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Abstract: Many real-world systems change their parameters during the operation. Thus, before the
analysis of the data, there is a need to divide the raw signal into parts that can be considered as
homogeneous segments. In this paper, we propose a segmentation procedure that can be applied
for the signal with time-varying characteristics. Moreover, we assume that the examined signal
exhibits impulsive behavior, thus it corresponds to the so-called heavy-tailed class of distributions.
Due to the specific behavior of the data, classical algorithms known from the literature cannot be
used directly in the segmentation procedure. In the considered case, the transition between parts
corresponding to homogeneous segments is smooth and non-linear. This causes that the segmentation
algorithm is more complex than in the classical case. We propose to apply the divergence measures
that are based on the distance between the probability density functions for the two examined
distributions. The novel segmentation algorithm is applied to real acoustic signals acquired during
coffee grinding. Justification of the methodology has been performed experimentally and using
Monte-Carlo simulations for data from the model with heavy-tailed distribution (here the stable
distribution) with time-varying parameters. Although the methodology is demonstrated for a specific
case, it can be extended to any process with time-changing characteristics.

Keywords: time-varying characteristics; heavy-tailed distribution; segmentation; acoustic signal;
grinding

1. Introduction

Many real-world systems change their parameters during the operation. It could be
a continuous progressing change (like start up of the machine) or switching from regime
A to another regime B (for example, loaded/unloaded machine). Analysis of such time-
varying processes (using acquired data) is difficult. If the analyzed data have a complex
structure, then before further analysis they should be divided into simpler subsignals.
That requires the use of different methods. Such approaches are commonly called signal
segmentation [1–3].

The task of segmentation considered in this paper is more general than the classical
segmentation, where one is looking for a moment where characteristics of the signal have
changed. Usually basic statistics (mean, variance, kurtosis, etc.) or more advanced features
are used as criteria for splitting the signal into two or more homogeneous parts.

As mentioned, the reasons for using segmentation may be very different. It is com-
monly used as pre-processing for a non-stationary signal which consists of stationary
segments. In real data, there are many situations related to this problem. A good example
is a machine that may change the regime of operation or a car with a manual gearbox
where changing gear may be associated with a change of internal conditions in the system.
Thus, it requires separate treatment.
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Signal segmentation is very advanced in speech processing where a single word or
even a vowel should be extracted and recognized. Detection of the event in the signal
(seismic shock [4–11], where the classical algorithm is the STA/LTA [12], mammal sound
in underwater [13], speech [14,15], biomedical signals [16], various processes [17]) may
also be linked to signal segmentation. One should detect in the signal such a part, where
extra information appeared. It is often used later for further processing. Other interesting
applications include: physics [18–22], and biology [23–27]. The segmentation problems
appear also in condition monitoring [28–32].

Complexity of segmentation may be different, from quite simple statistic based de-
cision making, especially if differences in the data for different subprocesses are clear to
notice (as a change of mean or variance) to very advanced techniques for a more compli-
cated process. Interesting approaches used for the problem related to the changing of the
location parameter (like mean) can be found in [33–40] while the methods for changing the
scale parameter (like variance) are presented, for instance, in [33,41–48]. A specific case is
related to heavy-tailed processes [28–31] where we expect the impulsive behavior of the
corresponding data. In that case, the simple statistics are useless. Moreover, the differences
between processes are easy to find by visual inspection, but still the algorithmization of
segmentation is challenging. Michalak et al. [31] introduced examples of such heavy-tailed
process in engineering, where mineral processing machines and vibration processing have
been investigated. Other interesting examples are related to aircraft noise segmentation [49]
and financial data analysis using non-stationary compound Poisson processes [50].

In this paper, contrary to the classical segmentation problems, we consider a gener-
alized case by assuming that the parameters of the model behave according to certain
functions that stabilize at some level with time. Therefore, the change of regime in the
data occurs smoothly. Moreover, the mentioned parameters corresponding to the scale
and impulsiveness of the data, change not only according to some deterministic function,
but we also observe certain random fluctuations in their values. Therefore, we consider the
problem of segmenting the independent observations derived from the distribution with
randomized parameters.

In the theory of probability and in statistics, there is a class of distributions result-
ing from the assumption that a random variable is distributed according to a certain
parametrized distribution for which some or all parameters are random. Such distributions
are called compound probability distributions. If a scale parameter is randomized, the re-
sulting distribution is also called a scale mixture. In the literature, there are examples of
well-known probability distributions derived in this way, for instance, the nonstandardized
t-Student distribution (Gaussian distribution with inverse gamma distributed variance),
the Laplace distribution (Gaussian distribution with exponentially distributed variance),
the negative binomial distribution (Poisson distribution with gamma distributed rate pa-
rameter), or the beta-binomial distribution (binomial distribution with beta distributed
probability of success). Lee et al. [51] provided a review of the recent developments in the
field of scale mixture distributions and an overview of certain examples. Distributions of
this type are also used in the real-world data analysis [52–57].

The systems with randomized coefficients are considered also in the analysis of
the stochastic processes. We mention here the autoregressive time series with random
coefficients [58–62] and the Poisson process with random intensity called Cox process or
doubly stochastic Poisson process [63–65]. In the literature, the authors consider also the
fractional Brownian motion with a randomized diffusion parameter called the diffusing
diffusivity model [66–68].

Segmenting the signals with a smooth transition from one process to another seems
to be a more complicated task than the classical case of segmentation mentioned earlier.
The problem is even more complex when two parameters of the distribution change.
This work proposes a segmentation method for such signals which relies on comparing
the probability density functions (pdfs) calculated in moving windows. It is based on
the assumption that when the distribution of the data stabilizes, the pdfs are similar. It
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is important to emphasize that this procedure does not split the entire signal only into
homogeneous parts due to the nature of the signal. Nevertheless, the method allows
indicating homogeneous fragments of time series that correspond to the parts of the signal
with stabilized parameters.

