ﬁ Sensors

Article

An SDN-Based Solution for Horizontal Auto-Scaling and Load
Balancing of Transparent VNF Clusters

Alejandro Llorens-Carrodeguas *(7, Irian Leyva-Pupo *{), Cristina Cervell6-Pastor 1*

and Shuaib Siddiqui 3

check for

updates
Citation: Llorens-Carrodeguas, A.;
Leyva-Pupo, I; Cervello-Pastor, C.;
Pifieiro, L.; Siddiqui, S. An
SDN-Based Solution for Horizontal
Auto-Scaling and Load Balancing of
Transparent VNF Clusters. Sensors
2021, 21, 8283. https://doi.org/
10.3390/521248283

Academic Editor: Francisco J.

Gonzélez-Castafio

Received: 5 November 2021
Accepted: 8 December 2021
Published: 11 December 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Luis Pifieiro 2

Department of Network Engineering, Universitat Politecnica de Catalunya (UPC), 08860 Castelldefels, Spain
Bequant, 28003 Madrid, Spain; lpineiro@bequant.com

i2CAT Foundation, 08034 Barcelona, Spain; shuaib.siddiqui@i2cat.net

* Correspondence: alejandro.llorens@entel.upc.edu (A.L.-C.); irian.leyva@entel.upc.edu (L.L.-P.);
cristina@entel.upc.edu (C.C.-P.)

w N =

Abstract: This paper studies the problem of the dynamic scaling and load balancing of transparent
virtualized network functions (VNFs). It analyzes different particularities of this problem, such as
loop avoidance when performing scaling-out actions, and bidirectional flow affinity. To address
this problem, a software-defined networking (SDN)-based solution is implemented consisting of
two SDN controllers and two OpenFlow switches (OFSs). In this approach, the SDN controllers run
the solution logic (i.e., monitoring, scaling, and load-balancing modules). According to the SDN
controllers instructions, the OFSs are responsible for redirecting traffic to and from the VNF clusters
(i.e., load-balancing strategy). Several experiments were conducted to validate the feasibility of this
proposed solution on a real testbed. Through connectivity tests, not only could end-to-end (E2E)
traffic be successfully achieved through the VNF cluster, but the bidirectional flow affinity strategy
was also found to perform well because it could simultaneously create flow rules in both switches.
Moreover, the selected CPU-based load-balancing method guaranteed an average imbalance below
10% while ensuring that new incoming traffic was redirected to the least loaded instance without
requiring packet modification. Additionally, the designed monitoring function was able to detect
failures in the set of active members in near real-time and active new instances in less than a minute.
Likewise, the proposed auto-scaling module had a quick response to traffic changes. Our solution
showed that the use of SDN controllers along with OFS provides great flexibility to implement
different load-balancing, scaling, and monitoring strategies.

Keywords: auto-scaling; bidirectional flow affinity; load balancing; NFV; SDN; transparent VNF

1. Introduction

Technologies such as network function virtualization (NFV) [1] and multi-access edge
computing (MEC) play a key role in the realization of 5G and beyond networks. NFV
decouples the network functions’ (NFs) logic from proprietary hardware and runs them
as software applications on general-purpose hardware [2]. This technology is expected to
not only reduce capital expenditure (CAPEX) and operational expenditure (OPEX), but
also improve business agility by introducing new ways to design, orchestrate, deploy, and
manage network services (NSs). Additionally, MEC [3] brings computing, storage, and
networking resources closer to the users.

The placement of applications and NFs, such as user plane functions (UPFs), at the
network edge, provides significant improvements in the end-to-end (E2E) response time
and bandwidth consumption, thus reducing the occurrence of bottlenecks in the network
backhaul [4]. However, the application of optimized placement strategies along with the
use of acceleration solutions is required to meet stringent 5G requirements for ultra-high
bandwidth and ultra-low latency (e.g., high throughput with 1-10 Gbps and less than 1 ms
response time in the data plane). A common approach to boost UPF performance is to

Sensors 2021, 21, 8283. https:/ /doi.org/10.3390/s21248283

https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4329-7962
https://orcid.org/0000-0001-6356-5840
https://orcid.org/0000-0002-8056-0774
https://orcid.org/0000-0002-8257-4969
https://doi.org/10.3390/s21248283
https://doi.org/10.3390/s21248283
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21248283
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21248283?type=check_update&version=2

Sensors 2021, 21, 8283

2 0f 23

integrate the UPF software networking elements with hardware-assisted network interface
controllers (NICs), such as field-programmable gate arrays (FPGAs) [5]. An example
of this is the solution design presented in [5], where UPF performance achieved more
than 200 Gbps throughput with an average latency of 70 microseconds. This approach
nevertheless restricts the number of available candidates for the deployment of UPFs
due to their dependency on hardware capabilities (e.g., availability of FPGA-NICs). To
overcome this limitation, edge applications and NFs can make use of hardware capabilities
or virtualized accelerators available in remote locations (e.g., the cloud). However, the latter
may produce network overheads, which may affect bandwidth-bounded applications [6].
In this context, the combination of UPFs and virtualized traffic accelerator capabilities at
the edge [7] could help to reduce bandwidth congestion, packet loss and latency.

Despite this potential solution, the deployment of virtual network functions (VNFs)
at the edge poses several challenges due to the fact that they are more sensitive to traffic
variations and the limited resources of the MEC nodes [8]. When the allocated resources
are insufficient to meet the requested demands, the user’s perceived quality of service
(QoS) degrades [9]. In contrast, if the assigned resources are over-provisioned, the service-
associated costs increase. To make efficient use of MEC resources while providing the
high QoS that characterizes 5G networks and lowering the service provisioning cost, the
dynamic placement readjustment of VNFs along with the scaling of their assigned resources
(e.g., number of instances or capacity) based on their workloads or user’s traffic demands
is imperative.

The virtualization of some traditional NFs such as traffic accelerators or firewalls,
which can be deployed in a bump-in-the-wire (BITW) manner to avoid altering the com-
munication endpoints, would bring about extra difficulties. No modification in the packet
headers is allowed when redirecting traffic to guarantee the standard functionality of a
service (e.g., avoid service interruption) due to their transparent deployment. Scaling
out BITW VNFs may cause occasional loops in the network and subsequent problems
(e.g., slow and irregular connections and system failures). Additionally, bidirectional flow
affinity during the flows’ lifetime may also be required.

Most of the literature addressing the problem of load balancing (LB) and auto-scaling
of VNF clusters [10,11] neglects the aforementioned use case scenario and its particularities.
To the best of our knowledge, we are the first to tackle the problem of dynamic auto-scaling
and load balancing of transparent VNFs while ensuring bidirectional flow affinity. In this
regard, the key contributions of this paper can be summarized as follows:

1. The design, implementation, and evaluation of a solution to make load balancing and
auto-scaling decisions to manage a cluster of transparent VNFs.

2. The proposed solution can not only distribute traffic according to the selected LB

strategy but also guarantee bidirectional flow affinity without packet modification.

An auto-scaling strategy is presented to manage the size of a transparent VNF cluster.

4. The testbed of the proposed strategy in this research utilized real hardware unlike
most works on this topic, which use simulation tools (e.g., Mininet) to assess the
performances of their proposed strategies.

@

The remainder of this paper is organized as follows. Section 2 introduces some works
related to the load balancing and auto-scaling of VNFs. Section 3 gives some background
on technologies, such as Open Source MANO and software-defined networking (SDN). In
Section 4, a solution is proposed for traffic distribution and the auto-scaling of a cluster of
transparent VNFs is presented, and Section 5 validates its effectiveness. Finally, Section 6
concludes our work and presents future work directions.

2. Related Work

This section provides a review of the literature related to load-balancing and auto-
scaling solutions in virtual environments.

Sensors 2021, 21, 8283

30f23

2.1. SDN-Based Load Balancers

Most SDN-based load-balancing studies focus their solutions on the designing of new
methods to decide on the most suitable destination for a given traffic flow. In this manner,
the authors of [12,13] propose SDN load-balancing algorithms to distribute requests to
servers dynamically. Their proposed strategies select the most suitable server based on
the real-time metrics of CPU utilization, memory utilization, and disk utilization. In [12],
the least loaded server is selected to handle traffic requests, whereas in [13] a dynamic
weighted random selection algorithm (DWRS) is used. The DWRS gives higher weights to
underutilized services, so the server with the least load has a higher probability of being
chosen. Chen et al. [14] propose an SDN-based load-balancing solution to distribute traffic
among a server cluster. Clients’ requests are sent to a virtual IP address and the traffic is
then redirected to the selected server. Like traditional load balancers, Chen et al.’s solution
implies using a virtual IP and modifications of packets for routing the traffic to the servers.

In [15], two OpenFlow-based mechanisms are presented for balancing multi-path TCP
(MPTCP) traffic to a pool of servers. Though the proposed solutions guarantee the selection
of the same server for subflows belonging to the same MPTCP session, it is at the expense
of packet modification. Similarly, the solution of Ma et al. [10] relies on OpenFlow switches
(OFSs) to reroute traffic dynamically inside the network function chaining (NFC). The NFC
management uses a unique pair of VLAN tags for each chain. By using the open-source
PF_RING network socket [16], the proposed solution captures incoming packets and adds
the VLAN tags. At any time, the control element can update the number of used VLAN
tags for traffic balancing.

The authors of [17] propose a load-balancing mechanism to distribute traffic flows
among switches by considering the equipment singularities. A local SDN controller guides
a data plane scalability mechanism to monitor the network traffic and used resources on the
switches. This mechanism adjusts the number of active switches to meet network demands.
Moreover, the load balancer configures the required flow rules on target switches and
relocates flow rules to improve resource usage.

Abdelltif et al. [18] propose an SDN-based load-balancing service to optimize resource
utilization while reducing the user response time. The proposed mechanism comprises
three application modules (i.e., service classification, dynamic load balancing, and monitor-
ing) that run on top of an SDN controller. The dynamic load balancing module distributes
the incoming traffic to the servers according to the service type. The feasibility of the
proposed scheme is proved through experimental findings.

2.2. Load Balancing and Auto-Scaling

The authors of [19] provide insights into the network service descriptors (NSD) by
addressing fields related to scaling actions. Hinojosa et al. highlight the importance
of a proper NSD configuration to ensure the appropriate scaling operations of VNFs.
Additionally, they offer an overview of the different available scaling procedures in NFV
and how to trigger them in an automated manner.

In [20], an auto-scaling approach for 5G data plane (DP) VNFs based on throughput
utilization is presented. This approach makes scale-out decisions based on the utilization
threshold, while scale-in events are run periodically to remove empty DP functions. In-
coming user requests are assigned to the DP with the highest throughput. Alawe et al. [11]
present an algorithm based on control theory for the horizontal scaling and load balancing
of 5G Access and Mobility Management Function (AMF). Additionally, scaling actions are
triggered according to the traffic load.

The authors of [21] propose a threshold-based scaling mechanism that considers work-
load variations of the evolved packet core (EPC) to perform scaling actions. Its proposal
is formed by three modules: data collection, scaling decision, and scaling execution. To
evaluate their horizontal scaling procedure, the authors deploy a set of clusters for different
EPC elements. Each cluster contains a load balancer that uses a round-robin algorithm to
distribute the traffic among the cluster’s instances.

