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Simple Summary: In this work, we explore self-supervised pretraining for gait recognition. We
gather the largest dataset to date of real-world gait sequences automatically annotated through pose
tracking (UWG), which offers realistic confounding factors as opposed to current datasets. Results
highlight the great performance in scenarios with low amounts of training data, and state-of-the-art
accuracy on skeleton-based gait recognition when utilizing all available training data.

Abstract: The use of gait for person identification has important advantages such as being non-
invasive, unobtrusive, not requiring cooperation and being less likely to be obscured compared to
other biometrics. Existing methods for gait recognition require cooperative gait scenarios, in which
a single person is walking multiple times in a straight line in front of a camera. We address the
challenges of real-world scenarios in which camera feeds capture multiple people, who in most
cases pass in front of the camera only once. We address privacy concerns by using only motion
information of walking individuals, with no identifiable appearance-based information. As such,
we propose a self-supervised learning framework, WildGait, which consists of pre-training a Spatio-
Temporal Graph Convolutional Network on a large number of automatically annotated skeleton
sequences obtained from raw, real-world surveillance streams to learn useful gait signatures. We
collected and compiled the largest pretraining dataset to date of anonymized walking skeletons
called Uncooperative Wild Gait, containing over 38k tracklets of anonymized walking 2D skeletons.
We make the dataset available to the research community. Our results surpass the current state-
of-the-art pose-based gait recognition solutions. Our proposed method is reliable in training gait
recognition methods in unconstrained environments, especially in settings with scarce amounts of
annotated data.

Keywords: gait recognition; pose estimation; graph neural networks; self-supervised learning

1. Introduction

Human behaviour is complex, it defines us and is driven, in part, by the environment,
social influences, life experiences, and internal emotional factors, attitudes and values.
While some of the effects of individual actions and decisions are long reaching and abstract,
low-level behaviour in the form of movement in physical space is highly indicative of a
person’s immediate intentions, state of mind and identity.

Walking is one of the most fundamental actions we perform and the study of gait
(manner of walking) has gained increased attention in recent years, as it encodes important
behavioral biometric information, and the recent advancements in machine and deep
learning provide the necessary toolset to model this information. Walking patterns can be
used to estimate the age and gender of a person [1], estimate emotions [2], and provide
insight into various physiological conditions [3]. Moreover, aside from these soft-biometrics,
gait information is used as a unique fingerprinting method for identifying individuals.
Although face recognition has become the norm for person identification in a range of
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suitable applications with good results, gait recognition from video is still a challenging
task in real-world scenarios. The intrinsic dynamic nature of walking makes it susceptible
to a multitude of confounding factors such as view angle, shoes and clothing, carrying
variations, age, interactions with other people and various actions that the person is
performing while walking.

Most of the existing studies that use gait to estimate various internal aspects of a
person are performed in highly constrained conditions, requiring subjects’ cooperation,
often involving walking on a treadmill [4] in a laboratory setting. Since so far the study
of gait recognition is mostly performed in controlled environments, only a subset of
confounding factors were explored [5]. As of date, the conditions in which such a system
powered by machine learning algorithms would operate in a real-world setting is poorly
studied. Current datasets [4–7] focus on the change in view angle, clothing and carrying
conditions, while ignoring other behavioral variations. As opposed to face recognition
datasets, gait recognition datasets are harder to build, and require the cooperation of
thousands of subjects in order to be relevant. Furthermore, privacy laws restrict the usage
of these datasets in real world applications.

We propose WildGait, a framework for automatically learning useful, discriminative
representations for gait recognition from raw, real-world data, without explicit human
labels. We leverage surveillance streams of people walking and employ state of the art
pose estimation methods (e.g., AlphaPose [8], OpenPose [9], LCRNet [10]) to extract
skeleton sequences and pose tracking to construct a loosely annotated dataset. Making
use of a diverse set of augmentation procedures, we pretrain our network with minimal
direct supervision—the only indirect label employed is the pose tracking information
uncovered automatically. The deep learning community has recently an increased interest
in self-supervised learning: methods that leverage large datasets without labels to learn
meaningful and informative representations of input samples. Traditionally, these methods
involved using a pretext task [11–13] as a proxy to learn representations, but they have
shifted towards, non-pretext, contrastive learning [14–17].

The reason for using pose estimations is that they do not contain identifiable appearance-
based information of walking individuals. Current methods that use silhouettes [18] are
unsuitable in real-world, dynamic scenarios in which changes in illumination and multiple
overlapping individuals severely affect the quality of extracted silhouettes. Traditional
silhouette-based methods also encode information about the subjects, as general clothing,
hairstyles and accessories are distinguishable. While some approaches explicitly disen-
tangle appearance features and pose information [7], we argue that appearance-based
methods are too invasive in terms of the privacy of individuals. Skeletons extracted from
human pose estimation methods encode only motion information, which is sufficient to
determine if two skeleton representations belong to the same person, without holding any
information about the person’s appearance.

Pose information also enables leveraging information of performed actions and ac-
tivities, and filtering out individuals that are not walking or have abnormal walking
patterns [19]. For pretraining, we propose the Unconstrained Wild Gait dataset (UWG), which
unlike current available datasets, contains anonymized skeleton sequences of a large number of
people walking in a natural environment (over 38k tracklets), with many walking variations and
confounding factors—the data is gathered from raw, real-world video streams (Figure 1). People
walking in UWG are present only once, from a single viewing angle and with a constant array
of intrinsic confounding factors (clothing, shoes etc.), making it a highly challenging dataset.
We leverage this noisy information to pretrain a neural network to better handle controlled gait
sequences in scenarios with few data samples.
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Figure 1. Samples from the UWG dataset. We gather skeleton sequences by applying state-of-the-
art pose estimation/pose tracking models on publicly available surveillance streams. This allows
for learning discriminative gait representations without explicit human labels and without the
cooperation of subjects.

This paper makes the following contributions:

1. We are among the first to explore self-supervised learning on gait recognition, and we
propose WildGait, a data collection and pretraining pipeline, which enables learning
meaningful gait representations in a self-supervised manner, from automatically
extracted skeleton sequences in unconstrained environments.

2. The Unconstrained Wild Gait dataset (UWG), the largest dataset to date of noisily
tracked skeleton sequences to enable the gait recognition research community to
further explore ways to pretrain gait recognition systems in an self-supervised manner.

3. A study on transfer learning capabilities of our pretrained network on popular gait
recognition databases, highlighting great performance in scenarios with low amounts
of training data, and state-of-the-art accuracy on skeleton-based gait recognition when
utilizing all available training data.

2. Related Work

The research attention received by gait recognition over the past decade has been
increasing. A significant portion of this research was dedicated to gait recognition using
wearable inertial sensors [20,21], however, our focus is on recognition of gait using camera
sensors. Gait recognition approaches can be classified into two main categories: model-
based and appearance-based.