In the proposed procedure, we divide the original signal into segments with a priori
predefined length. For each segment, we calculate its empirical pdf and utilise the diver-
gence (called the Jeffreys distance) to measure the distance between the calculated empirical
densities. Finally, we differentiate the Jeffreys distance and use log-likelihood ratio to detect
the change point. The introduced segmentation algorithm is applied to real acoustic signals
acquired during coffee grinding. The proposed procedure can be summarized in three
steps: the estimation of the pdf for data corresponding to the selected segments, calculation
of the divergence measure, and identification of the change points for data representing the
empirical divergence using one of the classical segmentation algorithm. Justification of the
methodology has been performed experimentally and using Monte-Carlo simulations for
data from the model with heavy-tailed distribution (here the stable distribution) with time-
varying parameters. Although the methodology is demonstrated for a specific case, we
hope it is universal and can be extended to any process with time-changing characteristics.
Example of such a signal could be seismic signal (vibrations with damping), speech signal,
or vibrations in mechanical systems with processes as cutting, compressing or crushing.

The rest of the paper is organized as follows. In Section 2 we formulate the prob-
lem and provide information about the performed experiment. In Section 3 we present
the methodology used in the paper, including the preliminary study, a reminder of the
stable distribution and divergences. Moreover, we introduce the steps of the proposed
segmentation procedure. Section 4 is devoted to the analysis of the real signals acquired
during coffee grinding, while in Section 5 we present the results of the simulation study.
In Section 6 we discuss the results. Section 7 concludes the paper.

2. Problem Formulation

In this paper, we consider a non-stationary, highly impulsive, and energetic signal
with the distribution stabilizing close to Gaussian. To confirm such an assumption, some
preliminary analysis of real data has been performed, see Section 3.1.

The transition between the process with property A ( later called process A) and the
process with property B (process B) is smooth, as there is no sharp boundary. It makes
change recognition difficult. We may say that the process at time t is more A than B or
vice versa. However, as the transition is nonlinear and at some point the transition stabilize,
it may be use as a criterion for segmentation.

As an illustration, we will use the acoustic signals captured during a grinding of coffee
beans in a grinder. At the beginning, due to the cutting of beans by sharp spinning knives
in the grinder, the process is very noisy and cutting is an impulsive process. Once the
coffee beans are ground, the material in the grinder is more powdery than grainy. Thus,
the acoustic signature of the grinding process is no more impulsive nor energetic. The key
issue is how much time we should perform the grinding to achieve a satisfactory structure
of the ground coffee. To validate our procedure, many experiments have been performed
with various durations of grinding and after each of them a photo of the structure of
coffee was taken and analyzed. A discussion on that is presented in Section 6. Finally, we
proposed a model of the real signal and Monte Carlo simulations have been performed, too.

From the mathematical point of view, the problem can be formulated in the following
way. Let us imagine that the given observations correspond to some theoretical time series
(i.e., a process with discrete time) {Xt}t∈Z that is defined as follows

Xt = Zt,θ , t ∈ Z, (1)

where for each t, s ∈ Z the random variables Zt,θ and Zs,θ are independent and have the
same distribution. The θ is the parameter of the distribution (in one- or multidimensional
space), however we assume that it depends on the time point, i.e., one can write θ = θ(t).
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The simplest case is when θ is a constant value. In that case, the segmentation is not
needed, as the data are homogeneous and constitute a sample of independent identically
distributed (i.i.d.) time series. The relatively simple case is also when θ(t) is a constant,
one- or multidimensional-valued, function on intervals. In such a case, the segmentation
of the corresponding set of observations seems to be relatively easy and reduces to the
identification of the points when the parameter θ(t) changes its value. In this case, we
can determine the structure change point by analyzing some statistics—depending on the
interpretation of the parameter θ, e.g., the estimator of the θ parameter, calculated for the
given time windows. Clearly, in the case when the θ(t) parameter is a one-dimensional
valued function, the segmentation is simpler than it is for a two- or even multidimensional
one. In that case, one considers the problem of structure break point detection in the
multidimensional space.

The case when the θ(t) is a constant function on the interval can be general-
ized to the case when it is any deterministic function (one- or multidimensional val-
ued). In such a case, the segmentation (i.e., division of the set of observations into
homogeneous parts) seems to be much more difficult. The segmentation gives us
quasi-homogeneous parts, i.e., the parts when the θ(t) parameter has relatively small
fluctuations and the behavior of θ(t) is significantly different for the segmented parts.
The problem seems to be more complicated when θ(t) is a multidimensional valued
function or a random variable. In that case, advanced statistical methods need to be
applied to identify the significant change in the signal. The analysis of the estimator
of θ(t) for a given time window may not be enough and other statistics should be
examined to identify the structure change point. This is the case considered in this
paper. As an example, distribution in which the parameter change in time is the stable
one, is useful for the analysis of heavy-tailed distributed data. More details of this
distribution are presented in the next section. However, this methodology can be
extended to any other distribution.