Sensors 2021, 21, 8283

40f23

Dutta et al. [9] present a solution for the dynamic and automatic scaling of VNFs. Their
main aim is to ensure efficient resource utilization while improving the quality of experience
(QoE) of the offered services. In their solution, the incoming traffic is distributed to the pool
members through an LB with a round-robin configuration. However, this approach implies
packet modification since the LB works as a front-end service that reroutes incoming
requests. Ma et al. [10] propose a generic solution for the horizontal scaling of VNFs. Their
solution relies on two load balancers (a master and a salve) to distribute the traffic in the
uplink and downlink directions. Moreover, they also address the flow affinity problem
when balancing traffic among VNFs. To solve the problem, they use connection-aware
traffic load balancers based on a hashing function to maintain affinity between connections
and NFs. The authors of [22] demonstrate the importance of jointly considering instances
of load balancing and auto-scaling of VNEF. They highlight the necessity of designing these
policies so that they are aware of one another to improve QoS and ensure a more efficient
use of resources.

Lange et al. [23] proposes an architecture for VNF that exploits the benefits of network
softwarization and machine learning-based approaches to orchestrate and manage the
life-cycle of VNFs. By monitoring the deployed VNF’s state and predicting its resources,
the proposed solution can perform scaling actions in advance while load-balancing actions
are leveraged to OpenStack load-balancing features. However, the auto-scaling of VNFs
and load-balancing performance are not covered in the obtained results. Thus, further
experiments are necessary in order to evaluate the overall feasibility of their proposal.

Despite the proposed solutions, none of the aforementioned works address the issue of
load balancing and auto-scaling transparent VNF clusters. Of these works, the most similar
to this paper is [10], as it presents a solution to address both issues by taking into account
bidirectional flow affinity. However, its solution implies packet modification, which is
not convenient for scenarios with BITW deployments. This type of deployment imposes
additional challenges in terms of scalability.

3. Background

This section presents some background on NFV management and orchestrators, SDN,
and OpenFlow switches. These elements are fundamental pillars for our solution imple-
mentation.

3.1. Open Source MANO

NFV is considered a key enabler technology for addressing the stringent requirements
of 5G and beyond networks [24-26]. Its agility and flexibility to manage network resources
and services support carriers in deploying a variety of verticals with different requirements
while reducing costs. In this vein, the ETSI NFV Management and Orchestration (MANO)
framework [27] provides a standard architecture, used as a reference by vendors and open
source MANO projects for the monitoring and provisioning of VNFs [28]. The group of
open source MANO includes several projects such as Open Network Automation Platform
(ONAP) [29], Open Source MANO (OSM) [30], Open Baton [31], and Cloudify [32]. Of
these projects, ONAP and OSM are the most prominent ones in both academic and industry
sectors since big operators such as AT&T and Telefonica support their development [33].

This paper adopts OSM as the NFV orchestrator (NFVO) and virtual network function
manager (VNFM). It is responsible for the deployment of NSs and VNFs and monitoring
the life-cycle management of VNFs. The selection of OSM was based on its maturity,
performance, and comprehensive utilization [33]. Another criterion for this selection was
its modular architecture formed by several elements, including Resource Orchestrator (RO),
Lifecycle Management (LCM), Policy Manager (POL), and Monitoring (MON). Thus, our
implementation could obtain information related to NSs and their associated metrics by
directly communicating with the modules in charge of managing this information (i.e., RO
and MON modules).

Sensors 2021, 21, 8283

50f23

3.2. Software-Defined Networking

Along with the NFV paradigm, SDN is recognized as a crucial pillar in the devel-
opment of 5G and beyond networks to fulfill their network requirements [24-26]. The
SDN architecture is composed of three layers: application, control, and data [34]. The
control plane is formed by the controller, which manages all the devices (e.g., routers and
switches) in the data plane in a unified manner. Additionally, network applications, used
by the controller, are implemented and executed in the application layer. One of SDN’s
main features is the control and user plane separation (CUPS). The CUPS guarantees that
the resources of each plane can be scaled independently. It also allows the placement of
the user plane functions closer to users, thereby reducing network response times and
bandwidth consumption. Moreover, the separation of these two planes allows the direct
programmability of network policies, thus ensuring simplicity and versatility in network-
ing configurations [34]. Additionally, SDN offers new methods to flexibly instantiate NFs
and services while reducing expenses and boosting performance. For instance, it allows
the support for new protocols and the ability to adapt network resources and topology to
changes in the configuration and placement of NFs and services [35,36].

The SDN concept is applied in a wide variety of solutions in which the controller is a
key element in the control operations. In this regard, the architectural deployment of the
controllers is crucial to guarantee that the performance of the overall network is adequate.
Specifically, from an architectural point of view, SDN controllers can be classified into two
groups: centralized and distributed. The centralized architecture is formed by a unique
controller for the sake of simplicity. However, this design represents a bottleneck in the
network and has scalability limitations when the network traffic increases. By contrast,
a distributed architecture improves network scalability, flexibility, and reliability. For
instance, this architecture avoids having a single point of failure since when one of its
distributed controllers fails, another(s) can assume its functions and devices. Therefore,
this design is more resilient to different kinds of disruptions. Furthermore, with the
programmability of SDN, this process can be automated and configured according to the
design and requirements of the network. Thus, the distributed architecture is capable of
responding and adapting to new requirements and conditions.

3.3. OpenFlow Switches

An OFS consists of one or more flow tables and a group table, which perform packet
lookup and forwarding, and one or more OpenFlow channels to communicate with an ex-
ternal controller. The switch communicates with the controller, and the controller manages
the switch via the OpenFlow protocol [37]. The controller can add, update, and delete flow
entries from the switch flow tables through the OF protocol. A flow entry is formed by sev-
eral fields such as match, counters, actions, and priority. Specifically, the match field allows
the creation of flow entries according to various match criteria. For instance, it may be
configured to match various packet header fields (e.g., source/destination IP/MAC/ports,
protocol, VLAN ID), packet ingress port, or metadata value.

When a flow arrives at an OFS it verifies, in its flow tables, if there is already a defined
rule that matches the incoming flow. If such a rule exists, then the specified actions are
executed. A wide variety of instructions can be applied to flow entries, such as packet
forwarding (e.g., forward packet to a port) and packet modification. In the case of several
rules matching the flow description, the rule with the highest priority order is applied. In
contrast, if no match is found in any flow tables, the switch can be configured to send the
packet to its assigned controller or drop it.

3.4. Flow Affinity

Utilizing flow affinity implies that packets belonging to the same flow will undergo
similar treatments along their paths (e.g., processed by the same set of network func-
tions) [38,39]. In this study, we define bidirectional flow affinity as the property of process-
ing packets associated with a specific flow by the same network function, in both directions

Sensors 2021, 21, 8283

60f23

of their data path (i.e., uplink and downlink). Traffic flows are identified by five parameters
from the packet headers: source IP, destination IP, protocol, source port, and destination
port. These parameters form a five-tuple, and by combining them, different hashing
methods can be defined. The three most popular combinations are: source-destination
IP, source-destination IP + protocol, and source-destination IP + source-destination port +
protocol.

4. Solution Proposal

In this section, after a brief overview of the problem of interest, the proposed solution
for the management (i.e., balancing and horizontal auto-scaling) of a cluster of transparent
VNFs is presented.

4.1. Problem Description

Network operators are virtualizing their physical network functions to align with new
services requirements imposed by 5G networks and beyond. These NFs can be grouped
into different categories according to their characteristics (i.e., by network functionalities
and connectivity, network security, and network performance). Many of the NFs associated
with network performance (e.g., traffic shaping, rate limiting, and traffic accelerators) are
usually transparently placed between the access and internet network providers. In other
words, they do not have a forwarding IP since they are placed as BITW functions and,
thus, work in layer 2 of the OSI model. The virtualization of NFs offers flexibility for the
management of network resources since NFs can be scaled as their processed traffic changes.
Existing MANO frameworks (e.g., OSM) offer some scaling policies to automatically adjust
VNF capacity to traffic demands. However, the scale-out policy of MANO frameworks is
characterized by the placement of new deployed functions in the same subnetwork as the
original ones. Moreover, they do not allow for the modification of previously launched
NSs, for instance, the adding of new VNF instances or subnetworks. These limitations
cause severe problems in the network when scaling transparent functions since network
loops may appear.

Load balancers are crucial to avoid overload and guarantee efficient traffic distribution
to the pool members when more than one instance of a given type is deployed and forms a
cluster. Additionally, load balancers enhance the availability and reliability of the network
service by redirecting incoming requests to only healthy VNFs. Well-known MANO
frameworks, such as OSM and ONAP, lack native load-balancing services. Thereby, they
rely on specific virtual functions (e.g., HAProxy [40]) that need to be deployed along with
the pool members to provide this feature. However, this solution requires the assignment
of a virtual IP to the load balancer to redirect all the incoming traffic to it. The latter is
recommended when the pool entities are a final service or the destination of the incoming
traffic. Otherwise, an extra function may need to be inserted in the flow path to modify the
header packets to reach their final destination. A similar shortcoming has been found in
virtual infrastructure management (VIM) technologies, such as OpenStack. Though these
technologies provide load-balancing services (i.e., Octavia which is based on a neutron
load-balancing mechanism (load balance as a service, LBaaS)), they are also aimed at
final services.

Moreover, some VNF types, such as firewalls and intrusion detection systems, require
that the same instance process all the fragments of a given flow during the flow lifetime.
Other VNF types (e.g., TCP traffic accelerators) may need to ensure bidirectional flow
affinity to work properly.

Under these circumstances, designing a mechanism for the efficient management
of transparent VNF clusters is critical. The envisioned solution must be able to dynam-
ically scale cluster resources, balance the flow traffic between transparent VNFs, ensure
bidirectional flow affinity, and avoid packet modifications and extra processing.

Sensors 2021, 21, 8283

7 0of 23

Access
Network

SDN

Controller

I HE Controller
(Active) 4@5’} P Pl @%

4.2. Design Architecture and Implementation

Our proposed solution for the management of transparent clusters is formed by
two redirector VNFs, one at each side of the cluster. The reason for placing redirector
functions on both sides of the cluster (uplink and downlink directions) is to ensure the
bidirectional flow affinity requirement (see Section 4.2.3). Each VNF redirector consists
of an OFS and an SDN controller mainly responsible for load-balancing aspects. The
SDN controllers work in an active-standby configuration. The active controller replicates
the network information to the standby one by using the data distribution service (DDS)
method described in [41]. Since the DDS method is based on the publish/subscribe
paradigm, the active controller will publish the discovered nodes and configured flows
through a data stream also known as a topic. Specifically, the used topic is composed of
seven fields: Identifier, Nodeld, Port, SourceNode, SourceNodePort, DestinationNode, and
DestinationNodePort. Using the identifier field, the active controller announces whether
it will send a node or a flow. In the case of the standby controller, it will be subscribed to
the used topic, thus receiving the network information. This approach avoids the network
discovery phase of the standby controller in the case of a failure in the active controller,
thus reducing the service downtime and improving the fault tolerance of the system. The
master controller is placed facing the access network to reduce response time, since most
traffic requests originate in the uplink direction. The use of two SDN controllers is not
strictly necessary, but it is highly recommended to improve the robustness of the solution.
Figure 1 provides a general overview of the proposed design as well as the interconnection
mode among the solution elements.