2.1. Appearance-Based Methods

One of the most prevalent approaches for appearance-based gait recognition is the
use of a Gait Energy Image (GEI) [18]. GEIs are computed by averaging the silhouettes
of walking individuals across a gait cycle. Such images are then processed using modern
standard image processing approaches. Since GEIs have limitations, such as not taking into
account temporal information, several variants are proposed to address these shortcomings,
notably Gait Entropy Image (GEnI) [22], Gait Flow Image [23] and Chrono-Gait Image [24],
all showing good performance on benchmark datasets.

More recent approaches tend to use appearance features to explicitly learn a disentan-
gled representation. The authors of [7] propose a way to explicitly disentangle motion and
appearance features via an autoencoder with carefully designed loss functions.

2.2. Model-Based Approaches

As opposed to appearance-based methods, model-based methods process walking
patterns as a set of human joint trajectories across time. The performance increase of
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pose-estimation models [25], enabled the use of skeletons sequences in gait recognition.
The authors of [26] directly use the joint probability heatmaps as an input for an Long-Short
Term Memory (LSTM) [27] network. LSTM architectures are widely used for modelling
temporal data, and model-based gait is naturally processed as a sequence. The authors
of [28] used an LSTM and a CNN to process 2D skeleton sequences to account for the
temporal and spatial variations of walking. The authors of [29] used an LSTM autoencoder
with contrastive learning to further stabilize the joint trajectories of skeletons. Recently, the
authors of [19] enhanced the robustness of estimated skeletons by constructing a quality-
adjusted cost matrix between input frames and registered frames for frame-level matching.
The authors of [30] propose a a fully-connected network to model a single skeleton, and
temporal aggregation of skeletal features for the final classification. Both references [31,32]
leverage 3D skeletons to model gait patterns, with incremental improvements over 2D
skeletons. Similar to us, reference [33] applies a graph convolutional network to process
skeleton sequences, but use a final pyramid pooling layer for recognition. An important
aspect of gait recognition for deployment in practice is multi-gait, in which multiple people
walk together, and their individual walking patterns change. The authors of [34] proposed
an attribute discovery model in a max-margin framework to recognize a person based on
gait while walking with multiple people.

2.3. Gait Recognition Datasets

Several benchmark datasets have been proposed to test the performance of gait
recognition systems in the presence of a standard array of confounding factors. The most
popular dataset is CASIA-B [5], which is comprised of 126 different identities, that walk
several times in front of 11 cameras. Each identity also has different walking variations
(clothing/carrying conditions) that affect the walking patterns. More recently, Front-View
Gait Database (FVG) [7] was proposed to tackle the most difficult camera view-angle for
gait processing systems (i.e., walking towards the camera). The authors propose several
confounding factors, including clothing and carrying conditions, background clutter, and
the passage of time. Another recent dataset, OU-MVLP [4], is introduced as a benchmark
for evaluating the scalability of gait representations, being one of the largest datasets,
comprised of 10.000 identities captured from 14 cameras. However, OU-MVLP is still
captured in a highly controlled environment, requiring the subjects to walk on a treadmill.
This makes it less suitable to pretrain models capable of generalizing across walking
scenarios, compared to our proposed UWG dataset. UWG is designed to be representative
of the general walking population, with a multitude of camera angles and variations.
Moreover, Nixon et al. [35] provided a comprehensive review of current datasets and
applications for gait-based identification, and identified a need for developing datasets
and methods for scaling methods outside of controlled environments.

2.4. Unsupervised Skeleton-Based Methods

Little research was performed on gait recognition in more constrained scenarios,
with little to no annotated data. Closer to the work proposed in this paper are the recent
advancements in skeleton-based action recognition in scenarios of little or no supervi-
sion. The authors of [36] proposed to use an LSTM autoencoder to learn discriminative
representations for activity recognition, without any supervision except the skeleton se-
quences. Similarly, reference [37] used an iterative approach in an active learning setting.
The authors of [38] used a self-supervised approach to activity recognition, in which they
propose several pretext tasks to pretrain the network, such as pose shuffling and motion
prediction. However, different from the previous action recognition methods which aim
to ambiguate the identity from various actions, we target the opposite problem: given a
single action (i.e., walking), we aim to uncover the identity. As such, we posit that directly
using unsupervised action recognition methods for pretraining is unsuitable for our case.

Different from self-supervised methods, we take a data-driven approach. We pro-
cess large amounts of raw data from real-world video streams, automatically extracting
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skeletons from each frame, performing intra-frame pose tracking and filtering unwanted
skeletons (i.e., poorly extracted/non-walking). We train a Spatio-Temporal Graph Convo-
lutional Network (ST-GCN) [39] using contrastive learning for gait recognition. ST-GCN
is widely used for processing skeleton sequences for a diverse set of human actions and
has also been successfully used in gait recognition settings [33]. Without any major ar-
chitectural modifications we obtain exceptional results in scenarios with scarce amounts
of data.

3. Method

This section offers an overview of the methodology for collecting the Unconstrained
Wild Gait dataset from raw surveillance streams, and of the self-supervised pretraining
procedure.

3.1. Dataset Construction

Our aim is to learn good gait representations from human skeleton sequences in
unconstrained environments, without explicit labels. For this purpose we collect a sizeable
dataset of human walking skeleton sequences from surveillance camera feeds, with a high
variance of walking styles and from various geographic locations, environments, weather
conditions and camera angles. The dataset captures a multitude of confounding factors in
the manner of walking of individuals. We named this dataset Unconstrained Wild Gait
(UWG), and releasing it upon request to the research community to further advance the
field of gait recognition. UWG is intended for pretraining gait analysis models, which
will be further fine-tuned on downstream tasks. Figure 2 showcases our data collection
procedure, from raw surveillance streams to anonymized skeleton sequences. All video
streams captured for UWG are collected from static surveillance cameras publicly available
on the internet. These streams are often “street cams” that continuously stream a busy street
in a city. Real-world surveillance streams offer significantly greater variation of viewpoints
and confounding factors, with people changing walking direction, having heavy clothing
and carrying accessories in unconventional ways. Figure 3 shows samples from from UWG.
Moreover, scenes can be very crowded (right-hand side of Figure 3), which impacts both
the gathering of gait cycles, as some joints are not always visible, and the walking dynamics
themselves (i.e., walking to avoiding other people, keeping the same walking speed).

Figure 2. Data collection procedure. We process raw video streams from real-world settings of people walking and
construct Unconstrained Wild Gait (UWG), a dataset of skeleton sequences loosely annotated through pose estimation and
pose tracking. We use this raw and noisy data to pretrain a gait recognition model that generalizes well to different gait
recognition scenarios. Skeletons are extracted from raw surveillance feeds with a well known multi-person pose estimation
model, AlphaPose [8], which are then tracked intra-camera with a pose tracking model (SORT [40]). Finally, sub-par skeleton
sequences are removed with simple heuristics. Best viewed in color.