Experimental Illustration of the Problem

To illustrate the problem and to validate our procedure using experimental data,
we perform several experiments related to coffee bean grinding. Using a popular coffee
grinder for domestic use, we prepared dozens of coffee samples with comparable vol-
ume and quality parameters. For each sample, the acoustic signal has been registered
using a mobile phone, see Figure 1. It was found that approx. 30 s is enough to obtain cof-
fee powder. Conditions of each experiment (not critical here) were approximately simi-
lar: the same amount of coffee, the same type of coffee, the same data acquisition device
located in the same position and direction, c.a. 1 m from the grinder. During the experi-
ment, one may hear how a “sharp” sound related to “cutting” of coffee beans by rotating
knifes in the grinder is changing into a much lower level of noise with a rather narrow-
band character (related to rotating knifes). For several samples, grinding was stopped at
T = [5, 10, 15, 20, 25, 30] and photos of coffee bean fragmentation phase have been made
for validation purposes. After acquisition, the data were transferred to Matlab where
appropriate algorithms have been applied. Also all numerical experiments have been
performed in Matlab.
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Figure 1. Acoustic signal measurements from coffee bean grinding using a mobile phone.

3. Methodology

The acoustic signals analyzed in the paper, obtained through the experiment described
in the previous section, show some special properties. It should be emphasized that the
mentioned experiment was conducted many times and the nature of the data is repetitive.
For illustration purposes, we selected several realizations, which are subject to preliminary
investigation in the next sections. Then, on the basis of the observations made during the
initial analysis, a method of data segmentation is proposed.

3.1. Preliminary Study

In the paper, we examine eight signals denoted as Signals 1–8 presented in the subse-
quent panels of Figure 2. The sampling frequency is equal to 44,100 Hz and the length of
the trajectories is about 30 s. As it can be seen in Figure 2, the data are clearly non-stationary.
The characteristics of the signals change with time, i.e., the amplitude and the observation
range decrease over the observed period. From a statistical point of view, we can say
that the values of dispersion measures (such as standard deviation, interquartile range,
and average deviation from the mean) vary over time, whereas the values of mean and
median remain constant. Moreover, the data have an impulsive character, as demonstrated
by the outliers present in the signals, see the zoomed fragments of the plots in Figure 2
(between 2 s and 4 s). Nevertheless, the number of impulses and their amplitude also
decrease in time. In the zoomed fragments of the plots in Figure 2 (around 28 s), one can
observe also some deterministic trends that are present in the data.

Following the above-mentioned remarks, we can conclude that the distribution behind
the data presented in the subsequent panels of Figure 2 belongs to the class of heavy-tailed
distributions for which large observations (called outliers) are more likely to appear than
in the Gaussian case. A classical example of such a distribution is the stable one. Due to
the Generalized Central Limit Theorem, it constitutes a natural extension of the Gaussian
distribution. Moreover, its tail decays to zero according to a power-law function (slower
than exponentially decaying tails in the Gaussian case) and therefore it is often used as
a model for data with impulsive behavior. Here, we propose to use this distribution to
describe the considered real signals presented in Figure 2. At the same time, we should
take into account that, since the properties of the data change in time, the parameters of
the distribution are not time-constant. More information about the stable distribution and
the proposed model can be found later in this paper, see Sections 3.2 and 3.3.

The main goal of the paper is to introduce a procedure leading to the segmentation
of the signals presented in Figure 2. The proposed method is designed to answer the
question of when the signal’s properties stabilize by decomposing the data into segments
in which the probability distributions of the signal show similar features. See Section 3.5
for more details.
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Figure 2. Trajectories of eight raw signals. Panels (a–h) correspond to Signals 1–8, respectively.
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3.2. The Stable Distribution with Changing Parameters

The stable distribution (also called α-stable or Lévy stable), introduced by Lévy and
Khinchine in the 20 s and 30 s of the previous century [69,70], is considered as an extension
of the Gaussian distribution. It can be defined in four equivalent ways [71–76] and one of the
definitions concerns Generalized Central Limit Theorem, stating that the stable distribution
is the limiting distribution for normalized sums of independent random variables with
identical distribution and diverging variance. Here, we present the characteristic function
of the stable random variable Z, which provides the parameters of the distribution,

E[exp{iθZ}] =
{

exp
{
−σα|θ|α

(
1− iβ sign(θ) tan

(
πα
2
))

+ iµθ)
}

if α 6= 1,
exp

{
−σ|θ|(1− iβ 2

π sign(θ) ln |θ|) + iµθ)
}

if α = 1,
(2)

where

sign(θ) =


1 if θ > 0,
0 if θ = 0,
−1 if θ < 0.

(3)

The parameter α is called the stability index and takes values in (0, 2], σ is the scale
parameter greater than 0, β is the skewness parameter in [−1, 1], and µ is the shift parameter
taking values in R. For β = µ = 0 the distribution is called symmetric and the characteristic
function simplifies to the following one

E[exp{iθZ}] = exp{−σα|θ|α}. (4)

One can notice that for α = 2 one obtains the Gaussian distribution with mean equal
to µ and standard variation equal to

√
2σ. However, it is important to emphasize that for

the non-Gaussian case, the distribution differs significantly from the Gaussian one [77].
As it was mentioned in the previous section, for α 6= 2 the distribution tails decay as
power-law functions and therefore the random variables take extreme values with greater
probability than in the Gaussian case. Moreover, the stability index regulates the rate of
tail convergence, therefore, the smaller α is, the more impulses are present in the data.
Because of that, the stable distribution can be used to model the signals with impulsive
behavior. Moreover, for α 6= 2 the variance of Z diverges and the first moment is finite only
for 1 < α ≤ 2. Therefore, many classical tools and techniques cannot be applied for the
non-Gaussian distribution, e.g., the classical measures of dependence. It is worth noticing
that the pdf of the stable distributed random variable exists and is continuous, however, it
is not given in an analytical form in general.

In the presented simulation study, we assume that the considered observations, after a
certain pre-processing step mentioned at the beginning of Section 4, can be treated as a
sequence of independent stable distributed random variables. However, since one can
notice that the characteristics of the signals change in time, we cannot assume that the
subsequent random variables are equally distributed. Therefore, we assume here that
the distribution of the data changes in segments, which is equivalent to the fact that the
parameters of the distribution, α, σ, β, and µ, change in those segments.