2 P < P L~ (Standby)
] = HE
24 S . XA
L | NS
VNF 1
Internet
R <] erne
A oF Network
§ Switch
Redirector 1 VNF 2 Redirector 2
=
S L IR OF Protocol (active channel)

OF Protocol (standby channel)

Figure 1. A high-level view of the proposed solution.

The envisioned VNF redirector application has a modular design, where each module
performs a specific function (i.e., monitoring, auto-scaling, and load balancing). The logic
of these functions runs on top of the SDN controllers, as shown in Figure 2. The monitoring
module is in charge of checking the status of VNF instances as well as periodically collecting
metrics. This information is used as input by the load balancing and auto-scaling blocks
to perform their logic. The auto-scaling module is in charge of managing the cluster size.
Specifically, it triggers scale-in and scale-out actions based on the status and load of the pool
members. Furthermore, the load-balancing module is the core of the redirector application.
It is responsible for selecting the VNF instance to which a traffic request will be assigned
for its processing. The selection of a VNF instance depends on the specified load-balancing
strategy (e.g., least loaded CPU) and the status and capacity of the cluster’s members. Each

Sensors 2021, 21, 8283

8 0f 23

instance belonging to the VNF cluster is associated with a unique port in the OF switches.
To simplify the solution complexity, a mirror configuration, in which the same port in both
switches is selected, is recommended.

LB <«-> Auto-scale €-mooooooooooooooooooeo -
<o ’,—‘V \\\
TTcAaeTTT eI e '
Monitor €~ :&\\\\
R Bt
Ay N 1 !
Redirector- X-VNF Pool Redirector- i 5 NEVO E
VNF1 : S VNF2 ! : ;
~ P . Open Source }
SDN SDN ;o) P :
et H
Controller g Controller ! MANO
]] "
N ' :
' H
OFS — - — OFS ;o VNFM :
3 P :
~ | b e ccccccccccccccccccccccaeaaeaad
\
\\
VNFs
& |
]]
NFVI VIM i)
openstack

Figure 2. An overview of the solution components and its communication with the NFV entities.

To improve the VNF redirector performance and allow faster packet processing in the
load-balancing module, our design exploits the parallel processing capacity of multi-cores
along with a multi-threaded technique, thus avoiding delay in its procedure due to the
performance of other modules. The following subsections provide more insights into the
operation mode of the VNF redirector’s modules.

4.2.1. Monitoring Module

Transparent VNFs are not compatible with well-known health monitor methods,
such as PING, TLS-HELLO, UDP-CONNECT, and TCP-CONNECT, since they all require
that their queries be directed to an IP address. A workaround could be the use of the
management network to send the messages associated with one of these health methods.
However, this implies additional load in the VNF cluster. To resolve this shortcoming,
our solution uses information already available to other components (i.e., VNFM). The
VNEM monitors the health status and performance (e.g., CPU and memory utilization)
of VNF instances and network services to manage their life cycles. In the OSM MANO,
its monitoring module has a feature (mon-collector) to collect the specified metrics in the
VNEF descriptors. The mon-collector polls the VIM, where the VNFs are deployed, to gather
the desired metrics and stores them in its Prometheus time-series database (TSDB). To
make this information available to the redirector application, our solution implements
the monitoring module. This module communicates with the Prometheus TSDB and
gathers VNF status and metrics. In this manner, the LB can be aware of the healthy and
unhealthy instances and their available resources. This approach solves the limitation
mentioned above and avoids overloading the cluster with frequent health polling through
the management network.

Sensors 2021, 21, 8283

9 of 23

This monitor module also gathers information about the deployed NS configuration,
for instance, the ID of the virtual deployment units (VDUs) that constitute the transparent
cluster and their subnetworks. These data are used to match the VDUs with the OVS
switch interfaces to which they are connected. These interfaces are discovered upon
the OFS registration on the SDN controllers. In this way, the monitor module helps the
redirector application to discover the network topology.

Additionally, when the monitoring module detects an unhealthy instance, it com-
municates the LB to trigger a flow rule updating process. Then, the LB module uses a
method to delete the OF rules associated with the unhealthy instance in the switches table.
This is achieved by sending a delete flow message to the OF switches, which instructs
them to delete the flow rules that contain the specified port (i.e, the one connected with
the unhealthy instance). With this action, the monitoring module avoids network disrup-
tion because another healthy transparent VNF can be selected by the LB to process the
incoming traffic.

4.2.2. Auto-Scaling Module

The automatic scaling of transparent VNFs imposes several challenges to loop avoid-
ance. For instance, when more than one transparent VNF is deployed in the same subnet,
loops appear given that they act as a "wire" in the network. Thus, transparent VNFs
should be deployed on different subnets to avoid network loops and redirect flows to a
specific transparent instance since they do not dispose of routing information. However,
the current MANO frameworks do not allow us to specify different subnets when executing
auto-scaling policies or to add new VNF instances and subnetworks to already instantiated
NSs. Therefore, we diverge from the assumption that the VNF cluster has been already
dimensioned to resolve these challenges. In other words, the cluster is launched with all its
members, and each VNF instance connects with one interface in the OFS. It should be noted
that the OFS interfaces also need to be dimensioned according to the pool size. However,
to save energy and computing resources, only the minimum required number of instances
remains active, and the rest are on standby. Thus, the main aim of the scaling module is not
to create or remove instances, but to manage their status (i.e., activate or deactivate them).
To this end, the auto-scaling module needs to interact with the VIM. The OpenStack VIM,
for instance, through its Nova service [42], offers several options to manage VNFs such
as stop or start, suspend or resume, shelve or unshelve, pause or unpause and resize. It
should be further noted that each of these options has a different impact on the resource
utilization of the system as well as the VNF activation time.

For the implementation of the auto-scaling logic, the following parameters need to
be defined.

® Scaling metric: the metric to be monitored (e.g., CPU or memory) and upon which
scaling actions will be taken;

* Aggregation type: refers to how the scaling metric is gathered (e.g., average or
maximum values);

. | VNF | _max: maximum number of active instances in the cluster;

. | VNF | _min: minimum number of active instances in the cluster;

¢ Thresholds: upper and lower bounds of the selected metric upon which scale-out or
scale-in actions are triggered, respectively;

¢ Threshold time: a minimum amount of time in seconds during which the state of the
scaling metric with regard to the threshold values must sustain to trigger a scaling
event. Different threshold times can be defined for scale-in and scale-out actions;

e Cooldown time: the minimum amount of time that the system must wait after trigger-
ing an event before activating another.

The auto-scaling logic runs during the system lifetime and updates the scaling metric
values at each time instance. Figure 3 illustrates the programming logic of the auto-scaling
block. It starts by setting the minimum number of active members and exposing this
updated information to the LB block. Next, it proceeds to collect samples of the specified

Sensors 2021, 21, 8283

10 of 23

Set minimum
number of active
VNFs & update LB

pool

v

Gather samples of
the selected metric

v

. Compute
Ll .
aggregation type)

Compare
! thresholds No

metric until completing a threshold time, for which communication with the monitor block
is required, and computing its aggregation type with regard to the set of active members
in the VNF pool. Afterward, the auto-scaling conditions are verified by comparing the
obtained value with the maximum and minimum thresholds. If one of these conditions is
met, the effect of its respective scaling action on the number of active instances is verified
before proceeding with the activation or deactivation of a VNF instance. The latter helps
to maintain the number of active instances between the established values. If the scaling
action implies the violation of any of these thresholds, the scaling procedure is discarded,
and the system continues gathering samples. Additionally, when the scaling procedure
is omitted because the maximum number of active instances has been reached, an alarm
can be activated to notify the system administrator that further actions need to be taken.
Otherwise, new instances can be started, or existent ones deactivated depending on the
triggered condition. According to the VNF service type, a waiting time may be required
before putting an active instance on standby to prevent service degradation. In the case
of scale-out actions, existing VNFs waiting to change their status to standby are selected
instead of activating new ones, thus canceling their associated standby process. After each
scaling decision, the set of available VNF instances is reported to the LB. It must be noted
that this set is immediately updated for scale-in actions to avoid the assignment of new
flows to a VNF instance in a standby process. Finally, a cooldown timer is activated to
prevent unnecessary scaling actions caused by possible system instability, and the set of
gathered samples is updated.

Select a VNF and
cancel its standby
process

A

Yes

A

Activate new VNF Update LB pool
instance (|VNF| +=1)

VNFs pending of
standby process

Select VNF instance
Yes—» with lowest metric
value
Update LB pool

(IVNF| -=1)

F___i___'l

I Waiting for |
| conditions to |
| remove instance |

A

Put VNF instance »| Activate cooldown
Ll .
on standby time

Figure 3. Flowchart of the proposed auto-scaling procedure.

Sensors 2021, 21, 8283

11 of 23

4.2.3. Load Balancing Module

There are two ways for maintaining flow affinity when load balancing traffic. One
approach uses a dedicated load-balancing algorithm based on an IP hashing method. The
other uses a stick table in memory along with a non-deterministic LB algorithm (e.g.,
round-robin or least connections). The use of the load-balancing algorithm approach is
suitable as long as the number of involved instances does not change. Otherwise, more
complex techniques, such as consistent hashing, need to be implemented to diminish the
effects of variations in the number of instances on the flow affinity mapping. This method is
recommended for load-balancing applications that do not require synchronization among
LBs but still use the same hashing function. The second approach requires a global view
of the system or synchronization among the LBs to ensure bidirectional affinity. The
advantage of this approach is that no session is redirected when a new instance is added to
the cluster. Our solution is based on the second technique since flow affinity is guaranteed
upon flow entries registered in the OFS tables. Moreover, our solution does not require
any exchange of information between the LBs (i.e., switch tables). The reason is that the
flow entries associated with a given flow are simultaneously created in both switches by
their master controller, which has a global view of the cluster. A drawback of working with
flow tables is that flow waiting time may increase with significant traffic. Nevertheless,
this effect can be diminished by implementing an efficient mechanism to manage switch
tables [43,44].

Additionally, old flow entries belonging to expired flows can be removed to avoid
overloaded flow tables. Using the idle_timeout field in OF FLOW_MOD messages is highly
recommended in this process. This parameter allows you to specify a time interval that the
switch can use to remove idle flow entries when no packet has matched within the given
number of seconds. For this process to be completed successfully, the OFS must keep track
of the arrival time of the last packet associated with the flow.

