s
gradual awareness of private data, a variety of encryption technologies have been widely
used in network communications, resulting in a rapid increase in network encrypted
traffic. At the same time, encrypted traffic is also used by some people as the tool to hide
activities, which also provides an opportunity for malicious network attackers to hide
their command-and control activities. Therefore, encrypted traffic classification can better
monitor abnormal conditions in the network, and detect network attack behaviors in time.
It has also contributed to the improvement in network service performance and the creation
of a good network environment, which has gained widespread attetion from researchers.

Network traffic classification refers to using algorithms to construct a classification
model for neiwork traffic, which has three levels of granularity for tasks: sequence-based,
packet-based, and flow-based classification. The granularity can be determined according
to practical scenarios, such as application classification, protocol identification, service
analysis, etc. Network traffic classification plays a significant role in network management,
traffic control, and security detection. Meanwhile, the efficient and accurate classification
of network traffic is an important foundation for maintaining network security.

However, most of the existing research results are only implemented in a closed
environment. The experimental data are often labeled data, and training data and test
data often have high similarities. Moreover, some results tend to require more computing
resources and time. In a real environment, the data are often unlabeled, which can greatly
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decrease the performance of many classification models. To solve this problem, researchers
have tried to develop a model with a strong generalization ability.

In this work, we propose a model called CBD (based on a convolutional neural
network, bidirectional encoder representation from transformers and dense network) that
supports unlabeled data and has a certain generalization ability. It can directly learn from
unlabeled data and use this knowledge for model training. Model transfer can also be
carried out for different datasets, which only need to fine-tune the parameters to complete
the goal of encrypted traffic classification. The contributions of this paper are summarized
as follows:

• A novel encrypted traffic classification model called CBD is designed. It combines a
Convolutional Neural Network (CNN) and Bidirectional Encoder Representation from
Transformers (BERT) to automatically learn the features of traffic data from the packet
level and flow level to achieve the encrypted traffic classification for applications.

• A general pre-training method suitable for the field of encrypted traffic analysis is
proposed. For unlabeled data, this method proposes two tasks of identifying ciphertext
packets and identifying continuous flows, to deepen the model’s understanding and
learning of encrypted traffic data.

• The CBD model has achieved good results when encrypting traffic classification. In
addition, the performence of the CBD model has obvious advantages compared with
other methods.

The rest of the paper is organized as follows. Section 2 summarizes the related work
of network traffic analysis. In Section 3, we provide a detailed description of the overall
model structure. In Section 4, we introduce the specific details of the experiment, and
we evaluate and compare the experimental results. Finally, we conclude this paper in
Section 5.

2. Related Work

As a multidisciplinary subject, machine learning has three important components:
data, features, and algorithms. Traditional machine learning methods use different algo-
rithms to build models and take the features of the raw data as input. After training the
models, the expected prediction results can be obtained in the testing phase. In recent
years, there has been an increase in research on machine learning, including deep learn-
ing and transfer learning. There has also been an increase in research on network traffic
classification using these methods. In this section, we briefly introduce some methods
for network traffic classification, ranging from deep learning methods to classic transfer
learning methods, and then to the applications of Transformer model.

2.1. Applications of Deep Learning

For traditional machine learning, the relevant features of the data are not obvious
in many cases, and it is necessary to perform feature extraction and feature selection
to obtain the features that can show the data. This feature engineering often relies on
expert experience, and the quality of the features is critical to the final results. With the
development of deep learning, due to its end-to-end model structure, which can effectively
reduce the high cost of feature engineering, more and more researchers have chosen to use
deep learning in various fields. In 2015, Ref. [1] deep learning was first used in the field of
traffic analysis, and a large amount of research subsequently emerged.

In 2017, Höchst et al. [2] proposed a method for unsupervised traffic flow classification
using the statistical features of flows and clustering based on neural autoencoders. This
method was based on the feature vector of the time interval and used the semi-automatic
cluster marking method, which can effectively promote the flow classification independent
of the known class of traffic. The evaluation experiment was conducted on real datasets
captured within four months. The results showed that for seven different classes of mobile
traffic classification, this method can achieve an average accuracy of 80% and an average
recall rate of 75%.
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In 2018, Li et al. [3] proposed a Byte Segment Neural Network (BSNN) for protocol
classification based on Recurrent Neural Networks (RNN). BSNN took network datagram
as input. First, the datagram was divided into multiple byte segments. These segments
were then fed to an encoder based on RNN. The information extracted by the encoder was
combined into a representation vector of the entire datagram. Finally, the softmax function
was applied to use this vector to predict the application protocol of the datagram, provoding
the classification result. Experiments on the real-world data of different protocols showed
that the BSNN classification of five protocols can achieve an average F1-score of about
95.82%, which was better than traditional machine-learning-based methods and packet
inspection methods.

In 2019, Marín et al. [4] proposed two methods for malicious network traffic detection
based on deep learning, depending on different forms of raw data. The method based
on the raw packet combines CNN and Long Short Term Memory (LSTM) network, and
the method based on the raw flow uses CNN. The experimental results showed that the
performance of the method based on the raw packet was equivalent to that obtained
through expert knowledge, while the performance of the method based on the raw flow
was better than the performance obtained through expert knowledge. Moreover, when
the same input features were used, the deep learning model was better than the Random
Forest (RF) model used as the benchmark.

In 2020, Pacheco et al. [5] proposed a framework based on machine learning and deep
learning for the classification of heterogeneous Internet traffic in satellite communications.
The machine learning method chose rf, and the deep learning methods chose 1d and
2dcnn. This solution combined a classification solution in the satellite architecture for
QoS management. By dividing the Internet protocol technology and using the multi-label
classification method to process the tunnel connection, the Internet flow can be classified.
In addition, the specific feature extraction process of the tunnel connection was designed.
The experiment verified the reliability of the simulated Internet network placed on the
cloud platform, and also provided guidance for future work on the simulated and real
satellite platforms.