3.3. Signal Parameters Identification and Modelling

To identify how the parameters of the distribution change in time, we propose to fit
the stable distribution to the signals in narrow windows of length L. Then, the observations
within each such segment are assumed to be independent and identically distributed,
and the parameters of the distribution may change as the window moves. To estimate α, σ,
β and µ in each segment, we propose to use the regression-type method introduced in [78],
see the results presented in Section 4. Based on the outcomes obtained for the real signals,
in Section 5 we propose a model of the signal, which is used to perform the simulation
study. For the simulated signal, we assume that the parameters of the stable distribution
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change not only in a deterministic way but the values are also disturbed by some random
noise. Moreover, we assume that at a certain moment the parameters of the distribution
remain unchanged. More information about the simulated signal, including its generation
and the performance of the segmentation method, are provided in Section 5.

3.4. Divergence Measure

In this section, we present the statistics on which the proposed segmentation procedure
relies. In probability theory, the similarity between two probability distributions can be
quantified by means of divergences that measure the distance between the pdfs. However,
the concept of divergence (called also contrast function) is not as strong as the notion of
distance. The divergences do not have to be symmetric in the arguments nor satisfy the
triangle inequality. An essential class of contrast functions are the f -divergences defined as
follows [79–81]

I f (p(x), g(x)) =
∫
R

g(x) f
(

p(x)
g(x)

)
dx. (5)

The functions p(x) and g(x) in Equation (5) are the pdfs corresponding to the two
probability distributions under consideration and f (t) is a continuous convex real function
on R+ such that f (1) = 0. The divergences defined in this form are always non-negative.
Moreover, the function given in Equation (5) is equal to zero if and only if the pdfs p(x)
and g(x) coincide (take the same values for all arguments), which corresponds to the case
when the probability distributions are the same. More properties of f -divergences one can
find, for example, in [81,82].

In this paper, to evaluate how the probability distribution of data changes over time,
we use one specific measure, which belongs to the class of f -divergences defined above,
called the Jeffreys distance and is defined in the following way [83]

J(p(x), g(x)) =
∫
R

(√
p(x)−

√
g(x)

)2
dx, (6)

which corresponds to f (t) =
(√

t− 1
)2

in Equation (5). We mention here that some authors
refer to the divergence defined in Equation (6) as the Hellinger distance. One can notice that
the considered statistics is symmetric in the arguments, i.e., J(p(x), g(x)) = J(g(x), p(x)),
and takes values between 0 and 2 with the minimum value corresponding to the case when
p(x) = g(x) for each x ∈ R, and the maximum value when p(x) is equal to zero for every
x for which g(x) is nonzero and vice versa. In practice, for the empirical data the pdfs in
Equation (6) are replaced by their estimators denoted by p̂(x) and ĝ(x). Therefore, one
calculates the empirical counterparts of the Jeffreys distance defined in Equation (6), namely

Ĵ(p(x), g(x)) =
n

∑
i=1

h
(√

p̂(xi)−
√

ĝ(xi)

)2
, (7)

where x1, x2, . . . , xn ∈ R are the arguments of the pdfs and h denotes the step, i.e., h =
xi − xi−1 for i = 2, . . . , n. To estimate the pdf p(x) (or analogously g(x)) in Equation (7)
one can use the kernel density estimator of the following form [84,85]

p̂(x) =
1

Nk

N

∑
j=1

K
( x−Yj

k

)
, (8)

where Y1, Y2, . . . , YN is the sample from which we estimate the pdf, x ∈ R, K(·) is the
non-negative kernel smoothing function, and k is the bandwidth. The kernel smoothing
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function determines the shape of the curve used to estimate the pdf. We use the Gaussian
kernel of the following form

K(x) =
1√
2π

exp
{
− x2

2

}
, (9)

for x ∈ R the bandwidth is chosen using the Silverman’s rule of thumb [86]. The kernel
density estimator is implemented in most programming languages. We use the function
“ksdensity” in Matlab.

3.5. Segmentation Procedure

In this section, we describe the proposed segmentation algorithm. The methodology
relies on comparing the pdfs using the Jeffreys distance presented in Section 3.4 and
segmenting the Jeffreys distance increments by means of the log-likelihood ratio (LLR)
method. The subsequent steps of the procedure are as follows:

1. Divide the signal into M segments of length equal to L.
2. Estimate the pdf in each segment, p̂1(x), . . . , p̂M(x).
3. Estimate the pdf corresponding to the last L samples in the signal, p̂∗(x).
4. Calculate the Jeffreys distance between the pdfs in subsequent segments and the pdf

of the last L samples,(
Ĵ( p̂1(x), p̂∗(x)), . . . , Ĵ( p̂M(x), p̂∗(x))

)
. (10)

5. Calculate the increments (differences) of Jeffreys distance,

(D1, . . . , DM−1) =
(

Ĵ( p̂2(x), p̂∗(x))− Ĵ( p̂1(x), p̂∗(x)), . . . ,

Ĵ( p̂M(x), p̂∗(x))− Ĵ( p̂M−1(x), p̂∗(x))
)

.
(11)

6. Use the LLR method to find the index i∗ in 1, . . . , M− 1 corresponding to the change
in scale of (D1, . . . , DM−1).

7. Consider the sub-samples (D1, . . . , Di∗−1) and (Di∗ , . . . , DM−1). Use the LLR method
to find the indexes i∗∗ and i∗∗∗ in 1, . . . , i∗ − 1 and in i∗, . . . , M − 1, respectively,
corresponding to changes in scale.