The communication process between the OFSs and the master controller for the flow
rules creation is described in Figure 4. More specifically, when an incoming flow arrives at
an OFS (step 1), the switch searches in its flow tables the existence of a rule matching the
flow (step 2). If there is a match, the switch applies the actions associated with the flow
(step 7). Otherwise, the switch sends the packet to its assigned master controller through
an OF PACKET_IN message (step 3). The controller is responsible for extracting the header
packet information and determining the actions that need to be applied to the flow (step 4).

Figure 5 describes the logic executed in the SDN controller when it receives a
PACKET_IN message (i.e., step 4 in Figure 4). The controller begins by reading the packet
information (e.g., headers and OFS’s in_port), which determines how the flow is processed.
At this step, there are two possible options according to the packet’s in_port in the OFS.
More specifically, when OFS’s in_port connects with a cluster member, an OF rule is con-
figured to redirect the flow traffic from the cluster member port to the one connecting the
access provider network. This rule is created only once during the operation phase unless
specified in the idle_timeout field. On the other hand, if the in_port is the one connecting
the access provider network, the controller configures actions based on the packet’s header
information. In the last case, the load-balancing module creates an OF matching pattern
using a specific tuple combination (e.g., source IP, destination IP, protocol, source port,
destination port). Several treatments can be defined according to the different tuple combi-
nations and the values of their parameters. For instance, flows matching a given protocol
type or source IP can be configured to be processed by a specific cluster member by default.
In contrast, other flows may require the selection of an appropriate VNF instance for their
processing. Afterward, this module determines the switch’s out_port by selecting the
best VNF instance according to the specified load-balancing strategy. Then, the controller
creates an OF rule with the selected matching pattern and the obtained out_port. Please
note that each transparent VNF instance connects to a specific switch’s port.

Sensors 2021, 21, 8283

12 of 23

Access
Network

@

Master Controller

\
\
\
\
\
\
\ |
0
\ @
\
Internet
Network
OFS 2

Figure 4. Communication process between the master controller and the OFSs.

Start afterarriving
PACKET_IN

in_port Create the matching Determine the best Create OF rules
connecting a OF patterns using a .| transparent VNF . | using the obtained
NoP| . P] , .
cluster’s specific tuple instance (i.e., OFS’s matching pattern
ember, combination out_port) and out_port

Yes

Create anvOF rule to
redirect traffic from the
in_port to the port
connecting the access
network

Figure 5. Flowchart of the proposed load-balancing procedure.

Once the controller has determined the OF rule, it sends an OF PACKET_OUT message
and a FLOW_MOD message to the switch that sent the OF PACKET_IN (steps 5 and 6).
These steps instruct the switch to send the packet through the selected port and configure
the specified rule in its table. Similarly, a reverse OF rule is proactively configured in the
opposite switch by swapping the source and destination fields in the matching pattern
and specifying the same action (i.e., OFS’s out_port). In this manner, our load-balancing
module ensures bidirectional flow affinity by simultaneously creating flow entries in both
switches.

Currently, the load-balancing module has available three load-balancing strategies:
random, round-robin, and least loaded [14,45]. The random approach is the simplest
one since the controller only needs to be aware of the active members in the pool. This
information is used by the controller to randomly choose a VNF instance to redirect
incoming flows. Round-robin is one of the most popular load-balancing algorithms due
to its simplicity. It distributes incoming traffic requests by sequentially selecting an active
pool member to process the incoming traffic. Thus, each time that a new PACKET_IN
arrives at the main controller, a different member is selected. Once all the members have

Sensors 2021, 21, 8283

13 of 23

been analyzed, it starts rotating again by selecting the first active VNF in the list. Finally,
the least loaded algorithm is based on the load utilization (e.g., CPU or memory) of the
active VNF members. These data are obtained from the monitoring block and used to select
the active instance with minimum load to process new flows.

5. Evaluation

The main objective of this section is to validate the proposed solution as a feasible
approach to manage traffic distribution and resources assigned to a cluster of transparent
VNFs according to dynamic traffic demands.

5.1. Experimental Setup

For the validation of the proposed solution, a simplified scenario was considered. The
network service consisted of a VNF cluster, two redirector VNFs, four traffic generators
(TGs), and one network. The cluster was formed by four generic VNFs that were trans-
parently deployed by configuring their interfaces as a bridge. The TGs’ main function
was to inject traffic between the access and data networks. This traffic had to traverse the
cluster in a distributed manner. Additionally, subnetting was applied to divide the network
domain into smaller subnets. This division allowed each group member to be deployed
on a different subnet. It thus ensured that traffic passed only through a single transparent
VNF and E2E connectivity between TGs located on different sides of the group. However,
adopting the subnetting can introduce several loops in the network when working with
BITW VNEFS. To account for this, the network service deployment was automated to enable
the spanning tree protocol (STP) in the redirectors and transparent VNFs interfaces to avoid
network outages due to loops. Once the master controller had taken over the network
control, the STP was deactivated to enable interfaces with blocked status. Figures 6 and 7
illustrate the NS topology in a simplified overview and in an OpenStack view, respectively.

Network

Access_prov
10.10.10.0/24

Redirector 1

OVS2_VNF1

OVS1_VNF1 !
: 10.10.10.0/24
|

10.10.10.0/24

_VNF2 OVS2_VNF2

10.0/24

OVS2_VNF3

10.10.10.0/24 ensd

|
|
|
VNF3 | VNF 2
10.0/24 |

|

Redirector 2

.110

OVS1_VNF4
10.10.10.0/24

OVS2_VNF4
10.10.10.0/2

Internet_prov
10.10.10.0/24

Figure 6. Simplified overview of the network service topology.

Sensors 2021, 21, 8283

14 of 23

Traffic IEI
generators
(TG) El

Redirector 2

Transparent
VNF cluster

Redirector 1

Traffic
generators
(T6)

BFENEOLEL

yubq | sao-ueysnja jusiedsues;

noid ssadoe upn!unl- SUEL}
II

Zubq | sao-iejsnjo jusiedsuesy
II

zubq zsao-ieysnjo jusiedsuesy
I

pubq zsao-iejsn|o jusiedsuesy

gubq zsno-1e3sn|a jusiedsuesy
gubq | sAc-ieysn)o pusiedsues}

Aoid jeusejui-iesn|o justed suel)

FEOOLOLOL

FEO0LOLOL
FEO0LOLOL
FEO0LOLOL
FEn0L0L0L
FEn0L0L0L
FEn0L0L0L
FEn0L0L0L
FEn0L0L0L

Figure 7. Network topology overview of the test scenario in OpenStack.

For our implementation, Ryu [46] was selected as the SDN controller due to its simple
configuration and Python implementation that allows for its integration with the OSM
client v.8.0.4. This client is used to gather information about VNF instances through
the OSM framework. For the OFSs, we used Open vSwitch v.2.15.1. These switches
communicated with the controller in the out-of-band mode because we used a separate
network (i.e., the management network) to connect forwarding devices to the controller
and exchange control traffic. Table 1 summarizes the hardware and software specifications
(version and properties) of our testbed.

Table 1. Hardware and software specifications.

Description Specifications

Server 1 NFVI with OpenStack Controller =~ Memory: 32 GB RAM DDR4
Processor: Intel Core i7-5820K CPU @ 3.30 GHz
OS: Ubuntu Server 18.04.2

Server 2 NFVI with OpenStack Compute =~ Memory: 16 GB RAM DDR4
Processor: Intel Core i7-5820K CPU @ 3.30 GHz
OS: Ubuntu Server 18.04.2

OSM host HP Compaq 8100 Elite SFF PC Memory: 8 GB RAM DDR3
Processor: Intel Core i5 CPU 650 @ 3.20 GHz
OS: Ubuntu Desktop 18.04.2

OpenStack Train
OSM Release EIGHT

5.2. Solution Validation

As a proof of concept, we ran several experiments to verify the correct operation of
each aspect of the proposed solution. We started by checking the connectivity between
the different elements of the system. Figure 8 depicts the results of the ping tests between
traffic generators located at different ends (access and internet sides) of the VNF pool. The
successful ping execution showed stable E2E traffic through the cluster and low values of
time response, which indicates the absence of loops in the network. Moreover, these results

Sensors 2021, 21, 8283

15 of 23

showcased that our solution was working as expected since the module related to the
flow configuration in the OVSs (i.e., the load-balancing module) configured the required
rules to guarantee E2E traffic without losing any packet. Additionally, the ping test also
evidenced that the monitoring module had updated information about the active cluster
members, as the load-balancing module selected a healthy instance to configure the flows
in the switches.

ubuntu@injector-vnf:~$% ping 10.10.10.107 -I ens4 -c 5

PING 10.10.10.107 (10.10.10.1087) from 10.10.10.16 ens4: 56(84) bytes of data.
64 bytes from 10.10.10.107: icmp_seq=1 ttl=64 time=1.20 ms

64 bytes from 10.10.10.107: icmp_seq=2 ttl=64 time=1.23 ms

64 bytes from 10.10.10.107: icmp_seq=3 ttl=64 time=1.12 ms

64 bytes from 10.10.10.107: icmp_seq=4 ttl=64 time=0.793 ms

64 bytes from 10.10.10.107: icmp_seq=5 ttl=64 time=1.27 ms

--- 10.10.10.107 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4@@6ms
rtt min/avg/max/mdev = ©.793/1.124/1.276/@.178 ms

(@)

ubuntu@injector-vnf:~% ping 1@.10.10.11@0 -I ens4 -c 5

PING 10.10.10.110 (10.19.10.110) from 10.10.10.24 ens4: 56(84) bytes of data.
64 bytes from 10.10.10.110: icmp seq=1 ttl=64 time=2.25 ms

64 bytes from 10.10.10.110: icmp_seq=2 ttl=64 time=1.15 ms

64 bytes from 10.10.10.110: icmp seq=3 ttl=64 time=1.32 ms

64 bytes from 10.10.10.110: icmp_seq=4 ttl=64 time=0.860 ms

64 bytes from 10.10.10.110: icmp_seq=5 ttl=64 time=1.24 ms

--- 10.10.10.110 ping statistics ---
5 packets transmitted, 5 received, @% packet loss, time 4e@e6ms
rtt min/avg/max/mdev = ©.860/1.368/2.253/0.470 ms

(b)

Figure 8. Command line output for ping tests between TGs located in different subnets. (a) Results
of ping test with TG 1 (IP: 10.10.10.16) as source and TG 3 as destination (IP: 10.10.10.107). (b) Results
of ping test with TG 2 (IP: 10.10.10.24) as source and TG 4 as destination (IP: 10.10.10.110).

5.2.1. Bidirectional Flow-Affinity

One essential requirement of our solution was the assurance of bidirectional flow
affinity. To validate the solution for this feature, we generated traffic between the access
and internet TGs. We configured the redirector application to create ARP and IP traffic
flow rules based on their source and destination addresses. Figure 9 depicts the dynamic
configuration of the flow tables in the OFSs. Initially, the switches only had flow rules
associated with their interfaces that connected with the transparent VNFs.

Additionally, they also had a default rule configured when they were added to the
SDN controller to send packets that did not match any entries in their flow tables to the
controller. As new traffic went through the switches, new rules were created according
to the established matching criteria. By comparing the flow tables of the switches, we
noticed the presence of bidirectional flow affinity, since each pair of source-destination
addresses was configured to go through the same port (VNF instance) in both switches.
Thus, bidirectional flow affinity was guaranteed by creating the rules in the access and
internet side switches simultaneously during the arrival of PACKET_IN events in the
SDN controller.