In 2020, Aceto et al. [6] combined and summarized some existing deep-learning-
based traffic classification methods, and proposed a general framework for mobile traffic
classification based on deep learning. To evaluate the framework, the authors conducted
experiments on three mobile datasets of human user activity. The results showed that the
classification result was better than the machine learning baseline method and the deep
learning baseline method.

In 2021, Hu et al. [7] proposed a model CNN LSTM Dense Network (CLD-Net) to
classify encrypted network traffic based on CNN and LSTM. This model introduced the
strategy of recombing traffic in the data-preprocessing part, which can effectively improve
the efficiency of neural network feature learning. In addition, a method for converting
the format of the time interval between adjacent packets was proposed, which can fuse
time information and payload information into a new packet matrix. The method was
validated on the public dataset ISCXVPN2016 [8]. The results showed that the method
can classify whether encrypted network flows used a Virtual Private Network (VPN) with
98% accuracy, and accurately classify the specific traffic classes of Facebook and Skype
applications with 92.89% accuracy.

2.2. Applications of Transfer Learning

Yang et al. [9] summarized the different parts of transfer learning in detail, and
provided a definition. Researchers have widely used this in various fields and combined
it with other technologies to propose many improvements. The combination of transfer
learning and deep learning is a well-known method. After the two are combined, through
pre-training and parameter fine-tuning, the high training overhead caused by too many
neural network parameters can effectively be reduced.
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In 2018, Taheri et al. [10] proposed a botnet detection system based on deep learning.
In this system, normal and botnet network traffic data were converted into images, which
were classified by DenseNet and transfer learning. The evaluation results on the CTU-
13 dataset [11] showed that the use of transfer learning can increase the accuracy from
33.41% to 99.98%. The baseline method chose Support Vector Machine (SVM) and logistic
regression, and their accuracy rates were 83.15% and 78.56%, respectively. The system
also performed well on internal real-time normal datasets and botnet datasets. The real-
time processing ability of the system was also better. During the test, it took 0.004868
milliseconds to process each packet from network traffic data.

In the same year, Sun et al. [12] proposed a traffic classification method based on
transfer learning, the so-called Transferred Adaboost (TrAdaBoost). This method used
TrAdaBoost to extract labeled traffic data from different network traffic sources, and used
the maximum entropy (Maxent) model as the basic classifier. The proposed method
realizes the transfer of traffic knowledge from the source domain to the target domain.
The experiment used a flow dataset collected at Cambridge University. In the case where
the training and test datasets were not exactly the same, this method achieved a higher
classification accuracy in the new dataset, while the performance of traffic classification
based on traditional machine learning models was significantly reduced.

In 2020, Liu et al. [13] proposed a model based on two-way gated recurrent unit and
attention mechanism (BGRUA) to classify and identify Web services running on Hyper
Text Transfer Protocol over SecureSocket Layer (HTTPS) connections. The two-way GRU
can extract the forward and backward features of the byte sequence in the sessions, and
the attention mechanism can assign weights to the features according to their contribution
to the classification. The experiment was conducted on three datasets, two of which
are publicly available HTTPS datasets, whlie the third was a dataset collected from the
backbone of China Science and Technology Network. The results showed that BGRUA was
superior to the baseline method in terms of accuracy, precision, recall and F1-score.

In 2021, Hu et al. [14] proposed a transferred CLD-Net (tCLD-Net) model combining
transfer learning and deep learning on the basis of [7]. It can be trained with only a
small amount of labeled data; that is, it can classify encrypted network traffic with a
higher accuracy. It pre-trained a CLD-Net model in the source domain dataset, fixed the
parameters of the CNN module and trained and tested it in the target domain dataset.
The effectiveness of this method was verified on the public dataset ISCXVPN2016 [8], and
the results showed that the performance was significantly improved compared with no
pre-training. When the training set only occupied 20% of the target domain, the training
time was reduced by two-thirds, and the classification accuracy was increased by more
than 4%.

Recently, Wang et al. [15] proposed a new method called adaptive fingerprint identi-
fication. This method used adversarial domain adaptation [16,17] in transfer learning to
obtain high attack accuracy for a small amount of encrypted traffic. Extensive experimen-
tal results on multiple datasets showed that the method can achieve 89% accuracy for a
small number of encrypted traffic in a closed world setting, and 99% accuracy and 99%
recall in an open world setting. Compared with the recent Triplet Fingerprinting [18], this
method was more efficient in terms of pre-training time and more scalable, and its attack
performance was better than Triplet Fingerprinting in both closed-world evaluation and
open-world evaluation.

2.3. Applications of Transformer Model

With the wide application of the Transformer model [19] proposed in 2017 in the field
of natural language processing (NLP), researchers began to apply the Transformer model
to traffic analysis tasks based on the similarity of the research objects.

In 2020, Bikmukhamedo et al. [20] introduced a network traffic model based on
the generated Transformer to generate and classify network traffic. The model used
autoregressive training to generate network traffic, and then used Kolmogorov–Smirnov
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statistics to evaluate the generated traffic, to achieve the goal of classification. Experimental
results showed that the generated pre-training had a positive impact on the quality of
traffic classification tasks. In the case of using the pre-trained model as the feature extractor
of the linear algorithm, the classification performance was close to the RF trained on the
raw stream. After training the model, the average macro F1-score of the classifier was 4%
better than the classifier of the ensemble class.