The procedure described above leads to detecting the indexes i∗, i∗∗, and i∗∗∗ which
divide the increments of Jeffreys distance into four regimes. Interpretation of the deter-
mined results will be presented later in the paper, see Sections 4–6. Since the procedure is
based on the pdfs in the subsequent segments, the method indicates the segment number,
not the observation number, when the regime switches. However, in practice, we transfer
that information into the number corresponding to the first observation in the determined
segment, see Sections 4 and 5. It is also important to mention that the procedure described
in items 1–7 can be used twofold. Namely, while diving the signal into segments in item 1,
one can consider the case of non-overlapping and overlapping windows. More precisely,
for the non-overlapping case, as the first segment we take the samples with indexes from
1 to L, then we move by L samples and as the second segment we take the samples from
1 + L to 2L and so on. The overlapping window corresponds to the case when as the first
segment we take the samples from 1 to L, then we move by l samples and as the second
segment we take the samples from 1 + l to L + l and so on. As one can notice, when l = L
we obtain the non-overlapping case. The choice of l affects the accuracy with which we
indicate the moment of regime change. In Sections 4 and 5 the value l is called step.

In items 6 and 7, to segment the increments of Jeffreys distance, we use the log-
likelihood ratio method due to the fact that the scale parameter in (D1, . . . , DM−1) defined
in Equation (11) changes in several regimes as the distribution of the signal varies with
time, see the results presented Sections 4 and 5. The LLR method enables detecting the
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moment of change in scale in the considered dataset by maximizing the log-likelihood
ratio. For details of the method, we refer the readers, for example, to [87]. In the literature,
there are known several methods designed for the same purpose (e.g., Regime Variance
technique [22] and Absolute Median Deviation technique [17]), however, according to
the simulations performed by the authors, the LLR method is the most powerful tool
among those mentioned. The procedure described above is summarized in Algorithm 1.
The most important points of the proposed procedure are the estimation of the pdf for
data corresponding to the selected segments and calculation of the divergence measures
(here Jeffreys distance). The last step is the application of the LLR method for the data
representing the values of the divergence measure.

Algorithm 1: Segmentation procedure based on Jeffreys distance
Data: Input data
Divide data into M segments of length equal to L: Segment 1, Segment 2, . . . ,

Segment M
Estimate the pdf in each segment:

1 for k← 1 to M do
2 Calculate p̂k(x) for Segment k

Estimate the pdf of the last L samples in the signal: p̂∗(x)
Calculate the Jeffreys distance:

3 for k← 1 to M do
4 Calculate Ĵ( p̂k(x), p̂∗(x))

Calculate the increments of Jeffreys distance:
5 for k← 1 to M− 1 do
6 Calculate Dk = Ĵ( p̂k+1(x), p̂∗(x))− Ĵ( p̂k(x), p̂∗(x))

Use the LLR method to find change in scale in (D1, . . . , DM−1): i∗

Use the LLR method to find change in scale in (D1, . . . , Di∗−1): i∗∗

Use the LLR method to find change in scale in (D1, . . . , Di∗−1): i∗∗∗

4. Results

In this section, we present the results of applying the procedure described in Section 3.5
to the real signals presented in Figure 2. In the first step, the raw data are pre-processed by
removing the deterministic components present in the signals. The pre-processing proce-
dure is analogous to the one proposed in [30]. Examples of the cleaned signals, which are
analyzed in detail in this section, are presented in Figure 3. Panel (a) corresponds to Signal
1 and panel (b) corresponds to Signal 2. One can see that they visually do not differ from
the raw signals presented in Figure 2 (see panels (a) and (b)), however, the deterministic
components present in the data are removed.

To illustrate how the distribution changes over time, for the signals presented in
Figure 3 we estimate the pdfs in non-overlapping windows of length 2500. The obtained
density maps are shown in Figure 4, where panel (a) corresponds to Signal 1 and panel (b)
corresponds to Signal 2. One can see that the values tend to be more concentrated around
zero over time, i.e., the functions take extreme values with smaller probability. It confirms
that the dispersion statistics are smaller as time goes. Moreover, we can notice that the
pdfs at the end of the signals, at least visually, are very similar (or almost identical), i.e., the
distribution stops changing after a certain point.
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Figure 3. Examples of signals after the pre-processing step. Panel (a) corresponds to Signal 1 and panel (b) corresponds to
Signal 2.

Figure 4. Density maps for Signal 1 (panel (a)) and Signal 2 (panel (b)).

In the following part, we estimate the parameters of the stable distribution, described
in Section 3, in non-overlapping windows of length 2500. The results for Signal 1 are
presented in Figure 5 and for Signal 2 in Figure 6. Panels (a), (b), (c), and (d) correspond
to α, σ, β, and µ, respectively. One can notice that the calculated values change over time.
For both examples, the stability index α takes values between 1.6 and 2. Moreover, one can
see an upward trend with time and at the end of the signal the values stabilize very close
to 2 which means that the distribution is similar to the Gaussian one. Since the parameter α
in panel (a) is related to the probability of occurrence of impulses, such behavior is natural
as the number of impulses in the signal decays with time. This is consistent with our
assumption that the distribution of the data smoothly transforms and stabilizes with time.
The values of skewness parameters presented in panel (c) also indicate that the distribution
is getting close to Gaussian with time since at some point β begins to take values from
the entire interval [−1, 1]. This is related to the fact that the skewness parameter becomes
irrelevant for the Gaussian distribution (see Equation (4) for α = 2). The values of the scale
parameter σ presented in panel (b) also decrease with time, which agrees with the results
seen on the density maps. One can see the exponential-type decaying, so we can assume
that from a certain point σ stabilizes to a certain level. The location parameter µ presented
in panel (d) is always close to zero.
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Figure 5. Estimated parameters of the stable distribution for Signal 1.