We postulate that constructing UWG through mining real-world surveillance streams
would be a necessary step in making gait analysis models more robust to “out-of-distribution”
walks, as opposed to combining multiple existing datasets [4,5,7]. An ensemble of con-
trolled datasets will still provide only controlled walks, which would make the model
susceptible to outliers. Works in out-of-distribution detection have suggested that “expos-
ing” models to a large and diverse set of samples increases robustness to outliers [41].
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Figure 3. Samples of people walking from UWG. As opposed to strictly controlled mainstream
datasets, the skeleton sequences provided by UWG were captured in real-world conditions (including
sequences from crowded scenes) and with real-world confounding factors (in the form of heavy
clothing, a variety of footwear, and multiple carrying conditions). Faces are blurred for privacy
reasons. UWG contains only anonymized, out-of-context skeleton sequences—samples shown here
are only for illustrating the real-world confounding factors.

Since people from different geographic locations have different manners of walking
influenced by cultural and societal norms [42], we gathered data from 3 major continents
(Europe, Asia and North America—Table 1) to capture subject diversity. To obtain skeleton
sequences for people in a video, we first preprocess the streams to a common 24 fps
and 720p resolution. Then, a crowd pose estimation method (in our case, AlphaPose [8])
was used to extract human skeletons for each frame, and skeletons were tracked intra-
camera, across time, using SORT [40]. We chose SORT [40] as it has high performance and
reasonable accuracy. However, as in the case of the pose estimation algorithm, the exact
method is not crucial, so long as skeleton sequences of reasonable accuracy are uncovered.
Moreover, we chose SORT as it only operates on the coordinates of the bounding box,
and not on the appearance of individuals, as in the case of Deep SORT [43]. We aimed to
use as little appearance information as possible in our processing pipeline. The output of
the AlphaPose model consists of 17 joints with X and Y coordinates of the joints and the
confidence, in the COCO [44] pose format.

Unstructured environments invariably introduce noise in the final skeleton sequences
due to unreliable extracted skeletons, lost tracking information, or people standing who
perform activities other than walking. To address this, we only keep sequences with a
mean confidence on extracted joints of over 60% and with no more than 3 consecutive
frames with feet confidence of less than 50%. This way we eliminate poorly extracted
poses and ensure that the feet are visible throughout the sequence. Moreover, we enforce a
minimum tracking sequence of 54 frames, which corresponds to approximately two full
gait cycles [45].

Table 1. Geographic locations from where we gathered skeleton sequences. We aimed for a multi-
cultural representation of walking people. * Approximate number given by pose tracker.

Continent # IDs * Walk Length (hr) Avg. Run Len. (Frames)

Asia 3635 4.79 104.5
Europe 12,993 19.76 110.1

North America 21,874 34.47 108.2

Further, based on known body proportions we normalize each skeleton to be in-
variant to the height of the person by first zero-centering each skeleton by subtracting
the pelvis coordinates, and then normalizing the Y coordinate by the length between the
neck and the pelvis, and the X coordinate by length from the right to the left shoulder
(Equations (1) and (2)). The normalization procedure ensures the skeleton sequences are
aligned and similar poses have close coordinates. Moreover, by removing information
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related to the height of the person, information related to the stature and particular body
characteristics of a person are eliminated.

xjoint =
xjoint − xpelvis

|xR.shoulder − xL.shoulder|
(1)

yjoint =
yjoint − ypelvis

|yneck − ypelvis|
(2)

We address the issue of non-walking people with a heuristic on the movement of
the joints corresponding to the legs (feet and knees). We compute the average movement
velocity of the feet, which is indicative of the activity of a person. Thus, we filter out
individuals with an average velocity magnitude of less than 0.01. Extremely long tracklets
are also filtered out, as it was noticed that individuals tracked for a longer time are usually
standing (not walking). Figure 4 showcases the distribution of the final tracklet durations.

Figure 4. Distribution of tracklets durations in the UWG dataset. Longer tracklets capture more
diversity within the same subject’s walk.

The proposed framework does not rely on appearance information at any step in
the processing pipeline, except when extracting the pose information. Table 2 shows
a comparison between UWG and CASIA-B and FVG in terms of diversity and size. A
total of 38,502 tracklets were obtained, with an average walk duration of 108 frames.
While this is an approximation of the number of different identities in the dataset, it is
possible that some tracklets belong to the same person, due to lost tracking information
by the pose tracking model. This is not an issue since identity-related information is not
used in the pretraining stage. The total walking sequences duration in the dataset is of
approximately 60 h. The scenario for this dataset is more restrictive compared to other
benchmark datasets, as it does not include multiple runs of the same person from multiple
camera angles and with multiple walking styles (such as different carrying and clothing
conditions). Still, even from this restrictive scenario, the large amount of data is leveraged
to learn good gait representations that transfer well to other benchmark datasets. In the
proposed configuration, the UWG dataset is used only for pretraining, and the learned
embeddings are evaluated on popular gait recognition datasets.
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Table 2. Comparison of gait datasets. UWG differs in purpuse, as it is intended for pretraining, and
not for evaluation. It is a large-scale dataset, noisily annotated, agnostic to confounding factors and
camera viewpoints. * Approximate number given by pose tracker.

Dataset # IDs Views Total Walk
Length (hr)

Avg. Run
Length (frames) Runs/ID

CASIA-B 124 11 15.8 100 110

FVG 226 3 3.2 97 12

UWG (ours) 38,502 * 1 59.0 108.5 1

3.2. Learning Procedure

Figure 5 highlights the proposed methodology for learning informative gait repre-
sentations from unconstrained scenarios. Walking sequences for each tracked person are
obtained after processing the data from the video streams. A Spatio-Temporal Graph Con-
volutional Network (ST-GCN) [46] is employed to process the walking sequences, which
was chosen due to its good results in the area of action recognition. Moreover, applying
graph computation on skeletons allows modelling both the local interactions between
joints and the global time variation between individual skeletons. A graph model was
used for the implementation, as it is more appropriate to model the spatio-temporal rela-
tionships between joints compared to a simple LSTM network [26]. Moreover, the authors
of [33] show that a ST-GCN can successfully be used for skeleton-based gait recognition.
In this ST-GCN implementation, a standard 1xΓ 2D convolution is performed on a (C, V,
T) feature map tensor, where Γ represents the temporal window size, C is the number of
channels, V is the number of vertices and T the number of frames. The resulting tensor
is then multiplied with the normalized adjacency matrix Λ−

1
2 (A + I)Λ−

1
2 . In our case,

the adjacency matrix A is given by the COCO skeleton structure and the identity matrix I
represents the self-connections. Moreover, learnable edge-importance weights between
joints are implemented through a mask matrix M which is multiplied element-wise with
the adjacency matrix:

f out = Λ−
1
2 ((A + I)⊗M)Λ−

1
2 f inW (3)

where Λ−
1
2 = ∑j(Aij + Iij).

Figure 5. WildGait training methodology. Given a tracked sequence of skeletons, we employ
Supervised Contrastive (SupCons) loss on multiple augmented views (randomly cropped, flipped
etc.) of the same person and a walk from a random subject in the dataset as a negative sample.

Since the setting for the UWG dataset does not include multiple runs of the same
walking person, with different confounding factors, a diverse set of data augmentations
are employed to create augmented walking sequences for the same person. The network
receives a randomly sampled gait sequence of 54 frames, out of the full tracked sequence. If
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the tracked sequence is less than 54 frames, the start of the sequence is repeated. Moreover,
the sequence is dilated or contracted, in accordance to pace prediction [47]. Modifying
the pace of a video sequence has been shown to allow for learning meaningful semantic
information in a self-supervised manner. The time modification factor is uniformly sampled
from {0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2}. This procedure allows for the model to be robust to
changes in video framerate and subject walking speed.