In 2021, Wang et al. [21] designed a hybrid neural network (Distributed Denial of
Service (DDoS) Traffic Classification (DDosTC) model. The model combined an efficient
and scalable Transformer and CNN to detect DDoS attacks on Software Defined Network
(SDN), and was tested on the latest dataset CIC-DDoS2019 [22]. The experiment was
carried out many times by dividing the dataset, and compared with the latest deep learning
detection algorithm applied in the field of distributed denial of service intrusion detection.
Experimental results showed that the average Area Under Curve (AUC) of DDosTC is
2.52% higher than the current optimization model. In terms of average accuracy, recall and
F1-score, DDosTC was more successful than the current optimization model.

Kozik et al. [23] proposed a core anomaly detection classifier in the same year. It is
based on the Transformer Encoder component, followed by a feedforward neural network.
A time window embedding solution was also proposed, which can process large amounts
of data efficiently and has a low memory footprint. The experiment verified the effective-
ness of this method on the dataset Aposemat IoT-23 [24], compared it with other classic
machine learning algorithms, and discussed their effectiveness in IoT-related environments.
The results showed that the average accuracy, recall and F1-score of this method were
significantly better than other baseline methods.

Afterwards, Google proposed a pre-trained language representation model BERT
based on Transformer [25] in 2019. It became a hot new method in the fields of NLP,
computer vision, etc., producing a large amount of related research. However, there is little
research on the use of BERT in traffic classification tasks [26].

In 2021, He et al. [26] introduced the BERT model to traffic classification, and proposed
a model Payload Encoding Representation from Transformer (PERT) that uses dynamic
word embedding technology to automatically extract traffic features. The unlabeled traffic
was used to pre-train the encoding network, and the encoding network learned the context
distribution of the traffic. When performing downstream classification tasks, the pre-
trained network was reused to enhance the classification results. Through experiments on
public encrypted traffic datasets and Android HTTPS traffic captured by the authors, the
results showed that this method was significantly better than other baseline methods.

We also conducted research based on BERT and combined with CNN. From the
perspective of packet and flow, we propose a general pre-training method and design an
encrypted traffic classification model. This paper is only for the payloads of the packets.
Compared with some other traffic classification studies, this work does not extract any
Transmission Control Protocol/Internet Protocol (CP/IP) header information, 5-tuple
information (5-tuple is [source IP, source port, destination IP, destination port, transport
protocol]), or other obvious ipacket nformation.

3. Model Structure

Encrypted traffic has many characteristics, such as high entropy, unobvious statistical
characteristics, and a weak correlation between adjacent bytes. It is difficult to extract
features manually and they cannot be well represented. It may be difficult to directly use
traditional or classic methods in other fields, such as NLP and CV, to classify encrypted
traffic. Therefore, we designed a CBD model for encrypted traffic, and the overall structure
is shown in Figure 1, including three modules: CNN module, BERT module, and Dense
module. The process of the entire model includes the pre-training process and the fine-
tuning process.

The left side of Figure 1 represents the pre-training process, the right side represents
the fine-tuning process, and the dotted arrow represents the transfer of the module.
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Figure 1. The overall framework of the CBD model.

3.1. Data Preprocess

For the raw traffic data, the data must be preprocessed before they can be input
into the neural network model. The preprocess mainly includes traffic segmentation,
traffic cleaning, traffic conversion and time interval integration. Algorithm 1 represents
the process.

Algorithm 1 Preprocessing Algorithm.

Input: Raw network traffic dataset D; Number of traffic classes c;
Output: Packet stream set P;

1: for each i ∈ [1, c] do
2: Randomly select n consecutive 10 packets in D;
3: for each j ∈ [1, 10× n] do
4: Trim packetj and uniform length of 256 bytes, packetj → p′j;
5: Generate the packet stream, payload p′j → pj;
6: Count the time interval of pj and pj+1;
7: if the time interval between pj and pj+1 < 1 sencond then
8: Continue
9: else

10: Add p0 between pj and pj+1, where p0 = (1, ..., 1)256;
11: end if
12: end for
13: Generate packet stream set Pi = {p1, ..., p0, ..., p0, ..., p10∗n};
14: end for
15: return Packet stream set P = {P1, P2, ..., Pc};



Sensors 2021, 21, 8231 7 of 18

Line 2 is traffic segmentation. Several flow segments with a window of 10 are randomly
intercepted, that is, each flow segment contains 10 consecutive packets.

Line 4 is traffic cleaning. The payload part of each packet is read, and then the length
is unified, the first 256 bytes of each packet are intercepted, and 0 is filled in if the result is
less than 256 bytes to obtain the raw stream

p′ = (b1, b2, · · · , b8×256). (1)

Line 5 is traffic conversion. The raw stream is converted to decimal, and a value of
0-255 is taken, according to each byte; then, a 256-dimensional sequence p is obtained.

Line 6–9 is time interval integration. According to the statistical results of the time
interval between two adjacent packets of different classes [7], a blank packet is inserted if
the packet interval is more than 1s, and the packet within 1s is ignored. The blank packet
uses a 256-dimensional stream of all 1s to represent the payload, which can prevent the
parameters of each neuron in the neural network from being invalidated by multiplying by
0 when encountering a blank packet.

Finally, the preprocessed packet stream set P is obtained, and the model can be input
in the next step.

3.2. CNN Module

The structure of the CNN module is shown in Figure 2. It consists of a 1D-CNN model,
including four convolutional layers and three pooling layers.

Figure 2. The framework of the CNN module.