According to the segmentation procedure presented in Section 3.5, now we compare
the pdfs of the signal in the moving windows of length 2500 with the pdf estimated based
on the last 2500 samples. The comparison is done using the Jeffreys distance. For Signal 1
and Signal 2 the values of the measure and its differences are presented in Figures 7 and 8,
respectively. One can notice that the values of Jeffreys statistics decrease and therefore
we can conclude that the distributions become more similar to the distribution in the last
window or, in other words, they stabilize. We recall here that the Jeffreys distance equal to 0
indicates that the pdfs are the same. Moreover, the behavior of the statistics increments also
changes with time, i.e., the values taken by Jeffreys distance get more stabilized as time goes
(there are fewer oscillations), which is visible in panel (b), showing the differences in the
statistics. From about 25 s on, the values of Jeffreys distance are very close to 0, and at the
same time, their differences are small. Using the above observations, we propose a method
described in Section 3 which relies on dividing the values of Jeffreys distance into four
separate regimes with a constant scale parameter of their differences. According to this,
the point marked with the solid red line was detected first. Then the values preceding and
following this point are also divided into two regimes using the same method. This leads
to the designation of four regimes. For the signals presented in this section, the regimes are
as follows. For Signal 1, the first regime change occurs in 12.437 s (denoted by the dotted
purple line), the second regime change occurs in 18.985 s (solid red line), and the third
regime change occurs in 25.4889 s (dashed yellow line). For Signal 2 we have: 14.291 s,
19.1156 s, and 24.7449 s. One can observe that the behavior of Jeffreys distance changes
in the detected segments. Namely, in the last regime (after the dashed yellow line) the
values are very close to 0 (the pdfs are almost identical) and there are few oscillations.
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In the second last regime (between solid red and dashed yellow lines) the pdfs are also
very similar, however, we observe more oscillations of the values in comparison to the last
regime. This different behavior of the Jeffreys distances in the third and fourth regimes
may be caused by the impulses that still occur in the signal related to the third regime
more frequently despite the fact that the dispersion of the data is similar in both intervals.
The division into the first and the second regimes (separated by the dotted purple line)
is mainly related to the change in the rate of decline of the values taken by the Jeffreys
distance. We mention here that the proposed procedure leads to the indication of a specific
window in which the behavior of the values taken by the Jeffreys distance changes. Here,
as the results, we present a moment (in seconds) corresponding to the number of the first
observation in the window indicated by the procedure. Since we compare the pdfs in
moving windows, the accuracy of the method is related to the step in which we move
windows. Therefore, we consider three cases here: a moving overlapping window of
length 2500 with step equal to 250, a moving overlapping window of length 2500 with
step equal to 500, and a moving non-overlapping window of length 2500 (equivalent to
step equal to 2500). The results presented in Figures 7 and 8 correspond to the step equal
to 250. However, Table 1 contains the results for all signals with three different steps
(250, 500, 2500). For the considered signals, the detected regime change points, which are
shown in Figures 7 and 8, are also plotted on the cleaned signals, see Figure 9.
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Figure 6. Estimated parameters of the stable distribution for Signal 2.
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detected changes of regime

Figure 7. Jeffreys distance (panel (a)) and differences of Jeffreys distance (panel (b)) comparing the
pdfs in the moving window of length 2500 with step equal to 250 to the pdf corresponding to the last
window for Signal 1. Detected regime change points are marked in purple (dotted line), red (solid
line), and yellow (dashed line).
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Figure 8. Jeffreys distance (panel (a)) and differences of Jeffreys distance (panel (b)) comparing the
pdfs in the moving window of length 2500 with step equal to 250 to the the pdf corresponding to
the last window for Signal 2. Detected regime change points are marked in purple (dotted line), red
(solid line) and yellow (dashed line).
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As mentioned, the procedure is repeated for all signals presented in Figure 2 while
considering different values of steps. The results obtained for the chosen step values
(see Table 1) are usually similar, although in a few cases there are larger discrepancies
(purple point for Signal 2, Signal 3 and Signal 7 for step 2500; red point for Signal 3 for
step 2500, and yellow point for Signal 7 for step 2500). Most often, these discrepancies
appear when detecting the purple point, see also the results for the simulated signals
presented in Section 5. One can notice that for different signals, the obtained results of
change regime points are not the same. It is intuitive, because for each experiment there is
a different arrangement of the grains in the grinding mill, which affects the grinding speed,
and thus affects the data distribution over time. The first regime change point (purple)
occurs at the earliest for Signal 5 (around 9 s) and the latest for Signal 6 (around 15 s) or
for Signal 3 (where only the non-overlapping window method indicates a value close to
16 s). The second regime change point (red) occurs at the earliest for Signal 5 (around 16 s)
and the latest for Signal 7 (over 21 s). The last point (yellow) is determined at the earliest
for Signal 8 (about 21 s), and at the latest for Signal 1 and Signal 4 (between 25 s and 26 s).
For Signal 7 and the step equal to 2500 we obtain a clear outlier (the procedure indicates
29 s).

Table 1. Detected regime change points (in seconds) for all eight signals for different values of step at
which the window of length 2500 is moved.