Further, squeezing, flipping, mirroring and randomly dropping out joints and frames
are employed to further introduce diversity in the dataset.

Existing literature training procedures for recognition problems, employ either triplet
loss [48], center loss [49], direct classification, or a combination of them [50]. However,
manipulating the loss weights of multiple loss functions is cumbersome, are requires
significant tuning. Moreover, having a direct classification head of the person identity does
not scale well with the number of identities, and many models employ such a classification
head for regularisation and preventing the triplet loss from collapsing embeddings. The use
of triplet loss also involves careful hard negative mining [51], which can have a significant
negative impact on performance if performed improperly.

To alleviate some of the optimization problems present in current approaches, we
employed the Supervised Contrastive (SupCons) [17] loss, which is a generalization of the
triplet loss, allowing for multiple positive examples per identity. Supervised Contrastive
loss assumes a multiviewed batch, of multiple augmenations for the same sample. Let
i ∈ I ≡ {1 . . . 2N} be the index of an arbitrary augmentated sample and j(i) the index of the
other augmented sample from the same source. In supervised contrastive, a generalization
of the self-supervised loss [52–54] is achieved by incorporating supervision, which allows
for the presence of an arbitrary number of positives:

Lsup = ∑
i∈I

= ∑
i∈I

−1
|P(i)| ∑

p∈P(i)
log

exp(zi · zp/τ)

∑a∈A(i) exp(zi · za/τ)
(4)

In this equation, zl = Proj(Enc(x̃l), the embedding of a skeleton sequence, · de-
notes the dot product operation, τ ∈ R+ is a temperature parameter and A(i) ≡ I \ {i}.
Moreover, P(i) ≡ {p ∈ A(i) : ỹp = ỹi} is the set of indices of all positives in the mul-
tiviewed batch distinct from i. By using supervised contrastive instead of a traditional
self-supervised loss enables an intrinsic ability to perform hard positive/negative mining,
which is computationally expensive. Moreover, the authors highlight the increased con-
trastive power with the presence of more negative examples in the batch and the ability
to generalize to an arbitrary number of positives. In our case, the positives are given by
different crops across time of the same skeleton sequence. In our implementation, we chose
two crops corresponding to two positive examples. The variability of the two crops is
higher if the skeleton sequence is longer, as the walker might change direction or perform
different actions while walking.

Figure 5 showcases our simplified learning procedure. After the feature extraction,
embeddings are normalized to the unit sphere. Following the author’s recommendations,
we employ a loss temperature of 0.01, as smaller temperatures benefits training [17].

By not using a direct classification head of the identities, as in previous gait recognition
works, we are able to scale to tens of thousands of identities with the same model size. This
was not a requirement when working with smaller datasets such as CASIA-B and FVG,
but it is in the case of UWG, since it has 38k tracklets.

4. Experiments & Results
4.1. Benchmark Datasets

Popular gait recognition datasets, CASIA-B and FVG (Front-View Gait), were chosen
to evaluate our unsupervised pretraining scheme.

CASIA-B. We chose CASIA-B as it is a popular benchmark for evaluating the effect
of viewpoint variation, which allows us to compare to other pose-based gait recognition
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methods. CASIA-B has 124 identities captured from 11 different viewpoints. All subjects
walk indoors, and their walk is captured with synchronized cameras. Each identity has
three walking variations corresponding to normal walking (NM), clothing variation (CL)
and carry bag (BG).

Front-View Gait (FVG). is used to further evaluate the front-view angle, across multi-
ple confounding factors that are not present in CASIA-B. The 226 subjects from FVG are
walking outdoors and are captured with a single camera. Besides normal walking and
changing clothes, subjects also change their walking speed to be slower or faster than their
normal cadence.

4.2. Evaluation Procedure

The performance evaluations presented in this paper abide by the evaluation guide-
lines of each dataset. For CASIA-B, we use the first 62 identities for training and the final
62 for evaluation, and show the average recognition accuracy across all viewing angles,
except when gallery and probe angles are the same. For FVG, we used 136 identities for
training and the rest for testing, and report results for each evaluation protocol: Walk Speed
(WS), Carrying Bag (CB), Changing Clothes (CL), Cluttered Background (CBG) and ALL.
The gallery set is comprised of only run #2 for each identity from sessions 1 and 2, as the
authors suggested [7].

4.3. Quantitative Evaluation
4.3.1. Direct Transfer Performance

We initially tested our network’s capability to generalize to CASIA-B and FVG by
pretraining on UWG and directly evaluating on CASIA-B/FVG, without actually training
or fine-tuning on these datasets. We evaluated the direct transfer recognition accuracy
using increasingly larger random samples from UWG to highlight the impact of the size of
the pretraining dataset. Each experiment was run 5 times and the results were averaged to
avoid a favorable configuration for our setting. The results in Figure 6 show that transfer
accuracy on downstream tasks benefits from a larger size of the pretraining dataset. It
is more evident in the case of FVG, since it has fewer viewpoint variations pertaining to
each subject.

Figure 6. UWG dataset size influence over the transfer learning performance of WildGait on down-
stream evaluation benchmarks. The network was pretrained on UWG, but not trained on CASIA-B
or FVG. For CASIA-B, we show mean accuracy where the gallery set contains all viewpoints except
the probe angle.

4.3.2. Supervised Fine-Tuning

Further, we evaluated the performance of our pretrained network when fine-tuned
using limited amounts of training data, in a few-shot learning regime. For both CASIA-B
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and FVG we used random samples of 10%, 20%, 30%, 50%, 70% and 100% of the runs of each
person. Each experiment was run 5 times and the results were averaged. The entire network
was trained with a high learning rate at deeper levels in the architecture and a decreasingly
lower rate for the lower-level representations, as proposed by Kirkpatrick et al. [55].

The pretrained network was compared to a randomly initialized one, with results
presented in Figure 7. On both datasets, the benefits of pretraining are showcased in the
constant superior performance over random weight initialization, especially with lower
amounts of training data. When fine-tuning with only 10% of the available data, the gap
is more dramatic in the case of FVG—in FVG, each subjects walk is captured 12 times,
whereas in CASIA-B, each subject is captured 110 times from all cameras. As such, 10% of
the FVG data represents one walk per person, compared to 11 walks per person offered by
10% CASIA-B dataset. This is significantly less data per person used for fine-tuning, and
highlights the benefits of pretraining the network on UWG. Moreover, the training regime
for the pretrained network is more stable regardless of the amount of data, shown by the
small standard deviations in Figure 7.

Figure 7. Performance of fine-tuning the proposed network on downstream evaluation benchmarks,
with fractions of the training data. For FVG, runs are randomly sampled per subject. For CASIA-B,
runs are randomly sampled uniformly from all angles per subject, and the average accuracy is across
all viewpoints, where the gallery contains all angles except the probe angle. Pretraining on UWG
results in a more stable training regime and significantly increased performance in scenarios with
little labelled training data available.