The input is a 256-dimensional vector p, the kernel size of the first convolutional layer
is 3, and the number of output channels is 10; therefore, the output is a 10× 254-dimensional
matrix. The kernel size of the second convolutional layer is also 10. After the convolutional
layer, a max pooling layer with a pooling size of 3 and a stride length of 1 is applied,
and the number of output channels is 20; therefore, the output is a 20× 250-dimensional
matrix. The third and fourth layers are consistent with the second layer method, and the
number of output channels is 10 and 1 respectively, resulting to a 242-dimensional vector
as output. Finally, a Dense module is connected for dimensionality reduction to facilitate
the subsequent operation of the BERT module.

3.3. BERT Module

The structure of the BERT module is shown in Figure 3, based on the BERT model
in [25].
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Figure 3. The framework of the BERT module.

The BERT model [21] is mainly composed of the Encoder of the Transformer
model [17]. The encoder has six layers, and each layer contains two sub-layers, which are a
multi-head attention mechanism and a fully connected feedforward network. A sentence X
is input into the Encoder, X ∈ Rbatch_size×seq_len, whose dimension is [batch_size, seq_len].

Initially, position embedding is performed, obtaining [batch_size, seq_len, embed_dim]-
dimension Xembed ∈ Rbatch_size×seq_len×embed_dim,

Xembed = EmbeddingLookup(X) + PositionEncoding. (2)

For the multi-head attention mechanism sub-layer, to learn the expression of multiple
meanings, a linear mapping is made of Xembed. Three weights are assigned WQ, WK, WV ∈
Rembed_dim×embed_dim, and three matrices Q, K, V are formed after linear mapping, which is
consistent with the dimension before linear transformation.

Q = Linear(Xembed) = XembedWQ, (3)

K = Linear(Xembed) = XembedWK, (4)

V = Linear(Xembed) = XembedWV . (5)

The number of heads is defined as h, head_size = embed_dim/h. After splitting accord-
ing to head_size, the dimensions of Q, K, V are [batch_size, seq_len, h, embed_dim/h], after
transposition is [batch_size, h, seq_len, embed_dim/h].

For the i-th head, the dimensions of Qi, Ki, Vi are all [batch_size, seq_len, embed_dim/h];
then, the output of the i-th head is

headi = Attention(Qi, Ki, Vi) = so f tmax

(
QiKT

i√
dk

)
Vi. (6)

where dk is the dimension of Ki, dk = [batch_size, seq_len, embed_dim/h].
For the multi-head attention mechanism sub-layer, the information of each head is

connected to obtain Xhidden : [batch_size, seq_len, embed_dim],

Xhidden = MultiHead(Q, K, V) = Concat(head1, ..., headh). (7)

Then, residual connection and normalization are performed. Since the dimensions
of Xembed and Xhidden are the same, we can directly add the elements to make the resid-
ual connection. Then, this is normalized to the standard normal distribution, obtaining
LayerNorm(Xembed + Xhidden).

After each sub-layer, a residual connection and normalization will be added, so the
output of each sub-layer is
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SubLayer_output = LayerNorm(X + (SubLayer(X))). (8)

The BERT model [25] contains two tasks. The first task, Masked Language Model
(MLM), is a token-level task that can solve the problem where bidirectional model causes
the predicted next word to appear in a given sequence. A part of the token is randomly
masked in proportion, so that the model predicts and restores the part that is covered
or replaced. The second task, Next Sentence Prediction (NSP), is a sentence-level task.
Since many NLP downstream tasks are based on the relationship between sentences, it is
necessary to determine whether two adjacent sentences are contextual.

In the BERT module we designed, we set the number of layers of Transformer Encoder
to 4, 8 and 12, respectively. Since each flow segment contains 10 consecutive packets, each
packet becomes a packet stream after preprocessing. After adding the time interval, a flow
segment contains up to 15 packets. Therefore, to enable a flow segment to be input into the
BERT module for processing at the same time, it is assumed that a flow contains 15 packets.
If there are fewer than 15 packets, blank packets are inserted before completion. That is,
the BERT module gathers 15 outputs of the previous module as input at a time. A Dense
module is also connected after the BERT module for final classification.

3.4. Dense Module

The structure of the Dense module is shown in Figure 4, which is mainly composed of
a fully connected layer.

Figure 4. The framework of the Dense module.

After the CNN module and BERT module, there are Dense modules, respectively.
Dense module 1 after the CNN module contains a fully connected layer, which can change
the dimension of the output of the CNN module to a dimension suitable for the input of the
BERT module. Dense module 2 after the BERT module is also a fully connected layer, and
the specific parameter settings are determined by the number of final classification classes.

3.5. Pre-Training of Unlabeled Data

The pre-training proposed in this paper contains two stages, which correspond to the
two tasks of the BERT model pre-training.

The first stage is based on the packet level, which corresponds to the token-based
MLM task in the BERT model. This stage mainly trains the model’s understanding of
encrypted packets. By calculating the entropy value of the payload, each packet is divided
into a plaintext packet and a ciphertext packet.

For a packet, extract the payload part, get p = {x1, x1, . . . , xn}, calculate the entropy
of each packet,

H = −
n

∑
i=1

P(xi) log2 P(xi), 1 ≤ i ≤ n, (9)

Entropy is a measure of the degree of chaos in the system. The larger the entropy,
the more chaotic the system and the less information it carries. For plaintext payload and
ciphertext payload, the principle is similar. The entropy of the plaintext payload should
be much smaller than the entropy of the ciphertext payload, because encrypted data have
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high randomness and do not contain obvious information. By calculating and comparing
experimental data, we set the threshold of entropy H0 = 4.{

H(p) < H0, p ∈ Pplain

H(p) ≥ H0, p ∈ Pcipher.
(10)

when H ≥ H0, the packet is considered to be a ciphertext packet; when H < H0, the packet
is considered to be a plaintext packet.