Sensors 2021, 21, 8283

16 of 23

ubuntu@vdu-redirector:~% sudo ovs-ofctl dump-flows brl

cookie=8x8, duration=587.
cookie=@8x8, duration=583.
.362s,
cookie=8x8, duration=481.
cookie=8x8, duration=183.

cookie=8x8, duration=583

972s,
762s,

946s,
395s,

table=@, n_packets=@, n_bytes=8, priority=65535,dl dst=01:80:c2:00:00:0e,d]l type=8x88cc actions=CONTROLLER:65535
table=8, n_packets=3, n_bytes=161, priority=50@,in_port=ens8 actions=output:ensd

table=8, n_packets=349, n_bytes=28208, priority=50@,in_port=ens6t actions=output:ensd

table=8, n_packets=8, n_bytes=8, priority=580,in_port=ens? actions=output:ensd

table=8, n_packets=@, n_bytes=8, priority=580,in_port=ens5 actions=output:ensd

cookie=8x8, duration=47@

cookie=@x@, duration=228

cookie=8x8, duration=471.
.995s,
cookie=8x8, duration=389.
cookie=8x8, duration=383.
.446s,
cookie=8x8, duration=228.
cookie=8x8, duration=2086.
cookie=8x8, duration=2086.

gdds,

114s,
998s,

130s,
730s,
581s,

table=8, n_packets=2, n_bytes=84, priority=50@,arp,arp_spa=18.10.10.24,arp_tpa=10.10.10.110 actions=output:ensd
table=@, n_packets=14, n_bytes=1372, priority=580,ip,nw_src=10.18.10.24,nw_dst=10.10.10.110 actions=output:ensd
table=@, n_packets=1, n_bytes=42, priority=50@,arp,arp_spa=18.10.18.16,arp tpa=10.10.10.110 actions=output:ensét
table=@, n_packets=9, n_bytes=882, priority=580,ip,nw_src=10.10.10.16,nw _dst=18.18.18.118 actions=output:ensé
table=0, n_packets=1, n_bytes=42, priority=5080,arp,arp_spa=10.10.10.24,arp_tpa=10.10.18.187 actions=output:ensét
table=8, n_packets=9, n_bytes=882, priority=580,ip,nw_src=10.108.18.24,nw_dst=18.18.18.1087 actions=output:ensbt
table=8, n_packets=1, n_bytes=42, priority=50@,arp,arp_spa=10.10.18.16,arp_tpa=10.10.10.187 actions=output:ensd
table=8, n_packets=9, n_bytes=882, priority=580,ip,nw_src=10.10.10.16,nw_dst=10.18.18.107 actions=output:ensd

cookie=8x8, duration=587

972s,

table=@, n_packets=11, n_bytes=734, priority=8 actions=CONTROLLER:65535

(@)

ubuntu@vdu-redirector:~% sudo ovs-ofctl dump-flows br2

cookie=8x8, duration=596.
cookie=8x8, duration=588.
cookie=8x8, duration=583.
cookie=8x0, duration=486.
cookie=8x8, duration=188.

748s,
712s,
304s,
884s,
333s,

table=@, n_packets=8, n_bytes=8, priority=65535,dl_dst=081:80:c2:00:08:0e,d]l_type=8x88cc actions=CONTROLLER:65535
table=@, n_packets=297, n_bytes=15462, priority=58@,in_port=ens§ actions=output:ensd

table=@, n_packets=349, n_bytes=208164, priority=58@,in_port=ens6 actions=output:ensd

table=8, n_packets=1, n_bytes=78, priority=508,in_port=ens7 actions=output:ensd

table=8, n_packets=8, n_bytes=0, priority=580,in_port=ens5 actions=output:ensd

cookie=Bx8, duration=475.
cookie=8x8, duration=475.
cookie=8x8, duration=394.
cookie=8x8, duration=393.
cookie=8x8, duration=233.
cookie=8x8, duration=233.
cookie=8x8, duration=211.
cookie=8x8, duration=211.

9833,
934s,
852s,
936s,
384s,
068s,
6675,
518s,

table=8, n_packets=2, n_bytes=84, priority=588,arp,arp_spa=10.18.108.118,arp_tpa=18.18.18.24 actions=output:ens8
table=8, n_packets=14, n_bytes=1372, priority=500,ip,nw_src=18.18.10.118,nw_dst=18.10.10.24 actions=output:ens8
table=8, n_packets=2, n_bytes=84, priority=5@0,arp,arp_spa=10.10.10.116@,arp_tpa=10.10.10.16 actions=output:enst
table=@, n_packets=1@, n_bytes=98@, priority=5@0,ip,nw_src=10.10.10.11@,nw_dst=10.10.18.16 actions=output:ensét
table=@, n_packets=2, n_bytes=84, priority=500,arp,arp_spa=10.10.10.107,arp_tpa=10.10.10.24 actions=output:enst
table=@, n_packets=18, n_bytes=988, priority=500,ip,nw src=10.10.10.1687,nw_dst=10.10.10.24 actions=output:ensé
table=8, n_packets=1, n_bytes=42, priority=500,arp,arp_spa=108.10.10.1687,arp_tpa=10.10.10.16 actions=output:ens8
table=@, n_packets=9, n_bytes=882, priority=580,ip,nw_src=108.10.10.167,nw dst=10.10.16.16 actions=output:ensd

cookie=8x8, duration=596.

7533,

table=8, n_packets=7, n_bytes=454, priority=8 actions=CONTROLLER:65535

(b)

Figure 9. Dynamic flow rule creation in the OFS redirectors with bidirectional flow affinity. (a) Flow table of OFS redirector
1. (b) Flow table of OFS redirector 2.

5.2.2. Load Balancing

A load-balancing strategy based on CPU utilization (i.e., least loaded) was selected
to evaluate the traffic distribution among members of the transparent cluster. For this
test, 20 TCP flows were generated with a bandwidth of 1 Mbps, a duration of 2100 s and
a waiting time of 90 s between each flow. For the traffic generation, a script based on
iperf3 [47] was implemented to ensure several connections between a pair of TGs located
in different subnets. Additionally, a new matching criterion was configured in the SDN
controller to redirect traffic based on the five-tuple parameters.

Figure 10 summarizes the CPU load of each member of the transparent cluster. This
figure shows how the CPU utilization of the two active VNF instances, represented in blue
and orange colors, increased and decreased in a balanced manner according to the number
of active flows passing through them. The blue and orange VNFs had average values of
1.01% and 1.11%, respectively. Thus, the average imbalance achieved by the system was
below 10%. This difference was mainly caused by the presence of an odd number of flows
in the system and was reduced by the redirector application with the assignment of the
next incoming flows to the least loaded VNF instance.

5.2.3. Auto-Scaling Actions

One of the main advantages of virtualization is to provide network operators with
the capabilities to increase or decrease their NFs according to specific metrics. This section
evaluates our solution by studying its behavior during different scaling actions. Similar
to the previous experiments, our pool started with two active members, and the rest
were on standby. The TG in the access side generated 50 TCP flows with a bandwidth of
20 Mbps, a connection time of 15,000 s, and a waiting time of 300 s between each flow.
These conditions guaranteed that there would be enough flows to increase the CPU load of
the active cluster’s members and trigger the scaling actions.

Sensors 2021, 21, 8283

17 of 23

2.5 4 NS-ynf-cluster-yYNF-4
NS vnf_cluster-VNF 5
NS vnf_cluster-VNF 6
= NS vnf_cluster-VNF 7
2.0 A
)
S 1.5
©
©
e
7 1.0
@)
0.5 A
0.0 A

’L\r"AB’L\"5Q'L\»“5511"00’7—'79‘05’)_7;0’7}&517 2012‘-157,1'3012‘-3511'-A‘G'[L‘- AS,ﬂ‘_c)O
Evaluation time

Figure 10. CPU load distribution among members in the transparent VNF cluster.

Figure 11 illustrates the evolution of the test over time. For this experiment, minimum
and maximum thresholds of 20% and 50% in the average CPU utilization were established
to trigger scale-in and scale-out actions, respectively. Additionally, a threshold time of
120 s and a cooldown time of 300 s were considered. During this test, a total of four scaling
actions were executed (i.e., two scale-out and two scale-in). At the beginning of the test,
there were only two active instances, represented in blue and orange lines, with very low
utilization. However, as time passed, the CPU load increased as new packets were injected
into the system. At around 22:40 h, the average CPU load was above 50%, triggering a
scale-out action. As a result of this procedure, a new instance was activated (green line),
and a second instance (yellow line) was also started some minutes later (after 23:00 h) since
the average CPU load of the active VNFs once again passed over the maximum established
threshold. Due to the granularity used (i.e., 300 s) in OpenStack, the aggregation metric
associated with the new instances took some time to be reflected in Grafana. Hence,
the starting value of their CPU usage is different from 0% because they were already
processing traffic.

During the second half of the experiment, the oldest flows assigned to the initially
deployed VNFs (i.e., blue and orange lines) started to reach their specified lifetime. Thereby,
these VNFs were finished by the TG located on the access side. The termination of these
flows produced a decrease in the load of these VNFs. Similar effects were noticed in the
two last activated instances (i.e., green and yellow lines) around 03:45 h. The average CPU
load in the transparent cluster started decreasing until the minimum established threshold
was reached. At this point, the instance represented by the blue line was deactivated, and
its existing flows were reassigned to the other VNFs due to a scale-in action. After waiting
for the completion of the cooldown time, another scale-in action was triggered since the
average CPU usage was still below 20%. This action resulted in the deactivation of the
transparent VNF depicted in yellow.

Sensors 2021, 21, 8283

18 of 23

n NS vnf_cluster-VNF 4
70 - " NS vnf_cluster-VNF 5
1 ——| NS vnf_cluster-VNF 6
= | NS vnf_cluster-VNF 7
60 -
—~50 A1
&
© 4
< 40
o
2 301
)
20 A
10 -
0 4
O .0 20
"N 1\31} 1:2«31:5 1’5300 0030'\ 0\301 0’1'36’5 0’530&0 N ‘)0 (’)3

Evaluation time

Figure 11. CPU load distribution among members in the transparent VNF cluster while auto-scaling
actions were performed.

Figure 12 summarizes the aforementioned description. It depicts the variation of the
average CPU load in the cluster along with its number of active members during the whole
experiment. The figure shows that every time the average CPU was above the maximum
threshold (i.e., 50%) a new instance was activated to decrease this parameter. In contrast, at
times when the average CPU was below 20%, the number of cluster instances was reduced
until the minimum number of active VNFs was reached by the end of the experiment.
Additionally, the number of active instances remained constant during the experiment
while the average CPU metric was within the established thresholds.