4.3.3. Comparison with Unsupervised Skeleton-Based Methods

We compared WildGait to other relevant methods that leverage skeleton sequences
to learn meaningful representations. A ST-GCN pretrained on Kinetics [56] was selected
to evaluate the transfer learning capabilities from supervised action recognition to gait
recognition. Kinetics is a popular dataset of training and evaluating action recognition
models, including skeleton-based models. Since it offers a large variety of actions and
movements from skeletons, we used it to measure its performance in the particular case
of gait analysis. We used the publicly available pretrained model provided by the au-
thors [39]. Self-supervised approaches such as MS2L [38] and Pace Prediction [47] were
also chosen for comparison, along with a popular method for unsupervised pretraining in
the field of skeleton-based action recognition, Predict and Cluster [36]. This latter method
uses a sequence-to-sequence LSTM network with fixed decoder to learn discriminative
representations. We followed the authors’ implementation and pretrain on UWG. For Pace
Prediction [47] and MS2L [38], we implemented the methods according to their respective
papers and pretrain the models on UWG. The results for direct transfer learning (without
fine-tuning) on CASIA-B and FVG are presented in Tables 3 and 4, and show that WildGait
outperforms existing approaches by a large margin. Our results show that, in the case
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of gait recognition, the information captured in tracked skeleton sequences of walking
people is sufficient for a strong supervisory signal, while plain unsupervised approaches
are unsuitable. Moreover, our results show that transferring knowledge from the action
recognition domain is inappropriate for gait analysis: pretraining on skeleton-based action
recognition datasets does not lead to meaningful representations for particular instances of
walks, nor are the algorithms developed in this domain suitable for gait recognition.

Table 3. Transfer learning comparison with other unsupervised skeleton-based training methods on CASIA-B. WildGait
consistently outperforms standard methods for unsupervised learning from skeleton sequences. We report accuracy where
the gallery set contains all viewpoints except the probe angle (top row). We highlight with bold our method (WildGait) and
best results in each walking variation.

CASIA-B—Direct Transfer
0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦ Mean

NM

Pretrained Kinetics 19.35 19.35 27.42 29.03 25.81 38.71 27.42 27.42 20.97 12.9 6.45 23.17
Predict & Cluster 41.93 45.16 45.96 34.67 20.16 11.29 30.64 32.25 21.77 19.35 12.09 28.66
MS2L 37.90 39.51 40.32 51.61 24.19 17.74 25.80 46.74 40.32 33.06 34.67 35.62
Pace Prediction 43.34 39.51 50.00 54.03 38.70 62.90 70.96 70.16 54.03 66.93 64.51 55.91
WildGait (ours) 72.58 84.67 90.32 83.87 63.70 62.90 66.12 83.06 86.29 84.67 83.06 78.29

CL

Pretrained Kinetics 9.68 8.87 16.94 19.35 6.45 12.1 16.13 15.32 7.26 4.03 4.84 11.0
Predict & Cluster 15.32 19.35 25.81 16.13 6.45 4.03 17.74 17.74 8.06 8.06 7.26 13.27
MS2L 10.48 17.74 13.71 12.1 6.45 12.9 13.71 18.55 13.71 8.06 9.68 12.46
Pace Prediction 13.71 10.48 8.87 8.06 11.29 13.71 16.94 17.74 12.9 13.71 15.32 12.98
WildGait (ours) 12.1 33.06 25.81 18.55 12.9 11.29 21.77 24.19 20.16 26.61 16.13 20.23

CB

Pretrained Kinetics 17.74 15.32 12.9 14.52 18.55 12.9 15.32 17.74 14.52 8.87 8.06 14.22
Predict & Cluster 24.19 34.68 27.42 26.61 10.48 9.68 17.74 20.97 11.29 15.32 12.1 19.13
MS2L 25.0 33.87 31.45 26.61 11.29 16.13 20.97 27.42 25.81 20.97 20.16 23.61
Pace Prediction 37.1 29.03 37.1 31.45 31.45 43.55 42.74 34.68 31.45 33.06 34.68 35.12
WildGait (ours) 67.74 60.48 63.71 51.61 47.58 39.52 41.13 50.0 52.42 51.61 42.74 51.69

Table 4. Transfer learning comparison with other unsupervised skeleton-based training methods
on FVG dataset. We highlight with bold our method (WildGait) and best results in each walking
variation.

FVG
WS CB CL CBG ALL

Pretrained Kinetics 24.00 54.55 28.63 43.16 22.33

Predict & Cluster 32.79 33.72 20.08 44.01 32.40

MS2L 42.33 40.78 31.62 53.84 41.93

Pace Prediction 45.65 40.78 28.63 55.55 44.84

WildGait (ours) 75.66 81.81 48.71 84.61 75.66

4.3.4. Comparison with State-of-the-Art

Finally, we compared with state-of-the-art skeleton-based gait recognition methods
on CASIA-B, with the results presented in Table 5. We fine-tuned our network using
all the available training data: 62 subjects, all viewpoints and runs. We achieve state-
of-the-art results in skeleton-based gait recognition on normal walking (NM) and carry
bag variations (BG) by a significant margin. When handling clothing (CL) variation, our
method achieves good results relative to other methods, but clothing variation remains a
challenging problem for gait-based person identification using skeletons, as heavy clothing
significantly affects the manner of walking and also makes certain joints less visible to the
pose estimation model. Moreover, UWG, by design, does not contain walking sequences of
the same subject with different confounding factors (such as clothing variation). As such,
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complete disentanglement is cumbersome in our setting. This is noticeable in Figure 7, in
the case of FVG, where the pretrained model is negatively affected on the clothing variation
through the addition of more data, while other variations are more stable.

Our state-of-the-art results are attributed to the large pretraining dataset and the
diverse augmentation procedures we employ to make the model invariant to different
walking variations and camera viewpoints.

Table 5. Comparison with other skeleton-based gait recognition methods on CASIA-B dataset. In all methods the gallery set
contains all viewpoints except the proble angle. WildGait achieves state-of-the art results in normal walking (NM) and
carry-bag variation (CB) by a large margin, being able to generalize well across camera viewpoints. We highlight with bold
our network (WildGait) and best results in each walking variation.