The labeled plaintext and ciphertext packets are utilized to train the model, to identify
encrypted packets. After completing the first stage of pre-training, proceed to the second
stage of tasks.

The second stage is based on the flow level, which corresponds to the sentence-based
NSP task in the BERT model. This stage mainly trains the model’s understanding of a
flow, that is, the understanding of the relationship between packets. Initially, positive and
negative sample sets are constructed.

The positive sample set S+ contains n positive samples,

S+ = {s+1 , s+2 , ..., s+n }. (11)

the positive sample s+ is defined as a continuous flow F, where each flow contains 10
consecutive packets, denoted as

s+i , Fi = {pi
1, pi

2, ..., pi
10}, 1 ≤ i ≤ n. (12)

The negative sample set S− has the same number as the positive sample set S+, and
contains n negative samples.

S− = {s−1 , s−2 , ..., s−n }. (13)

the negative sample s− is defined as a discontinuous flow F̄, which is obtained by transform-
ing the positive sample. Each packet in the positive sample is replaced with other packets
with a certain probability, and the sample after the replacement is called a negative sample.

s−i , F̄i = { f (pi
1), f (pi

2), ..., f (pi
10)}, 1 ≤ i ≤ n, (14)

f (pi
j) =

{
pi

j (P = 0.7)

pi′
j′ (P = 0.3)

, (i′, j′) 6= (i, j), 1 ≤ j ≤ 10. (15)

The labeled positive and negative sample sets are utilized to train the model so that
it can distinguish whether a flow is continuous. After completing the pre-training, the
CBD model will be further fine-tuned according to the downstream task—encrypted traffic
classification—to achieve the final goal.

3.6. Model Transfer and Fine-Tune

In the entire CBD model, some modules will perform the transfer based on supervised
learning. In this transfer process, the structure of the module is fixed, but the parameters
will change according to the tasks after the transfer. This transfer method is also called
parameter fine-tuning under supervised learning in the deep model.

It should be noted that, in addition to the three modules in the fine-tuning phase, we
will also transfer the CNN module and the Dense module in the pre-training phase.

After the CBD model is fine-tuned, it will output the predicted classification results in
the test phase. We will evaluate the classification results in the next section.

4. Experiment

This section mainly describes the experimental settings, experimental evaluation
metrics, and specific experimental results to verify the effectiveness of the CBD model
proposed in this paper.
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4.1. Experimental Settings

This paper used the public dataset ISCXVPN2016 [8] published by the Canadian
Institute of Cyber Security, University of New Brunswick in the downstream task of
encrypted traffic classification. We choosed the traffic data of the two social networks
Facebook and Skype as the experimental data. Facebook traffic included two applications:
chat and audio, and Skype traffic included two applications, chat and file transfer. The
traffic of each specific application can be encapsulated by VPN protocol, or just ordinary
network traffic nonVPN. The experiment used eight classes of data, a total of 8000 samples.
Each class randomly selects 1000 samples from ISCXVPN2016, and each sample is a flow
segment, that is, it contains 10 consecutive packets. The specific data classes are shown in
Table 1.

Table 1. Data classes of encrypted traffic.

Encrypted Application
Traffic Classes

VPN

Facebook
vpn-facebook-chat

vpn-facebook-audio

Skype
vpn-skype-chat

vpn-skype-file

nonVPN

Facebook
facebook-chat

facebook-audio

Skype
skype-chat

skype-file

In the pre-training process, the plaintext packet in the first stage is composed of
256-byte plaintext, and the ciphertext packet is composed of randomly selected data, other
than the eight classes of data mentioned above, regardless of the class and data volume. In
the second stage, 5000 samples are randomly selected to generate a positive sample set, and
the class is also ignored. The negative sample set is obtained through the transformation of
the positive sample set.

4.2. Evaluation Metrics

When evaluating the performance of a model, the class of interest is usually regarded
as the positive class, and the other classes are regarded as the negative class. The evaluation
index is usually formulated with four basic conditions: True Positive (TP), which predicts
the positive class as a positive class. False Positive (FP), predicts the negative class as a
positive class. True Negative (TN), predicts the negative class as a negative class. False
Negative (FN), predicts the positive class as a negative class. We use five commonly
used evaluation metrics—Accuracy, F1-score, Precision, Recall, and Area Under Curve
(AUC)—as a basis for evaluating the performance of the model.

Accuracy is the ratio of the number of correctly classified samples to the total number
of samples for a given data.

Accuracy =
TP + TN

TP + TN + FP + FN
=

ncorrect

n
. (16)

where ncorrect represents the number of samples that are correctly predicted, and n repre-
sents the total number of samples.

F1-score is the harmonic average of Precision and Recall. Precision refers to the
proportion of the real class in the sample predicted as the positive class, and Recall refers
to the proportion of all the positive classes that are predicted to be the positive class.

2
F1-score

=
1

Precision
+

1
Recall

, (17)
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F1-score = 2Precision× Recall
Preciaion + Recall

, (18)

Precision =
TP

TP + FP
, (19)

Recall =
TP

TP + FN
. (20)

In multi-class problems, we calculate the macro-F1-score. The macro-F1-score cal-
culates the F1-score for each class separately, and then takes the unweighted average.
Macro-precision and macro-recall are the same.

macro-F1-score =
1
C

C

∑
i=1

F1-scorei, (21)

macro-Precision =
1
C

C

∑
i=1

Precisioni, (22)

macro-Recall =
1
C

C

∑
i=1

Recalli. (23)

where C represents the number of classes.
The ROC Curve (receiver operating characteristic curve) is a curve obtained by using

the False Positive Rate (FPR) as the x-axis and True Positive Rate (TPR) as the y-axis. The
larger the area of the AUC, the better the classification effect. FPR represents the probability
that negative samples are mistakenly classified as a positive class, and TPR represents the
probability of positive samples are correctly classified as a positive class.