5 .) - 60
—— No. of active VNFs == Max. scaling threshold
—— Average CPU load ==== Min. scaling threshold
50
4 -
n
L ®
=2 -40 o
> —_—
o 37 2
S o
5 30 O
® o
5 2 ©
: r20 g
®] >
2 <
1 - 10
-0
0 T

0 100 200 300 400 500
Evaluation time (min)
Figure 12. Number of active members in the cluster and average CPU utilization vs. time.

During this experiment, we noticed a reduction in the CPU load of the initially
deployed VNFs when new instances were activated even though their allocated flows

Sensors 2021, 21, 8283

19 of 23

were invariably maintained. This behavior was due to an increase in system congestion
levels caused by the establishment of new connections. To avoid congestive collapse,
TCP implements a congestion window (CWND). This mechanism limits the number of
outstanding unacknowledged packets that can be in transit on the network for a given
pair of source and destination. Specifically, when the network traffic increases, each client
that injects TCP packets increases its CWND to reduce its forwarding rate [48]. These
reductions are reflected in the CPU load of the BITW VNFs, as the transmission of TCP
streams consumes most of the CPU resources [49]. In particular, the newly arrived flows
were assigned to the last activated instances as they were the least loaded. Thus, the
variation in its CPU load was mainly due to the arrival of new flows and not to the
connections already established. In the middle of this test (i.e., 00:30-01:30), the CPU load
of the cluster’s members was more balanced, though with slight variations, because the
incoming traffic was evenly distributed across all the instances, and had similar utilization
levels. However, this behavior did not last too long, and the CPU load of the last activated
instance increased while that of the initial VNFs decreased. This reduced the CWND
of connections while increasing their send rates, resulting in higher CPU load on scaled
instances. The latter was not so noticeable in the first pair of deployed instances due to
completing most of its allocated sessions.

5.2.4. Health Monitoring

The primary purpose of the health monitoring test was to assess the system’s respon-
siveness when a member of the transparent VNF cluster fails. To this end, 20 TCP flows
were generated with a bandwidth of 20 Mbps, a connection time of 6000 s and a waiting
interval of 300 s between each generated flow. Additionally, a low granularity (300 s) was
used in OSM and OpenStack to aggregate the collected metrics. This experiment started
with two active VNFs to which the incoming TCP traffic was evenly distributed according
to their CPU load. After 40 min of the simulation, a failure was emulated in a VNF instance
(i.e., VNF with id 7 in the NS) by putting it on standby. This alteration in the selected VNF
state can be observed in Figure 13 where the VNF value changed from 1 to 0 just before
16:25 hours (1 means healthy and 0 unhealthy). Additionally, it can be observed that a new
instance was activated almost immediately (in less than a minute) to replace the failed VNF
and meet the minimum number of active members in the pool.

1 -
n
>
4
B NS lvnf_cluster-VNF 4
(%] NS vnf_cluster-VNF 6
uu_) NS vnf_cluster-VNF 7
=2
>

0 -

25" 0‘515 "BOX‘)"BS’&Q’ "00’&6"05X6"X0X6"X5X6' 2016'2516'3016‘-3sx6‘- AOXQ’ ko)
Evaluation time

Figure 13. Status of each member belonging to the transparent cluster.

Sensors 2021, 21, 8283

20 of 23

Figure 14 represents the load distribution on each active VNE. Here, the activation of a
new VNF instance can be noticed after the failure event. It should also be noted that this
new instance had higher CPU utilization than the failed one, as it processed part of the
affected traffic along with the newly generated traffic. The latter is evidenced by taking a
closer look at the flow rules created in the redirectors (e.g., OFS redirector 1) before and
after the failure, see Figure 15a,b, respectively. Comparing both graphs shows that most of
the traffic assigned to the failed instance has been redirected to the new VNF (i.e., the flow
with the destination port, tp_dst, 5003, 5006, and 5002) along with part of the new incoming
traffic (i.e., flow with tp_dst 5009). A small portion of the affected traffic (i.e., flow with
tp_dst 5004) was reassigned to the other VNF instance since the new one was not active
when the traffic arrived. From Figure 15b, it can also be observed that the flows assigned
to the healthy instance (VNF connected in the interface ens6 of the OFSs) maintained their
affinity throughout the experiment.

60 1 NS vnf_cluster-VNF 4
NS |vnf_cluster-VNF 6
NS vnf_cluster-VNF 7

50 A

SN
o
1

w
o
1

CPU load (%)

N
o
1

10 -

S O P> O ® A0 A5 A0 25 A0 25 0 S O
\jo"b‘ \,6.35 \f).fg \,6“0 X@.‘Q \,6“\’ \,6‘\’ \.,6'7’ \,.6‘7’ XQ"?B \,6‘3 \,6‘0‘ \,6"5‘ \,6‘-6
Evaluation time

Figure 14. CPU utilization of each active member in the transparent VNF cluster.

ubuntu@vdu-redirector:~$ sudo ovs-ofctl dump-flows brl

duration=2565.
duration=2568.
duration=2560.631s,
duration=2535.455s,
duration=2531.933s,
duration=2493.745s,
duration=2331.111s,

cookie=0x@,
cookie=0x@,
cookie=8x@,
cookie=0x@,
cookie=8x@,
cookie=0x0,
cookie=8x@,

8965,
631s,

table=0,
table=8,
table=8,
table=@,
table=8,
table=0,
table=8,

n_packets=8, n_bytes=08, priority=65535,d1_dst=01:80:c2:00:00:08e,d]1_type=0x88cc actions=CONTROLLER:65535 [reassiened flow rule
n_packets=3545672, n_bytes=23399845@, priority=500,in_port=ens8 actions=output:ensd

n_packets=3985643, n_bytes=263857338, priority=508,in_port=enst actions=output:ensd

n_packets=2, n_bytes=148, priority=56@,in_port=ens5 actions=output:ens4

n_packets=1, n_bytes=70, priority=500,in_port=ens? actions=output:ensd

n_packets=1, n_bytes=78, priority=5@@,in_port=LOCAL actions=output:ensd

n_packets=64, n_bytes=2688, priority=508,arp,arp_spa=10.10.10.25,arp_tpa=10.16.18.184 actions=output:ensd

| cookie=0x@, duration=2338.646s,

table=0,

n_packets=@, n_bytes=8, priority=500,tcp,nw_src=108.10.10.25,nw_dst=10.10.10.104,tp_src=60423,tp_dst=5004 actions=output:ens3 |

cookie=8x@,
cookie=0x@,
cookie=8x@,

duration=2031.08@s,
duration=1929.292s,
duration=1929.174s,

table=8,
table=0,
table=8,

n_packets=8, n_bytes=8, priority=50@,tcp,nw_src=10.10.10.25,nw_dst=10.16.10.1684,tp_src=44671,tp dst=50885 actions=output:ensé
n_packets=8, n_bytes=674, priority=58@,tcp,nw_src=10.10.18.25,nu_dst=10.10.10.104,tp_src=47347,tp_dst=5081 actions=output:ensé
n_packets=2856876, n_bytes=5886658921, priority=500,tcp,nw_src=10.10.18.25,nu_dst=18.10.10.184,tp src=54993,tp_dst=50@1 actions=cutput:ensé

Cookie-0x0,
cookie=@x@,
cookie=0x8,
cookie=@x@,

duration=1629.268s,
duration=1628.900s,
duration=1329.087s,
duration=1328.815s,

Table=0,
table=8,
table=0,
table=8,

n_packets=8, n_bytes—674, priority-500,tcp,nw_src=10.10.10.25,nu_dst=10.10.10. 104, tp_src=30167, tp_dst-5007 actions—output:enss
n_packets=173648@, n_bytes=4969712131, priority=500,tcp,nw_src=10.10.10.25,nu_dst=10.10.10.184,tp src=55221,tp_dst=50@2 actions=output:ens8d
n_packets=8, n_bytes=674, priority=500,tcp,nw_src=18.10.10.25,nw_dst=10.1@.108.104,tp_src=59099,tp_dst=50@3 actions=output:ens8
n packets=1415822, n bytes=4851946995, priority=560,tcp,nw src=10.10.10.25,nw dst=10.10.10.184,tp src=60757,tp dst=50@3 actions=output:ensd

cookie=0x0,
cookie=0x@,
cookie=8x@,
cookie=0x@,

duration=1028.588s,
duration=1028.408s,
duration=729.
duration=728.

table=0,
table=8,

n_packets=8, n_bytes=674, priority=56@,tcp,nw_src=10.10.10.25,nw_dst=10.1@.10.104,tp_src=59439,tp_dst=50@4 actions=output:ensé
n_packets=1896775, n_bytes=3138897391, priority=560,tcp,nw_src=10.10.10.25,nu_dst=10.10.10.184,tp src=58795,tp_dst=50@4 actions=output:ensé

293s, table=@, n_packets=8, n_bytes=674, priority=588,tcp,nw_src=10.18.10.25,nw_dst=10.10.168.104,tp_src=49827,tp_dst=58@5 actions=output:ensé
583s, table=@, n_packets=773374, n bytes=2213158765, priority=56@,tcp,nw src=10.10.18.25,nw dst=10.10.10.104,tp src=34829,tp dst=-50885 actions=output:ensé

duration=429.
duration=429.

cookie=8x@,
cookie=8x@

table=0

265s, table=@, n_packets=8, n_bytes=674, priority=588,tcp,nw_src=10.18.10.25,nw_dst=10.10.168.104,tp_src=45675,tp_dst=58@6 actions=output:ens8
1339s

n_packets=455449, n_bytes=1383363663, priority=50@,tcp,mu_src=10.10.18.25,nw _dst=10.10.10.1084,tp_src=43679,tp dst-5806 actions-output:ens8

duration=128.
duration=128.

cookie=8x@,
cookie=0x0,
cookie=8x@,

923s, table=@, n_packets=8, n_bytes=674, priority=588,tcp,nw_src=10.18.10.25,nw_dst=10.10.168.104,tp_src=39709,tp_dst=58@7 actions=output:ensét
563s, table=0, n_packets=134886, n_bytes=385926337, priority=58@,tcp,nu_src=10.10.10.25,nw_dst=10.10.10.104,tp_src=38851,tp_dst=5007 actions=output:ensb
duration=2565.983s, table=8, n_packets=23, n_bytes=1610, priority=8 actions=CONTROLLER:65535

@)
Figure 15. Cont.