Probe Method 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦ Mean

NM

PTSN [28] 34.5 45.6 49.6 51.3 52.7 52.3 53 50.8 52.2 48.3 31.4 47.4
PTSN-3D [32] 38.7 50.2 55.9 56 56.7 54.6 54.8 56 54.1 52.4 40.2 51.9
PoseGait [31] 48.5 62.7 66.6 66.2 61.9 59.8 63.6 65.7 66 58 46.5 60.5
PoseFrame [30] 66.9 90.3 91.1 55.6 89.5 97.6 98.4 97.6 89.5 69.4 68.5 83.1
WildGait network (ours) 86.3 96.0 97.6 94.3 92.7 94.3 94.3 98.4 97.6 91.1 83.8 93.4

CL

PTSN [28] 14.2 17.1 17.6 19.3 19.5 20 20.1 17.3 16.5 18.1 14 17.6
PTSN-3D [32] 15.8 17.2 19.9 20 22.3 24.3 28.1 23.8 20.9 23 17 21.1
PoseGait [31] 21.3 28.2 34.7 33.8 33.8 34.9 31 31 32.7 26.3 19.7 29.8
PoseFrame [30] 13.7 29.0 20.2 19.4 28.2 53.2 57.3 52.4 25.8 26.6 21.0 31.5
WildGait network (ours) 29.0 32.2 35.5 40.3 26.6 25.0 38.7 38.7 31.4 34.6 31.4 33.0

BG

PTSN [28] 22.4 29.8 29.6 29.2 32.5 31.5 32.1 31 27.3 28.1 18.2 28.3
PTSN-3D [32] 27.7 32.7 37.4 35 37.1 37.5 37.7 36.9 33.8 31.8 27 34.1
PoseGait [31] 29.1 39.8 46.5 46.8 42.7 42.2 42.7 42.2 42.3 35.2 26.7 39.6
PoseFrame [30] 45.2 66.1 60.5 42.7 58.1 84.7 79.8 82.3 65.3 54.0 50.0 62.6
WildGait network (ours) 66.1 70.1 72.6 65.3 56.4 64.5 65.3 67.7 57.2 66.1 52.4 64.0

4.4. Qualitative Evaluation

Further, to better understand the behaviour of our model, we make a visualization
of the embeddings provided by the model pretrained on UWG of walks from CASIA-B.
Figure 8 shows the t-SNE [57] visualization of the test set from CASIA-B. t-SNE has stood
the test of time with regards to the visualization power of high dimensional datasets, and
can give us important information towards the model performance. As is the case in the
numerical evaluation, of interest is the network ability to generalize across viewpoints.
We color the same plot two different ways: color by tracking ID—each color is a different
person—and by camera viewpoint—each color is a different viewpoint. It is evident that
the model clearly clusters walking sequences pertaining to the same subject, regardless of
camera viewpoint.
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Figure 8. t-SNE [57] visualization of the embeddings from the evaluation set from CASIA-B, as
outputted by WildGait, colored by tracking id (left) and camera viewpoint (right). It is clear that
sequences pertaining to the same IDs are close to each other, irrespective of viewpoints.

5. Conclusions

This work presents a self-supervised framework, WildGait, for learning informative
gait representations from unconstrained environments, without direct human supervision.
We show that large amounts of video data such as surveillance streams can be leveraged
by automatically annotating, filtering and processing walking people to learn discrimi-
native embeddings that generalize well to new individuals, with good disentanglement
of confounding factors. We leverage state-of-the-art pose estimation and pose tracking
methods to construct Unconstrained Wild Gait (UWG), a large dataset of anonymized
skeleton sequences. As far as we know, we are among the first to study pretraining in the
context of gait recognition from raw video. Through pretraining on UWG and fine-tuning
on downstream recognition tasks, we achieve state-of-the-art results in skeleton-based gait
recognition on the CASIA-B benchmarking dataset.

The accuracy of pose-based gait recognition methods is highly dependent on the
quality of extracted poses. Large and accurate pose-estimation models come with heavy
computational burdens on the processing pipeline, especially in crowded scenes. This
suggests a trade-off between accuracy and computational demand/inference time of model-
based approaches. We are partly addressing this limitation by releasing the UWG dataset
for the pretraining stage, containing over 38K extracted walking skeleton sequences. To
raise the accuracy for clothing variation scenarios, we aim to further improve our data
collection pipeline to include information regarding different clothing for the same person.
This implies collecting the same scene (e.g., an office buildings entrance hallway) over a
long period of time (ideally a year to include clothing changes due to seasonal variation),
and combining information from both facial identification (e.g., FaceNet [48]) and person
attribute identification models (i.e., HydraNet [58]) for a richer set of automatic annotations.

One of the main concerns in regards to the broader impact of biometrics-based human
identification is privacy. Making use of skeletons for gait recognition softens this concern
by relying solely on motion information of people walking, and no identifiable appearance-
based information. Furthermore, pose estimation approaches are constantly advancing
in terms of performance and efficiency, aiming for real-time inference with negligible
to no accuracy loss and requiring less computational resources. This enables pushing
skeleton-extraction computation to edge devices, removing the need to upload videos for
cloud processing.



Sensors 2021, 21, 8387 15 of 17

Author Contributions: Conceptualization, A.C. and I.E.R.; Methodology, Software, A.C.; Validation,
I.E.R.; Formal Analysis, Investigation, A.C.; Resources, I.E.R.; Data Curation, A.C.; Writing—original
draft preparation, A.C. and I.E.R.; Writing—review and editing, A.C. and I.E.R.; Visualization, A.C.;
Supervision, I.E.R.; Project Administration, I.E.R. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was partly supported by CRC Research Grant 2021, with funds from UEFISCDI
in project CORNET (PN-III 1/2018).

Data Availability Statement: Data available on request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Islam, T.U.; Awasthi, L.K.; Garg, U. Gender and Age Estimation from Gait: A Review. In Proceedings of the International

Conference on Innovative Computing and Communications, New Delhi, India, 21–23 February 2020; Gupta, D., Khanna, A.,
Bhattacharyya, S., Hassanien, A.E., Anand, S., Jaiswal, A., Eds.; Springer: Singapore, 2021; pp. 947–962.

2. Randhavane, T.; Bhattacharya, U.; Kapsaskis, K.; Gray, K.; Bera, A.; Manocha, D. Identifying Emotions from Walking using
Affective and Deep Features. arXiv 2020, arXiv:1906.11884.

3. Ancillao, A. Modern Functional Evaluation Methods for Muscle Strength and Gait Analysis; Springer International Publishing: Cham,
Switzerland, 2018. [CrossRef]

4. An, W.; Yu, S.; Makihara, Y.; Wu, X.; Xu, C.; Yu, Y.; Liao, R.; Yagi, Y. Performance Evaluation of Model-based Gait on Multi-view
Very Large Population Database with Pose Sequences. IEEE Trans. Biom. Behav. Identity Sci. 2020, 2, 421–430. [CrossRef]

5. Shiqi, Y.; Tan, D.; Tan, T. A Framework for Evaluating the Effect of View Angle, Clothing and Carrying Condition on Gait
Recognition. In Proceedings of the 18th International Conference on Pattern Recognition (ICPR’06), Hong Kong, China, 20–24
August 2006; Volume 4, pp. 441–444. [CrossRef]

6. Hofmann, M.; Geiger, J.; Bachmann, S.; Schuller, B.; Rigoll, G. The TUM Gait from Audio, Image and Depth (GAID) database:
Multimodal recognition of subjects and traits. J. Vis. Commun. Image Represent. 2014, 25, 195–206. [CrossRef]

7. Zhang, Z.; Tran, L.; Yin, X.; Atoum, Y.; Wan, J.; Wang, N.; Liu, X. Gait Recognition via Disentangled Representation Learning.
In Proceeding of IEEE Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019.