TPR =
TP

TP + FN
, (24)

FPR =
FP

FP + TN
. (25)

4.3. Experimental Results

The CBD model selects 4-layer, 8-layer, and 12-layer BERT for experiments. The
experiment is an eight-class experiment; that is, the random classification accuracy rate is
12.5%. In the experiment, we found that an eight-layer BERT can achieve the best results.

In order to demonstrate the performance of our proposed model, we perform experi-
ments on a small-scale dataset, as shown below:

1. Sample Size = 20% or 0.2 (200 samples are randomly selected from each class of data
to form a new dataset);

2. Sample Size = 40% or 0.4 (400 samples are randomly selected from each class of data
to form a new dataset);

3. Sample Size = 60% or 0.6 (600 samples are randomly selected from each class of data
to form a new dataset);

4. Sample Size = 80% or 0.8 (800 samples are randomly selected from each type of data
to form a new dataset).

Additionally, we perform eight-class experiments on four different sample sizes to
compare three types of BERT. The results are shown in Figure 5.



Sensors 2021, 21, 8231 13 of 18

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BERT layers=4 BERT layers=8 BERT layers=12

Sample Size=0.2 Sample Size=0.4 Sample Size=0.6 Sample Size=0.8

Figure 5. The three models with different BERT layers and eight-class accuracy on four sample sizes.
The abscissa is the BERT model with three different layers, the ordinate is the eight-class accuracy,
and the four colors represent four different sample sizes.

It can be seen from Figure 5 that the classification accuracy of all three models increases
as the sample size increases. Overall, the eight-layer BERT model has the best effect. It can
achieve a classification accuracy of 70% in a sample size of 0.2, and it also performs best in
a sample size of 0.4, reaching a classification accuracy of approx. 84%. As the sample size
increases, the advantages of the eight-layer BERT model compared to the other two are no
longer obvious.

Table 2 shows the detailed comparison results under the four metrics.

Table 2. Classification performance of models with different BERT layers—sample size=0.4, pre-training epoch = 200.

Metrics
Models 4-Layer BERT 6-Layer BERT 8-Layer BERT 10-Layer BERT 12-Layer BERT

Accuracy 0.8163 0.82 0.8388 0.8263 0.7788

macro-F1-score 0.8147 0.8197 0.8397 0.8242 0.7793

macro-Precision 0.8161 0.8225 0.8449 0.8321 0.7924

macro-Recall 0.8150 0.8192 0.8381 0.8239 0.7769

It can be seen from Table 2 that, when the number of layers is too low, the model
learning ability is poor, the improvement speed is slow, and the final performance is not
high enough. When the number of layers is too high, the model is too complex, and
when the sample size provided by the target task is limited, the model’s improvement
performance is limited. Therefore, in the experiment, the performance of the CBD model of
the eight-layer BERT is the best.

The general pre-training method is an important part of the CBD model. To verify
the effectiveness of the pre-training method, we compare the CBD model with the no
pre-training CBD model, and the results are shown in Figure 6.
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Figure 6. ROC curve of eight-layer BERT (best) at 40% sample size. The picture on the left (a) is
the model without pre-training, and the picture on the right (b) is the model with pre-training. The
abscissa is the FPR, and the ordinate is the TPR. The eight colors represent the eight classes of data in
the downstream tasks.

It can be seen from Figure 6 that no pre-training model performed worse than original
CBD model. For a complex model with many BERT layers and many neuron parameters,
the accuracy without pre-training is not good. This is due to insufficient data and insuf-
ficient model learning. However the pre-trained model has been fully learned, and the
higher the number of layers layers, the stronger the learning ability. The model has learned
the hidden features in the data, so the accuracy is high. However, after reaching a certain
level, the performance improvement brought by increasing the number of layers is very
limited. In addition, we found that, without pre-training, the smaller the sample size, the
more the number of training failures.

In order to verify whether the number of pre-training epochs has an effect on the final
classification result, we set different pre-training epochs and compared the experimental
results. The results are shown in Table 3.

Table 3. The classification performance of models with different pre-training epochs when the number of BERT layers is
eight and sample size is 0.4.

Metrics
Epochs 40 100 200 400 800

Accuracy 0.8062 0.8175 0.8388 0.8338 0.8163

macro-F1-score 0.8042 0.8160 0.8397 0.8341 0.8146

macro-Precision 0.8127 0.8184 0.8449 0.8370 0.8170

macro-Recall 0.8053 0.8161 0.8381 0.8335 0.8149

We also observed the changes in the model accuracy during the training process, and
the results are shown in Figure 7.

It can be seen from Table 3 and Figure 7 that the higher the number of pre-training
epochs, the more adequate the pre-training, and the better the performance of the model.
However, after more than 200 epochs, the increase in pre-training brings little performance
improvement. Therefore, we chose the optimal pre-training epochs number of 200.
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Figure 7. The impact of different pre-training epochs on accuracy when sample size is 0.4. The
abscissa is the number of epochs during training in the downstream task, and the ordinate is the
classification accuracy of the test. The four colors represent the performance of the eight-layer BERT
in different epochs during pre-training.