Signal Number Step Purple Point Red Point Yellow Point

1
2500 11.8481 18.9909 25.5669
500 12.4376 18.7755 25.4989
250 12.437 18.9850 25.4889

2
2500 12.6984 19.1043 24.7732
500 14.2857 19.1156 24.7392
250 14.2914 19.1156 24.7449

3
2500 15.8163 18.7642 22.1088
500 11.0544 16.9841 22.0295
250 11.0658 17.0465 21.9728

4
2500 12.8685 19.7279 25.6236
500 12.8458 18.2880 25.5556
250 12.8231 18.4751 25.5612

5
2500 9.3537 15.7029 21.9388
500 9.3651 15.9864 21.9728
250 9.3594 16.0431 22.0125

6
2500 15.0794 18.7642 24.8299
500 15.1020 18.7642 24.5896
250 15.0794 18.7642 25.7959

7
2500 10.9410 21.5986 29.3084
500 14.6825 21.3605 24.6145
250 14.6825 21.3719 25.1304

8
2500 11.2245 15.8163 21.3152
500 12.3243 15.8050 20.8617
250 12.3186 15.7937 20.8560
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Figure 9. Signals with marked regime changes. The first change is visible as a dotted purple line, second: a solid red line, and the last
one is a dashed yellow line. Panel (a) corresponds to Signal 1 and panel (b) corresponds to Signal 2.

5. Simulations

In this section, we apply the introduced methodology to the simulated signals con-
structed based on the assumptions mentioned in Sections 3.2 and 3.3, i.e., for a sequence of
independent random variables from the symmetric stable distribution with stability index
and scale parameter changing over time. As it was mentioned before, for the real signals
considered in Section 4 we do not know the exact moments when the characteristics of the
process stabilize. Here, for the simulation study purpose, we set the moments at which the
parameters α and σ remain unchanged, and therefore we are able to validate the efficiency
of the proposed procedure.

As an illustration, in Figure 10 we present the estimated values of α and σ for Signal 1
examined in detail in Section 4. The parameters are calculated in non-overlapping windows
of length 2500. Here, the number of segments is equal to 575 and, according to the results
presented in the previous section, the regimes change around the segment of number 200,
of number 350, and of number 450. Under the taken assumptions, the stability and scale
parameters change with some deterministic trends, namely, a sum of two exponential
functions for α and a exponential function for σ, respectively, which are marked in red in
Figure 10.
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Figure 10. Estimated values of α on panel (a) and σ on panel (b) in the subsequent segments of length
2500 for Signal 1. Fitted deterministic functions are marked in red.



Sensors 2021, 21, 8487 17 of 27

In the following part of this section, we examine the simulated signals consisting
of, similarly to the real signal mentioned above, 575 segments with 2500 independent
symmetric stable random variables in each of them. The parameters of the distribution
in the subsequent segments change according to the deterministic functions fitted to the
parameters α and σ for Signal 1 (Figure 10) disturbed by the zero-mean Gaussian noise with
standard variation equal to 0.03 for the stability index and 0.0005 for the scale parameter.
Additionally, as it was mentioned before, we fix the values of α and σ at a certain point.
The moments of σ stabilization and α stabilization are chosen to correspond to the change
of regimes detected for Signal 1 in the previous section, i.e., the scale parameter and
the stability index remain unchanged from the segment of number 351 and of number
451, respectively.

The construction of the sample simulated signal is presented in Figure 11. Panels (a)
and (b) show the theoretical values of α and σ in the subsequent segments, whereas panel
(c) presents the obtained trajectory. In panel (d) we also show the corresponding map of the
pdfs calculated in the subsequent non-overlapping segments of length 2500. As one can see,
the map looks similar to the ones presented for the real signals in Figure 4. The pdfs become
more concentrated around zero with time: the functions take extreme values with smaller
probabilities. It should be emphasized that in the plot given in panel (d) of Figure 11
there is a noticeable change in the pdfs after 350 segments (around 875,000 sample) which
results from the stabilization of the scale parameter. However, the stabilization of the
stability index after 450 segments (about 1,125,000 sample) is barely visible in the pdf map.
Nevertheless, by using the proposed procedure, one can also detect this change.
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Figure 11. Values of α (panel (a)) and σ (panel (b)) in the subsequent segments of length 2500, the obtained simulated signal
(panel (c)), and the corresponding probability density map (panel (d)).

In Figure 12 we present the parameters of the stable distribution estimated in non-
overlapping windows of length 2500 for the trajectory presented in Figure 11. The estimated
values of α and σ are close to the theoretical ones. It is worth noticing that for the stability
index of the segment of number 451 the estimated values are not equal to exactly 2, which
is the value set while simulating, but they are close to 2 with some oscillations. Since the
generated observations are symmetric stable, the shift parameter µ is close to 0 for all
segments, and the skewness parameter β from a certain point takes values in the whole
interval [−1, 1], because the distribution is very close to Gaussian (or even Gaussian after
450 segments).

In Figure 13 we present the results of applying the proposed procedure to the consid-
ered sample simulated signal. Panel (a) shows the values of the Jeffreys distance and panel
(b) presents the differences of Jeffreys distance on the basis of which the regime change
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points are determined and marked, respectively, in purple (dotted line), red (solid line), and
yellow (dashed line). Additionally, the theoretical regime change points (corresponding to
stabilization of σ and α) are marked with black dots. One can see that the values of Jeffreys
divergence decrease with time and at the same time the rate of decline of the function
changes. The last two regimes, detected using the proposed method, are related to the
stabilization of the scale parameter and the stability index, respectively. The determined
moments of regime changes in σ and in α coincide with the theoretical ones (red solid
line and yellow dashed line, respectively). Finally, Figure 14 shows the trajectory of the
simulated signal with the theoretical and detected regime change points marked with lines
and dots, respectively. We mention here that the results presented in Figure 13 are obtained
by comparing the successive pdfs determined in the overlapping windows of length 2500
with the pdf in the last window. The windows overlap since we shift by 250 observations
when counting the successive densities.
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Figure 12. Estimated parameters of the stable distribution for sample simulated signal presented in
panel (c) of Figure 11. Panels (a), (b), (c) and (d) correspond to α, σ, β and µ, respectively.