Sensors 2021, 21, 8283

21 0f23

ubuntu@vdu-redirector:~$ sudo ovs-ofctl dump-flows bril

cookie=8x8, duration=3115.045s,
cookie=0x8, duration=31@9.780s,
cookie=@x@, duration=3189.780s,
cookie=8x8, duration=30884.604s,
cookie=0x@, duration=3081.082s,
cookie=@x@, duration=3842.894s,
cookie=0x@, duration=2580.229s,
cookie=@x@, duration=2478.441s,
cookie=8x8, duration=2478.323s,
cookie=0x8, duration=1577.737s,

table=B, n_packets=8, n_bytes=8, priority=65535,d]_dst=81:80:c2:00:00:8e,d]_type=0x88cc actions=CONTROLLER:65535 3 new flow rule
table=8, n_packets=4938790, n_bytes=325942834, priority=50@,in_port=ens8 actions=output:ensd [reassigned flow rule
table=8, n_packets=6417291, n_bytes=423548743, priority=50@,in_port=ens6 actions=output:ens4

table=8, n_packets=2, n_bytes=148, priority=5088,in_port=ens5 actions=output:ensd

table=8, n_packets=99732, n_bytes=6591337, priority=50@,in_port=ens?7 actions=output:ensd

table=0, n_packets=1, n_bytes=70@, priority=5@@,in_port=LOCAL actions=output:ensd4

table=8, n_packets=8, n_bytes=8, priority=580,tcp,nw_src=10.10.10.25,nu_dst=10.10.10.104,tp_src=44671,tp_dst=5805 actions=output:ensé

table=8, n_packets=8, n_bytes=674, priority=500,tcp,nw_src=108.10.10.25,nw_dst=10.10.10.1e4,tp_src=47347,tp_dst=5@@1 actions=output:ensb

table=8, n_packets=2584710, n_bytes=7397286277, priority=500,tcp,nw_src=10.18.10.25,ms_dst=16.10.10.104,tp_src=54993,tp dst=5001 actions=output:ensbt
table=B, n_packets=8, n_bytes=674, priority=580,tcp,nw_src=10.10.10.25,nw_dst=10.10.10.104,tp_src=59439, tp_dst=5004 actions=output:ensé

|coukie=ﬁx8, duration=1577.557s,

table=0, n_packets=1624444, n_bytes=4649044129, priority=5@@,tcp,nw_src=10.10.10.25,nu_dst=10.10.1@.104,tp_src=58795,tp dst=50@4 actiun5=uutput:en56|

Cookie=Ox@, duration-12/8.447s,
cookie=0x@, duration=1277.732s,
cookie=@x8, duration=678.072s,
cookie=0x@, duration=677.712s,
cookie=@x@, duration=378.35@s,

Table=B, n_packets-8, n_bytes=6/4, priority-589,tcp,nw_src=108.108.18.25,n_dst=10.10.10.104,tp_src=4082/,tp_dst-5005 actions—output:ensh

table=8, n_packets=1301172, n_bytes=3723688681, priority=580,tcp,nw_src=10.10.10.25,nw_dst=108.10.1@.104,tp_src=34029,tp_dst=5805 actions=output:ens6
table=@, n_packets=8, n_bytes=674, priority=500,tcp,nu_src=10.10.168.25,nw_dst=10.10.108.1684,tp_src=39789,tp_dst=50@7 actions=output:enst

table=8, n_packets=66265@, n_bytes=1896353353, priority=5008,tcp,nw_src=10.10.10.25,nw_dst=10.10.10.184,tp_src=38051,tp_dst=5007 actions=output:ense
table=8, n_packets=8, n bytes=674, priority=58@,tcp,nw_src=1@.10.18.25,nw _dst=10.108.10.184,tp src=56919,tp dst=50@8 actions=-output:ensé

cookie=8x8, duration=377.867s,

cookie=0x@
cookie=0x@,

cookie=BxB, duration=31.924s, table=8, n_packets=8, n_bytes=674, priority=560,tcp,nu_src=10.10.10.25,mq_dst=10.10.10.104,tp_src=32927,tp_dst=5009 actions=output:ens?
i : table=0, n packets=29971, n bytes=85542175, priority=508,tcp,nw src=16.10.18.25 nw dst=10.10.16.184, tp src=39727 tp dst=5089 actions=output:ens’

cookie=0x@, duration=22.667s, table=0, n_packets=23791, n_bytes=6807726@, priority=5@0,tcp,nw_src=10.10.10.25,nw_dst=10.10.10.104,tp_src=43679,tp_dst=5006 actions=output:ens?
cookie=8x8, duration=22.396s, table=8, n_packets=23499, n_bytes=67244352, priority=508,tcp,nw_src=108.10.18.25,nw_dst=10.10.10.104,tp_src=55221,tp_dst=5002 actions=output:ens?

table=@, n_packets=342643, n_bytes=988321365, priority=5088,tcp,nw_src=108.10.18.25,nw_dst=10.16.10.1e4,tp_src=42755,tp_dst=50088 actions=output:ensé

n_packets=24138, n_bytes=69875966, priority=508,tcp,nw_sr .18.18.25,nw_dst=10.10.108.1e4,tp_src=68757,tp_dst=5803 actions=output:ens?

cookie=0x@, duration=31.524s, table=8, n_packets=4, n_bytes=168, priority=50@,arp,arp_spa=1@.108.108.25,arp_tpa=10.18.10.184 actions=output:ens/

cookie=@x@, duration=3115.@52s,

table=8, n_packets=33, n_bytes=6520, priority=8 actions=CONTROLLER:65535

(b)

Figure 15. Flow table of redirector 1. (a) Before the failure of the VNF instance 7. (b) After the failure of the VNF instance 7.

Moreover, some significant delays were noted in displaying the CPU metric in the
Grafana dashboard. We believe that better performance can be achieved by using higher
granularity values (e.g., every second or minute instead of every five minutes). However,
this involves modifying various parameters and configuration files at both OSM and
OpenStack levels, which is not trivial and lacks detailed documentation.

6. Conclusions

In this paper, we have proposed an SDN-based solution to manage a cluster of
transparent VNFs dynamically. Specifically, our solution implements a modular application
that runs on an SDN controller to perform load-balancing and auto-scaling decisions. The
load-balancing block guarantees bidirectional flow affinity without packet modification
by simultaneously configuring OpenFlow rules in the switches comprising the proposed
solution. Most of the reviewed literature on this topic conducted experiments by using
simulation tools such as Mininet. In contrast, our solution was implemented in a real
environment using two well-known frameworks, OSM and OpenStack.

The evaluation results validated the feasibility of the proposed solution. The solution
was shown to successfully redirect E2E traffic through the transparent cluster without
losing any packets. Additionally, its bidirectional flow affinity capability was demonstrated
by comparing the switches tables and finding each pair of source-destination addresses
attached to the same port. Likewise, the effectiveness of the load-balancing and auto-scaling
mechanisms was demonstrated through different experiments. Moreover, the monitoring
module’s performance was evaluated through a health test in which we could notice the
activation of a new instance to meet the minimum number of active members in the cluster
after detecting a failed member.

Future work directions for this topic include designing strategies based on traffic
forecasting. These strategies could enable scaling and load-balancing decisions to adapt to
dynamic variations in traffic proactively. Furthermore, we intend to implement and test
the performance of the proposed solutions in other VIM (e.g., Kubernetes) and MANO
technologies to evaluate and compare their performance and extend the evaluation scenario
(network service topology and SFC).

Author Contributions: Conceptualization, A.L.-C., L.L.-P, C.C.-P, L.P. and S.S.; Methodology, C.C.-P;
Software, A.L.-C. and I.L.-P; Validation, A.L.-C., I.L.-P,, C.C.-P,, L.P. and S.S.; Investigation, A.L.-C.,
LL.-P, C.C.-P, L.P. and S.S.; Formal Analysis, A.L.-C., I.L.-P, C.C.-P,, L.P. and S.S.; Writing—Original
Draft Preparation, A.L.-C. and I.L.-P; Writing—Review and Editing, A.L.-C., L.L.-P, C.C.-P,, L.P. and
S.S.; Supervision, C.C.-P.; Resources, C.C.-P.; Funding Acquisition, C.C.-P.; Project Administration,
C.C.-P. All authors have read and agreed to the published version of the manuscript.

Funding: This work has been supported by the Agencia Estatal de Investigacién of Ministerio de Cien-
cia e Innovacién of Spain under project PID2019-108713RB-C51 MCIN/AEI/10.13039/ 501100011033.

Sensors 2021, 21, 8283 22 of 23

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References

1. Mijumbi, R; Serrat, J.; Gorricho,].L.; Bouten, N.; De Turck, E; Boutaba, R. Network function virtualization: State-of-the-art and
research challenges. IEEE Commun. Surv. Tutor. 2015, 18, 236-262. [CrossRef]

2. Abu-Lebdeh, M.; Naboulsi, D.; Glitho, R.; Tchouati, C.W. On the placement of VNF managers in large-scale and distributed NFV
systems. IEEE Trans. Netw. Serv. Manag. 2017, 14, 875-889. [CrossRef]

3. Hu, Y.C; Patel, M; Sabella, D.; Sprecher, N.; Young, V. Mobile Edge Computing—A Key Technology Towards 5G; ETSI White Paper
No. 11; ETSI: Sophia Antipolis, France, 2015.

4. Lashgari, M.; Wosinska, L.; Monti, P. End-to-End Provisioning of Latency and Availability Constrained 5G Services. IEEE
Commun. Lett. 2021, 25, 1857-1861. [CrossRef]

5. Lee, D.; Park, J.; Hiremath, C.; Mangan, J.; Lynch, M. Towards Achieving High Performance in 5G Mobile Packet Core’s User Plane
Function; Technical Report; Intel Corporation: Santa Clara, CA, USA; SK Telecom: Seoul, Korea, 2018.

6. Varghese, B.; Reano, C.; Silla, F. Accelerator virtualization in fog computing: Moving from the cloud to the edge. IEEE Cloud
Comput. 2018, 5, 28-37. [CrossRef]

7. Bertin, P, Mamouni, T.; Gosselin, S. Next-generation pop with functional convergence redistributions. In Fiber-Wireless Convergence
in Next-Generation Communication Networks; Springer: Berlin/Heidelberg, Germany, 2017; pp. 319-336.

8. Duan, Q.; Wang, S.; Ansari, N. Convergence of networking and cloud/edge computing: Status, challenges, and opportunities.
IEEE Netw. 2020, 34, 148-155. [CrossRef]

9. Dutta, S.; Taleb, T.; Ksentini, A. QoE-aware elasticity support in cloud-native 5G systems. In Proceedings of the 2016 IEEE
International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 22-27 May 2016; pp. 1-6.

10. Ma,].; Rankothge, W.; Makaya, C.; Morales, M.; Le, E,; Lobo,]. A comprehensive study on load balancers for vnf chains horizontal
scaling. arXiv 2018, arXiv:1810.03238.

11. Alawe, I; Hadjadj-Aoul, Y.; Ksentini, A.; Bertin, P; Darche, D. On the scalability of 5g core network: The amf case. In Proceedings
of the 2018 15th IEEE Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 12-15
January 2018; pp. 1-6.

12. Liu, HYY,; Chiang, C.Y,; Cheng, H.S.; Chiang, M.L. OpenFlow-based Server Cluster with Dynamic Load Balancing. In
Proceedings of the 2018 19th IEEE/ ACIS International Conference on Software Engineering, Artificial Intelligence, Networking
and Parallel/Distributed Computing (SNPD), Busan, Korea, 27-29 June 2018; pp. 99-104.