To verify the indispensability of each module in the CBD model, we compare the
CBD model with other models. First, the necessity of the BERT module is verified. tCLD-
Net is similar to the CBD model, which combines deep learning and transfer learning.
The difference is that tCLD-Net did not use the BERT module, but the LSTM module.
We compared the two models in the same dataset. The dataset is in the target domain
mentioned in [14]. The comparison results are shown in Figure 8.
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Figure 8. Test results on the three-class target domain. The abscissa represents the sample size,
and the ordinate represents the accuracy of classification. The four colors represent CBD Model,
tCLD-Net, CBD Model without pre-training and CLD-Net without transfer.

It can be seen from Figure 8 that the CBD Model performs better than tCLD-Net on
the three-class dataset. However, it is worth noting that the pre-training of tCLD-Net (also
called source domain training) is based on label data, and a large amount of artificially
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labeled label data need to be provided. For the CBD Model, the performance is similar
when the target task training set is the same, and the pre-training data do not need to be
artificially provided with labels. In addition, the performance of the no pre-training CBD
Model is worse than the no pre-training CLD-Net when the amount of data is insufficient.
This is caused by the high complexity of the model and insufficient amount of data.

In order to verify the necessity of CNN module, we removed the CNN module in
the CBD model. An embedding layer was directly embedded on the ciphertext packet,
and then the BERT module and the Dense module were connected to form an Embedding
BERT Dense (EBD) model. The results of a comparison between the performance of the
EBD model and the CBD model are shown in Table 4.

Table 4. Evaluation metrics of CBD model and EBD model when BERT layers = 8, sample size = 0.4,
and pre-training epoch = 200.

Metrics
Models CBD EBD

Accuracy 0.8388 0.5462

macro-F1-score 0.8397 0.5372

macro-Precision 0.8449 0.5693

macro-Recall 0.8381 0.5512

It can be seen from Table 4 that the classification effect of the EBD model is poor,
and the time efficiency of the EBD model in the experiment is very low. When BERT is
directly used for data with a close contextual correlation, the effect is better, but the context
correlation of encrypted data is deliberately confused and the correlation is weak; therefore,
the effect of the EBD model is poor. The reason for the unsatisfactory effect of the EBD
model may be that a sample in the experiment is 10 consecutive packets randomly selected
from a flow, and the sample data are likely to be ciphertext packets. If the experiment does
not randomly select, but selects the first 10 packets of a flow as a sample, it is likely to
obtain plaintext packets or handshake packets. At this time, the performance of the EBD
model may be better than the current results. Therefore, CNN has an irreplaceable role.

In addition, if there is no CNN module and no Embedding layer, directly using the
Bert module to learn the packet payload is equivalent to encoding the payload, and every
two bytes are mapped to a number, that is, 0-65535. In this encoding process, every two
bytes correspond to a word in NLP. At this time, when this model is iterated to 60 epochs,
the classification accuracy of 8-class fluctuates at around 10%, and the highest is 10.25%.
Therefore, every module in the CBD model is indispensable.

We also select five models in the existing researches to compare with the CBD model.
The five models are one-dimensional CNN (1D-CNN) and two-dimensional CNN (2D-
CNN) mentioned in [5], Stacked Autoencoder (SAE) mentioned in [2], a combination of
CNN and LSTM (CNN-LSTM) mentioned in [4], and CLD-Net mentioned in [7]. The five
models are all performed on the dataset mentioned in this paper. The comparison results
are shown in Figure 9.

The comparative experiments are implemented on a three-class dataset. It can be seen
from Figure 9 that the accuracy of the CBD model is the highest, reaching more than 91%.
CLD-Net also has good results, which may be related to the traffic recombination strategy
mentioned in [4]. The accuracy of 1D-CNN, 2D-CNN, SAE, and CNN-LSTM models are all
less than 80%. This may be due to the small sample size and the simple structure of several
models, which makes it unable to learn and understand the hidden features of encrypted
traffic. At the same time, the sample of our experiment is a random 10 consecutive packets
without header information or handshake phase packets. Some existing traffic classification
models may not randomly select packets in their own experiments. This contains not only
the payload, but also other information. However, the data in the real situation often only
have payload information, so the effect of experimenting with several existing models is
not ideal.
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Figure 9. Accuracy comparison results of several models when the sample size is 0.4.

5. Conclusions

In this paper, we proposed an encrypted traffic classification model with a general
pre-training method. Compared with other traffic classification methods that combine deep
learning and transfer learning, this model can directly learn the basic characteristics of
traffic data from unlabeled data, and use CNN and BERT to automaticly learn the features
of traffic from the perspective of packets and flows. The experiment was performed on the
public dataset, and a class-balanced dataset was constructed for eight-class tasks. When
the sample size was only 0.4 and the number of BERT layers was eight, the CBD model
could achieve a classification accuracy of more than 91% in three-class tasks. In eight-class
tasks, the classification accuracy rate could reach about 84%, which was nearly 8% higher
than that of the model without pre-training. The eight-class tasks refer to the encrypted
traffic classification tasks performed on the balanced dataset proposed in this paper, and
the three-class tasks refer to the classification tasks performed on the target domain dataset
mentioned in [14].

In future work, we will consider the classification of unknown classes of encrypted
traffic to further fit the actual network environment. At the same time, the classification
of real-time network traffic will also be regarded as the research goal of the next stage.
Another research direction is designing a model that uses less time and computational
resource, which can detect and classify unknown traffic, and supports real-time updates.

Author Contributions: Conceptualization, C.G.; methodology, X.H. and Y.C.; software, X.H. and
Y.C.; validation, X.H.; formal analysis, X.H.; investigation, X.H.; resources, C.G. and F.W.; data
curation, X.H. and Y.C.; writing—original draft preparation, X.H.; writing—review and editing, X.H.;
visualization, X.H. and Y.C.; supervision, C.G. and F.W.; project administration, C.G. and F.W. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China grant number
61772548.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: https://www.unb.ca/cic/datasets/vpn.html (accessed on 18 June 2021).