8. Li, J.; Wang, C.; Zhu, H.; Mao, Y.; Fang, H.S.; Lu, C. CrowdPose: Efficient Crowded Scenes Pose Estimation and A New
Benchmark. arXiv 2018, arXiv:1812.00324.

9. Cao, Z.; Hidalgo Martinez, G.; Simon, T.; Wei, S.; Sheikh, Y.A. OpenPose: Realtime Multi-Person 2D Pose Estimation using Part
Affinity Fields. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA,
USA, 15–20 June 2019.

10. Rogez, G.; Weinzaepfel, P.; Schmid, C. LCR-Net++: Multi-Person 2D and 3D Pose Detection in Natural Images. IEEE Trans.
Pattern Anal. Mach. Intell. 2020, 42, 1146–1161. [CrossRef] [PubMed]

11. Doersch, C.; Zisserman, A. Multi-task Self-Supervised Visual Learning. In Proceedings of the 2017 IEEE International Conference
on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2070–2079. [CrossRef]

12. Gidaris, S.; Singh, P.; Komodakis, N. Unsupervised representation learning by predicting image rotations. arXiv 2018,
arXiv:1803.07728.

13. Noroozi, M.; Favaro, P. Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles. In Proceedings of the
Computer Vision—ECCV 2016, Amsterdam, The Netherlands, 11–14 October 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.;
Springer International Publishing: Cham, Switzerland, 2016; pp. 69–84.

14. Caron, M.; Bojanowski, P.; Joulin, A.; Douze, M. Deep clustering for unsupervised learning of visual features. In Proceedings of
the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 132–149.

15. Caron, M.; Misra, I.; Mairal, J.; Goyal, P.; Bojanowski, P.; Joulin, A. Unsupervised learning of visual features by contrasting cluster
assignments. arXiv 2020, arXiv:2006.09882.

16. Radford, A.; Kim, J.W.; Hallacy, C.; Ramesh, A.; Goh, G.; Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.; et al. Learning
transferable visual models from natural language supervision. arXiv 2021, arXiv:2103.00020.

17. Khosla, P.; Teterwak, P.; Wang, C.; Sarna, A.; Tian, Y.; Isola, P.; Maschinot, A.; Liu, C.; Krishnan, D. Supervised Contrastive
Learning. arXiv 2020, arXiv:2004.11362.

18. Han, J.; Bhanu, B. Individual recognition using gait energy image. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 316–322.
[CrossRef]

19. Choi, S.; Kim, J.; Kim, W.; Kim, C. Skeleton-Based Gait Recognition via Robust Frame-Level Matching. IEEE Trans. Inf. Forensics
Secur. 2019, 14, 2577–2592. [CrossRef]

20. Sprager, S.; Juric, M. Inertial Sensor-Based Gait Recognition: A Review. Sensors 2015, 15, 22089–22127. [CrossRef]
21. Zeng, X.; Zhang, X.; Yang, S.; Shi, Z.; Chi, C. Gait-Based Implicit Authentication Using Edge Computing and Deep Learning for

Mobile Devices. Sensors 2021, 21, 4592. [CrossRef] [PubMed]

http://doi.org/10.1007/978-3-319-67437-7
http://dx.doi.org/10.1109/TBIOM.2020.3008862
http://dx.doi.org/10.1109/ICPR.2006.67
http://dx.doi.org/10.1016/j.jvcir.2013.02.006
http://dx.doi.org/10.1109/TPAMI.2019.2892985
http://www.ncbi.nlm.nih.gov/pubmed/30640602
http://dx.doi.org/10.1109/ICCV.2017.226
http://dx.doi.org/10.1109/TPAMI.2006.38
http://dx.doi.org/10.1109/TIFS.2019.2901823
http://dx.doi.org/10.3390/s150922089
http://dx.doi.org/10.3390/s21134592
http://www.ncbi.nlm.nih.gov/pubmed/34283149


Sensors 2021, 21, 8387 16 of 17

22. Bashir, K.; Xiang, T.; Gong, S. Gait recognition using gait entropy image. In Proceedings of the 3rd International Conference on
Imaging for Crime Detection and Prevention (ICDP 2009), London, UK, 3 December 2009.

23. Lam, T.H.; Cheung, K.H.; Liu, J.N. Gait flow image: A silhouette-based gait representation for human identification. Pattern
Recognit. 2011, 44, 973–987. [CrossRef]

24. Wang, C.; Zhang, J.; Pu, J.; Yuan, X.; Wang, L. Chrono-Gait Image: A Novel Temporal Template for Gait Recognition. In Proceedings
of the Computer Vision—ECCV 2010, Crete, Greece, 5–11 September 2010; Daniilidis, K., Maragos, P., Paragios, N., Eds.; Springer:
Berlin/Heidelberg, Germany, 2010; pp. 257–270.

25. Chen, Y.; Tian, Y.; He, M. Monocular human pose estimation: A survey of deep learning-based methods. Comput. Vis. Image
Underst. 2020, 192, 102897. [CrossRef]

26. Feng, Y.; Li, Y.; Luo, J. Learning effective Gait features using LSTM. In Proceedings of the 2016 23rd International Conference on
Pattern Recognition (ICPR), Cancún, Mexico, 4–8 December 2016; pp. 325–330. [CrossRef]

27. Hochreiter, S.; Schmidhuber, J. Long Short-term Memory. Neural Comput. 1997, 9, 1735–80. [CrossRef] [PubMed]
28. Liao, R.; Cao, C.; Garcia, E.B.; Yu, S.; Huang, Y. Pose-based temporal-spatial network (PTSN) for gait recognition with carrying

and clothing variations. In Proceedings of the Chinese Conference on Biometric Recognition, Shenzhen, China, 28–29 October 2017;
Springer: Berlin/Heidelberg, Germany, 2017; pp. 474–483.

29. Sheng, W.; Li, X. Siamese denoising autoencoders for joints trajectories reconstruction and robust gait recognition. Neurocomputing
2020, 395, 86–94. doi: 10.1016/j.neucom.2020.01.098. [CrossRef]

30. Lima, V.C.d.; Melo, V.H.C.; Schwartz, W.R. Simple and efficient pose-based gait recognition method for challenging environments.
Pattern Anal. Appl. 2020, 24, 497–507. [CrossRef]

31. Liao, R.; Yu, S.; An, W.; Huang, Y. A model-based gait recognition method with body pose and human prior knowledge. Pattern
Recognit. 2020, 98, 107069. doi: 10.1016/j.patcog.2019.107069. [CrossRef]

32. An, W.; Liao, R.; Yu, S.; Huang, Y.; Yuen, P.C. Improving Gait Recognition with 3D Pose Estimation. In Biometric Recognition;
Zhou, J., Wang, Y., Sun, Z., Jia, Z., Feng, J., Shan, S., Ubul, K., Guo, Z., Eds.; Springer International Publishing: Cham, Switzerland,
2018; pp. 137–147.

33. Li, N.; Zhao, X.; Ma, C. JointsGait:A model-based Gait Recognition Method based on Gait Graph Convolutional Networks and
Joints Relationship Pyramid Mapping. arXiv 2020, arXiv:2005.08625.