13. Chiang, M.L.; Cheng, H.S; Liu, H.Y.; Chiang, C.Y. SDN-based server clusters with dynamic load balancing and performance
improvement. Clust. Comput. 2021, 24, 537-558. [CrossRef]

14. Chen, W,; Shang, Z.; Tian, X.; Li, H. Dynamic server cluster load balancing in virtualization environment with openflow. Int. J.
Distrib. Sens. Netw. 2015, 11, 531538. [CrossRef]

15. Manzanares-Lopez, P.; Mufioz-Gea,].P.; Malgosa-Sanahuja,]. An MPTCP-compatible load balancing solution for pools of servers
in OpenFlow SDN networks. In Proceedings of the 2019 Sixth International Conference on Software Defined Systems (SDS),
Rome, Italy, 10-13 June 2019; pp. 39—46.

16. Ntop. PF_Ring: High-Speed Packet Capture, Filtering and Analysis. Available online: https://www.ntop.org/products/packet-
capture/pf_ring/ (accessed on 22 June 2021).

17. de Oliveira,].V.G.; Bellotti, PC.P; de Oliveira, R.M.; Vieira, A.B.; Chaves, L.J. Virtualizing Packet-Processing Network Functions
over Heterogeneous OpenFlow Switches. IEEE Trans. Netw. Serv. Manag. 2021. [CrossRef]

18. Abdelltif, A.A.; Ahmed, E.; Fong, A.T.; Gani, A.; Imran, M. SDN-based load balancing service for cloud servers. IEEE Commun.
Mag. 2018, 56, 106-111. [CrossRef]

19. Adamuz-Hinojosa, O.; Ordonez-Lucena, J.; Ameigeiras, P.; Ramos-Munoz,].J.; Lopez, D.; Folgueira, J. Automated network
service scaling in NFV: Concepts, mechanisms and scaling workflow. IEEE Commun. Mag. 2018, 56, 162-169. [CrossRef]

20. Buyakar, T.V.K,; Rangisetti, A.K.; Franklin, A.A; Tamma, B.R. Auto scaling of data plane VNFs in 5G networks. In Proceedings
of the 2017 13th International Conference on Network and Service Management (CNSM), Tokyo, Japan, 26-30 November 2017;
pp- 1-4.

21. Arteaga, C.H.T,; Anacona, EB.; Ortega, K.T.T.; Rendon, O.M.C. A scaling mechanism for an evolved packet core based on network
functions virtualization. IEEE Trans. Netw. Serv. Manag. 2019, 17, 779-792. [CrossRef]

22. Ghorab, A.; Kusedghi, A.; Nourian, M.; Akbari, A. Joint VNF Load Balancing and Service Auto-Scaling in NFV with Multimedia

Case Study. In Proceedings of the 2020 25th International Computer Conference, Computer Society of Iran (CSICC), Tehran, Iran,
1-2 January 2020; pp. 1-7.

http://doi.org/10.1109/COMST.2015.2477041
http://dx.doi.org/10.1109/TNSM.2017.2730199
http://dx.doi.org/10.1109/LCOMM.2021.3063262
http://dx.doi.org/10.1109/MCC.2018.064181118
http://dx.doi.org/10.1109/MNET.011.2000089
http://dx.doi.org/10.1007/s10586-020-03135-w
http://dx.doi.org/10.1155/2015/531538
https://www.ntop.org/products/packet-capture/pf_ring/
https://www.ntop.org/products/packet-capture/pf_ring/
http://dx.doi.org/10.1109/TNSM.2021.3112403
http://dx.doi.org/10.1109/MCOM.2018.1701016
http://dx.doi.org/10.1109/MCOM.2018.1701336
http://dx.doi.org/10.1109/TNSM.2019.2961988

Sensors 2021, 21, 8283 23 of 23

23.

24.

25.

26.

27.
28.

29.
30.
31.

32.
33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

Lange, S.; Van Tu, N.; Jeong, S.Y.; Lee, D.Y.; Kim, H.G.; Hong, J.; Yoo,].H.; Hong,] W.K. A network intelligence architecture for
efficient vnf lifecycle management. IEEE Trans. Netw. Serv. Manag. 2020, 18, 1476-1490. [CrossRef]

Blanco, B.; Fajardo,].O.; Giannoulakis, I.; Kafetzakis, E.; Peng, S.; Pérez-Romero, J.; Trajkovska, I.; Khodashenas, P.S.; Goratti, L.;
Paolino, M.; et al. Technology pillars in the architecture of future 5G mobile networks: NFV, MEC and SDN. Comput. Stand.
Interfaces 2017, 54, 216-228. [CrossRef]

Zhang, Z.; Xiao, Y.; Ma, Z.; Xiao, M.; Ding, Z.; Lei, X.; Karagiannidis, G.K.; Fan, P. 6G wireless networks: Vision, requirements,
architecture, and key technologies. IEEE Veh. Technol. Mag. 2019, 14, 28—41. [CrossRef]

You, X.; Wang, C.X.,; Huang, J.; Gao, X.; Zhang, Z.; Wang, M.; Huang, Y.; Zhang, C.; Jiang, Y.; Wang, J.; et al. Towards 6G wireless
communication networks: Vision, enabling technologies, and new paradigm shifts. Sci. China Inf. Sci. 2021, 64, 110301. [CrossRef]
ETSI-ISG-NFV. Network Function Virtualization; Management and Orchestration; White Paper; ETSI: Sophia Antipolis, France, 2014.
Hajji, W. Dynamic Service Chain Composition in Virtualised Environment. Ph.D. Thesis, Loughborough University, Loughbor-
ough, UK, 2018.

ONAP. Open Network Automation Platform. Available online: https://www.onap.org/ (accessed on 22 June 2021).

OSM. Open Source MANO. Available online: https://osm.etsi.org/ (accessed on 22 June 2021).

Baton, O. An Extensible and Customizable NFV MANO-Compliant Framework. Available online: https://openbaton.github.io/
(accessed on 22 June 2021).

Cloudify. Open Source, Multi-Cloud Orchestration Platform. Available online: https://cloudify.co/ (accessed on 22 June 2021).
Yilma, G.M.; Yousaf, Z.F.; Sciancalepore, V.; Costa-Perez, X. Benchmarking open source NFV MANO systems: OSM and ONAP.
Comput. Commun. 2020, 161, 86-98. [CrossRef]

Hamdan, M.; Hassan, E.; Abdelaziz, A ; Elhigazi, A.; Mohammed, B.; Khan, S.; Vasilakos, A.V.; Marsono, M.N. A comprehensive
survey of load balancing techniques in software-defined network. J. Netw. Comput. Appl. 2021, 174, 102856. [CrossRef]

Kellerer, W.; Basta, A.; Babarczi, P; Blenk, A.; He, M.; Klugel, M.; Alba, A.M. How to measure network flexibility? A proposal for
evaluating softwarized networks. IEEE Commun. Mag. 2018, 56, 186-192. [CrossRef]

Kaljic, E.; Maric, A.; Njemcevic, P.; Hadzialic, M. A survey on data plane flexibility and programmability in software-defined
networking. IEEE Access 2019, 7, 47804-47840. [CrossRef]

ONF. OpenFlow Specifications. Available online: https://opennetworking.org/wp-content/uploads/2014/10/openflow-
switch-v1.5.1.pdf (accessed on 22 June 2021).

Zhang, W.; Hwang, J.; Rajagopalan, S.; Ramakrishnan, K.; Wood, T. Flurries: Countless fine-grained nfs for flexible per-flow
customization. In Proceedings of the 12th International on Conference on emerging Networking EXperiments and Technologies,
Irvine, CA, USA, 12-15 December 2016; pp. 3-17.

Li, Y; Han, Z.; Gu, S.; Zhuang, G.; Li, E. Dyncast: Use Dynamic Anycast to Facilitate Service Semantics Embedded in IP address.
In Proceedings of the 2021 IEEE 22nd International Conference on High Performance Switching and Routing (HPSR), Paris,
France, 7-10 June 2021; pp. 1-8.

HAProxy. The Reliable, High Performance TCP/HTTP Load Balancer. Available online: https://www.haproxy.org/ (accessed
on 22 June 2021).

Llorens-Carrodeguas, A.; Cervell6-Pastor, C.; Leyva-Pupo, I. A data distribution service in a hierarchical sdn architecture:
Implementation and evaluation. In Proceedings of the 2019 28th International Conference on Computer Communication and
Networks (ICCCN), Valencia, Spain, 29 July-1 August 2019; pp. 1-9.

OpenStack. OpenStack Nova Service. Available online: https://docs.openstack.org/nova/latest/ (accessed on 22 June 2021).
Isyaku, B.; Mohd Zahid, M.S.; Bte Kamat, M.; Abu Bakar, K.; Ghaleb, F.A. Software Defined Networking Flow Table Management
of OpenFlow Switches Performance and Security Challenges: A Survey. Future Internet 2020, 12, 147. [CrossRef]

Ha, N.; Kim, N. Efficient flow table management scheme in SDN-based cloud computing networks. J. Inf. Process. Syst. 2018,
14,228-238.

Kaur, S.; Kumar, K; Singh, J.; Ghumman, N.S. Round-robin based load balancing in Software Defined Networking. In Proceedings
of the 2015 2nd International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India,
11-13 March 2015; pp. 2136-2139.

Ryu. RYU SDN Framework. Available online: https://book.ryu-sdn.org/en/Ryubook.pdf (accessed on 22 June 2021).

Iperf. The Ultimate Speed Test Tool for TCP, UDP and SCTP. Available online: https:/ /iperf.fr/ (accessed on 22 June 2021).
Turkovic, B.; Kuipers, F.A.; Uhlig, S. Fifty shades of congestion control: A performance and interactions evaluation. arXiv 2019,
arXiv:1903.03852.

Statkus, A.; Paulikas, S.; Krukonis, A. TCP Acknowledgment Optimization in Low Power and Embedded Devices. Electronics
2021, 10, 639. [CrossRef]

http://dx.doi.org/10.1109/TNSM.2020.3015244
http://dx.doi.org/10.1016/j.csi.2016.12.007
http://dx.doi.org/10.1109/MVT.2019.2921208
http://dx.doi.org/10.1007/s11432-020-2955-6
https://www.onap.org/
https://osm.etsi.org/
https://openbaton.github.io/
https://cloudify.co/
http://dx.doi.org/10.1016/j.comcom.2020.07.013
http://dx.doi.org/10.1016/j.jnca.2020.102856
http://dx.doi.org/10.1109/MCOM.2018.1700601
http://dx.doi.org/10.1109/ACCESS.2019.2910140
https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://www.haproxy.org/
https://docs.openstack.org/nova/latest/
http://dx.doi.org/10.3390/fi12090147
https://book.ryu-sdn.org/en/Ryubook.pdf
https://iperf.fr/
http://dx.doi.org/10.3390/electronics10060639

	Introduction
	Related Work
	SDN-Based Load Balancers
	Load Balancing and Auto-Scaling

	Background
	Open Source MANO
	Software-Defined Networking
	OpenFlow Switches
	Flow Affinity

	Solution Proposal
	Problem Description
	Design Architecture and Implementation
	Monitoring Module
	Auto-Scaling Module
	Load Balancing Module

	Evaluation
	Experimental Setup
	Solution Validation
	Bidirectional Flow-Affinity
	Load Balancing
	Auto-Scaling Actions
	Health Monitoring

	Conclusions
	References