Conflicts of Interest: The authors declare no conflict of interest.

https://www.unb.ca/cic/datasets/vpn.html


Sensors 2021, 21, 8231 18 of 18

References
1. Wang, Z. The Applications of Deep Learning on Traffic Identification. BlackHat USA 2015, 24, 1–10.
2. Höchst, J.; Baumgärtner, L.; Hollick, M.; Freisleben, B. Unsupervised Traffic Flow Classification Using a Neural Autoencoder. In

Proceedings of the 2017 IEEE 42nd Conference on Local Computer Networks (LCN), Singapore, 9–12 October 2017; pp. 523–526.
3. Li, R.; Xiao, X.; Ni, S.; Zheng, H.; Xia, S. Byte Segment Neural Network for Network Traffic Classification. In Proceedings of the

2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS), Banff, AB, Canada, 4–6 June 2018; pp. 1–10.
4. Marín, G.; Casas, P.; Capdehourat, G. Deep in the Dark—Deep Learning-Based Malware Traffic Detection without Expert

Knowledge. In Proceedings of the 2019 IEEE Security and Privacy Workshops (SPW), San Francisco, CA, USA, 23 May 2019;
pp. 34–42.

5. Pacheco, F.; Exposito, E.; Gineste, M. A framework to classify heterogeneous Internet traffic with Machine Learning and Deep
Learning techniques for satellite communications. Comput. Netw. 2020, 173, 107213. [CrossRef]

6. Aceto, G.; Ciuonzo, D.; Montieri, A.; Pescapé, A. Toward effective mobile encrypted traffic classification through deep learning.
Neurocomputing 2020, 409, 306–315. [CrossRef]

7. Hu, X.; Gu, C.; Wei, F. CLD-Net: A Network Combining CNN and LSTM for Internet Encrypted Traffic Classification. Secur.
Commun. Netw. 2021, 2021, 5518460. [CrossRef]

8. Lashkari, A.; Draper-Gil, G.; Mamun, M.; Ghorbani, A. Characterization of Encrypted and VPN Traffic Using Time-Related
Features. In Proceedings of the International Conference on Information Systems Security and Privacy (ICISSP), Rome, Italy,
19–21 February 2016.

9. Pan, S.; Yang, Q. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 297–315. [CrossRef]
10. Taheri, S.; Salem, M.; Yuan, J. Leveraging Image Representation of Network Traffic Data and Transfer Learning in Botnet Detection.

Big Data Cogn. Comput. 2018, 2, 37. [CrossRef]
11. Garcia, S.; Grill, M.; Stiborek, J.; Zunino, A. An empirical comparison of botnet detection methods. Comput. Secur. J. 2014, 45,

100–123. [CrossRef]
12. Sun, G.; Liang, L.; Chen, T.; Xiao, F.; Lang, F. Network traffic classification based on transfer learning. Comput. Electr. Eng. 2018,

69, 920–927. [CrossRef]
13. Liu, X.; You, J.; Wu, Y.; Li, T.; Li, L.; Zhang, Z.; Ge, J. Attention-based bidirectional GRU networks for efficient HTTPS traffic

classification. J. Inf. Sci. Eng. 2020, 541, 297–315. [CrossRef]
14. Hu, X.; Gu, C.; Chen, Y.; Wei, F. tCLD-Net: A Transfer Learning Internet Encrypted Traffic Classification Scheme Based on

Convolution Neural Network and Long Short-Term Memory Network. In Proceedings of the 2021 International Conference on
Communications, Computing, Cybersecurity, and Informatics (CCCI), Beijing, China, 15–17 October 2021; pp. 1–5.

15. Wang, C.; Dani, J.; Li, X.; Jia, X.; Wang, B. Adaptive Fingerprinting: Website Fingerprinting over Few Encrypted Traffic. In
Proceedings of the 11th ACM Conference on Data and Application Security and Privacy, Virtual Event, 26–28 April 2021.

16. Ganin, Y.; Ustinova, E.; Ajakan, H.; Germain, P.; Larochelle, H.; Laviolette, F.; Marchand, M.; Lempitsky, V. Domain-adversarial
training of neural networks. J. Mach. Learn. Res. 2016, 17, 2030–2096.

17. Tzeng, E.; Hoffman, J.; Saenko, K.; Darrell, T. Adversarial Discriminative Domain Adaptation. In Proceedings of the 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2962–2971.

18. Sirinam, P.; Mathews, N.; Rahman, M.; Wright, M. Triplet Fingerprinting: More Practical and Portable Website Fingerprinting
with N-shot Learning. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, London,
UK, 11–15 November 2019.

19. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.; Kaiser, L.; Polosukhin, I. Attention is all you need. Adv.
Neural Inf. Process. Syst. 2017, 5998–6008.

20. Bikmukhamedo, R.; Nadeev, A. Generative transformer framework for network traffic generation and classification. T-Comm-
Telecommun. Transp. 2020, 14, 11. [CrossRef]

21. Wang, H.; Li, W. DDosTC: A Transformer-Based Network Attack Detection Hybrid Mechanism in SDN. Sensors 2021, 21, 5047.
[CrossRef]

22. Sharafaldin, I.; Lashkari, A.; Hakak, S.; Ghorbani, A. Developing Realistic Distributed Denial of Service (DDoS) Attack Dataset
and Taxonomy. In Proceedings of the IEEE 53rd International Carnahan Conference on Security Technology, Chennai, India, 1–3
October 2019.
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