34. Chen, X.; Weng, J.; Lu, W.; Xu, J. Multi-Gait Recognition Based on Attribute Discovery. IEEE Trans. Pattern Anal. Mach. Intell.
2018, 40, 1697–1710. [CrossRef]

35. Makihara, Y.; Matovski, D.; Carter, J.; Yagi, Y. Gait Recognition: Databases, Representations, and Applications. In Computer Vision;
Springer: Cham, Switzerland, 2015. [CrossRef]

36. Su, K.; Liu, X.; Shlizerman, E. Predict & cluster: Unsupervised skeleton based action recognition. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 9631–9640.

37. Li, J.; Shlizerman, E. Iterate & Cluster: Iterative Semi-Supervised Action Recognition. arXiv 2020, arXiv:2006.06911.
38. Lin, L.; Song, S.; Yang, W.; Liu, J. MS2L: Multi-Task Self-Supervised Learning for Skeleton Based Action Recognition. In Proceed-

ings of the 28th ACM International Conference on Multimedia, Seattle, WA, USA, 12–16 October 2020.
39. Yang, Z.; Li, Y.; Yang, J.; Luo, J. Action Recognition with Spatio-Temporal Visual Attention on Skeleton Image Sequences. arXiv

2018, arXiv:cs.CV/1801.10304.
40. Bewley, A.; Ge, Z.; Ott, L.; Ramos, F.; Upcroft, B. Simple online and realtime tracking. In Proceedings of the 2016 IEEE

International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016. [CrossRef]
41. Hendrycks, D.; Mazeika, M.; Dietterich, T. Deep Anomaly Detection with Outlier Exposure. In Proceedings of the International

Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.
42. Al-Obaidi, S.; Wall, J.C.; Al-Yaqoub, A.; Al-Ghanim, M. Basic gait parameters: A comparison of reference data for normal subjects

20 to 29 years of age from Kuwait and Scandinavia. J. Rehabil. Res. Dev. 2003, 40, 361. [CrossRef] [PubMed]
43. Wojke, N.; Bewley, A.; Paulus, D. Simple Online and Realtime Tracking with a Deep Association Metric. In Proceedings of the

2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 3645–3649. [CrossRef]
44. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common Objects in

Context. In Proceedings of the Computer Vision—ECCV 2014, Zurich, Switzerland, 6–12 September 2014; Fleet, D., Pajdla, T., Schiele,
B., Tuytelaars, T., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 740–755.

45. Murray, M.P.; Drought, A.B.; Kory, R.C. Walking Patterns of Normal Men. JBJS 1964, 46, 335–360. [CrossRef]
46. Yan, S.; Xiong, Y.; Lin, D. Spatial temporal graph convolutional networks for skeleton-based action recognition. In Proceedings of

the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018.
47. Wang, J.; Jiao, J.; Liu, Y.H. Self-supervised video representation learning by pace prediction. In Proceedings of the European

Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 504–521.
48. Schroff, F.; Kalenichenko, D.; Philbin, J. Facenet: A unified embedding for face recognition and clustering. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 815–823.
49. Wen, Y.; Zhang, K.; Li, Z.; Qiao, Y. A Discriminative Feature Learning Approach for Deep Face Recognition. In Proceedings of the

Computer Vision—ECCV 2016, Amsterdam, The Netherlands, 11–14 October 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.;
Springer International Publishing: Cham, Switzerland, 2016; pp. 499–515.

http://dx.doi.org/10.1016/j.patcog.2010.10.011
http://dx.doi.org/10.1016/j.cviu.2019.102897
http://dx.doi.org/10.1109/ICPR.2016.7899654
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
doi: doi: 10.1016/j.neucom.2020.01.098
http://dx.doi.org/10.1016/j.neucom.2020.01.098
http://dx.doi.org/10.1007/s10044-020-00935-z
doi: doi: 10.1016/j.patcog.2019.107069
http://dx.doi.org/10.1016/j.patcog.2019.107069
http://dx.doi.org/10.1109/TPAMI.2017.2726061
http://dx.doi.org/10.1002/047134608X.W8261
http://dx.doi.org/10.1109/icip.2016.7533003
http://dx.doi.org/10.1682/JRRD.2003.07.0361
http://www.ncbi.nlm.nih.gov/pubmed/15074447
http://dx.doi.org/10.1109/ICIP.2017.8296962
http://dx.doi.org/10.2106/00004623-196446020-00009


Sensors 2021, 21, 8387 17 of 17

50. Luo, H.; Gu, Y.; Liao, X.; Lai, S.; Jiang, W. Bag of tricks and a strong baseline for deep person re-identification. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, CA, USA, 16–17 June 2019.

51. Xuan, H.; Stylianou, A.; Liu, X.; Pless, R. Hard negative examples are hard, but useful. In Proceedings of the European Conference on
Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 126–142.

52. Chen, T.; Kornblith, S.; Norouzi, M.; Hinton, G. A simple framework for contrastive learning of visual representations.
In Proceedings of the International Conference on Machine Learning, PMLR, Montréal, QC, Canada, 6–8 July 2020; pp. 1597–1607.

53. Tian, Y.; Krishnan, D.; Isola, P. Contrastive multiview coding. In Proceedings of the Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, 23–28 August 2020; Proceedings, Part XI 16; Springer: Berlin/Heidelberg, Germany, 2020; pp. 776–794.

54. Weinberger, K.Q.; Saul, L.K. Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res. 2009,
10, 207–244.

55. Kirkpatrick, J.; Pascanu, R.; Rabinowitz, N.; Veness, J.; Desjardins, G.; Rusu, A.A.; Milan, K.; Quan, J.; Ramalho, T.; Grabska-
Barwinska, A.; others. Overcoming catastrophic forgetting in neural networks. Proc. Natl. Acad. Sci. USA 2017, 114, 3521–3526.
[CrossRef] [PubMed]

56. Zisserman, A.; Carreira, J.; Simonyan, K.; Kay, W.; Zhang, B.; Hillier, C.; Vijayanarasimhan, S.; Viola, F.; Green, T.; Back, T.; et al.
The kinetics human action video datasets. arXiv 2017, arXiv:1705.06950.

57. van der Maaten, L.; Hinton, G. Visualizing Data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.
58. Liu, X.; Zhao, H.; Tian, M.; Sheng, L.; Shao, J.; Yi, S.; Yan, J.; Wang, X. Hydraplus-net: Attentive deep features for pedestrian

analysis. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 350–359.

http://dx.doi.org/10.1073/pnas.1611835114
http://www.ncbi.nlm.nih.gov/pubmed/28292907

	Introduction
	Related Work
	Appearance-Based Methods
	Model-Based Approaches
	Gait Recognition Datasets
	Unsupervised Skeleton-Based Methods

	Method
	Dataset Construction
	Learning Procedure

	Experiments & Results
	Benchmark Datasets
	Evaluation Procedure
	Quantitative Evaluation
	Direct Transfer Performance
	Supervised Fine-Tuning
	Comparison with Unsupervised Skeleton-Based Methods
	Comparison with State-of-the-Art

	Qualitative Evaluation

	Conclusions
	References