In the last step, we verify the efficiency of the proposed methodology by conducting a
Monte Carlo simulation study for a number of signals generated analogously to the one
with the trajectory presented in panel (c) of Figure 11. Namely, we simulate 100 signals
(each one with different values of σ and α in the subsequent segments, see panels (a) and
(b) of Figure 11) and to each of them, we apply the proposed procedure. As a result, we
obtain 100 values corresponding to the moments of regime change: the 1st change (purple),
the 2nd change (red), and the 3rd change (yellow). The outcomes are presented in the
boxplots given in Figure 15, where panel (a) corresponds to the case of comparing the pdfs
in non-overlapping windows of length 2500 (with step equal to 2500) and panels (b) and
(c) correspond to the case of comparing the pdfs in overlapping windows of length 2500
(with step equal to 500 or 250, respectively). For the second and third regime changes,
the theoretical values (i.e., the observation numbers) related to the stabilization of the scale
parameter (observation of number 875,000, i.e., after 350 segments of length 2500) and of
the stability index (observation of number 1,125,000, i.e., after 450 segments of length 2500)
are marked with horizontal black dashed lines. We remind here that our procedure leads to
detecting the window number, however, we transfer that information to the number of the
first observation in the identified window. As one can see in Figure 15 for the second and
the third regime change, the estimated values are close to the theoretical moments of σ and
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α stabilization. That can also be seen in Table 2 where we present the median, interquartile
ranges, and 80% quantile intervals calculated based on the results of the Monte Carlo study.
For the first regime change, for which we do not have the theoretical equivalent, we can
see that the medians, IQRs, and the length of quantile intervals get smaller as the step
decreases, whereas for the second and third regime change the medians are similar for
all three values of the step and they are close to the theoretical moment of stabilization.
Moreover, the IQRs and the length of quantile intervals are smaller for the second regime
change than for the third one, which indicates that the moment of second regime change
(related to the scale parameter) is detected with higher precision, which can also be seen in
Figure 15.
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Figure 13. Jeffreys distance (panel (a)) and differences of Jeffreys distance (panel (b)) comparing the
pdfs in the moving window of length 2500 with step equal to 250 to the the pdf corresponding to the
last window. Detected regime change points are marked in purple (dotted line), red (solid line), and
yellow (dashed line) and the theoretical moments of σ and α stabilization are marked with black dots.
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Figure 14. Simulated signal with regime change points marked in purple (dotted line), red (solid
line), and yellow (dashed line) and the theoretical moments of σ and α stabilization marked with
black dots.
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Figure 15. Boxplots presenting the results of the Monte Carlo simulation study, i.e., the identified
moments of the first (purple), the second (red), and the third (yellow) regime changes for 100
simulated signals. Panel (a) corresponds to the procedure applied to non-overlapping windows of
length 2500 (with step equal to 2500) and panels (b) and (c) correspond to the overlapping windows
of length 2500 with step equal to 500 and 250, respectively. Black dash lines for the second and the
third boxplot indicate the theoretical moments of σ and α stabilization, respectively.
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Table 2. Medians, intequartile ranges (IQR), and 80% quantile intervals calculated based on the
identified moments of the first (purple), the second (red), and the third (yellow) regime changes for
M = 100 simulated signals for the procedure applied to non-overlapping windows of length 2500
with step equal to 2500 and to the overlapping windows of length 2500 with step equal to 500 and 250.

Purple Point Red Point Yellow Point

theoretical value - 875,000 1,125,000

step = 2500

Q0.50 500,000 875,000 1,120,000
IQR 126,250 2500 15,000

[Q0.10; Q0.90] [395,000; 610,000] [872,500; 883,750] [1,093,750; 1,131,250]

step = 500

Q0.50 450,000 874,500 1,118,500
IQR 71,250 1500 21,250

[Q0.10; Q0.90] [390,250; 523,250] [870,750; 875,500] [1,079,250;1,140,250]

step = 250

Q0.50 425,750 874,250 1,120,750
IQR 54,750 2000 15,625

[Q0.10; Q0.90] [378,125; 478,000] [869,000; 875,000] [1,090,125; 1,128,625]

6. Discussion and Validation of the Procedure

To validate the obtained results, we repeated the experiment of coffee grinding several
times. With each repetition, we extended the grinding time and took photos of the ground
coffee beans after the experiment was completed. The same amount of coffee was ground
for about 5 s, 10 s, 15 s, 20 s, 25 s, and 30 s sequentially. Pictures of the product obtained
after grinding are shown in Figures 16–21, respectively. One can notice that the structure of
the coffee beans is clearly grainy in the photos presented in Figures 16 and 17, i.e., after 5 s
and 10 s of grinding. Then, as expected, the longer the coffee beans are ground, the more
powdered the product becomes. Nevertheless, in the picture shown in Figure 18, i.e., after
15 s, and even in the picture presented in Figure 19, i.e., after 20 s, one can see individual
unground or half-ground coffee beans. In the last two photos in Figures 20 and 21, corre-
sponding to a grinding time of 25 s and 30 s, the appearance of the ground product is very
similar. The structure is powdered without individual coffee beans in the product. This
is in line with the results presented in Section 4 for real signals, which indicate that after
about 24 s, on average, the probability distribution in the acoustic real signals stabilizes
(the arithmetic mean of the values in the last column in Table 1 is equal to 24.0371 s).

The preliminary evaluation of the results based on the photos is also supported by the
analytical results. We remind here that the method proposed in Section 3.5, leading to the
segmentation of data, is designed in such a way that the signal is first split into two regimes,
and then each regime is again split into two segments. As a result, we obtain the signal
segmented into four regimes within which the pdfs of the data show certain similarities.
To confirm the interpretation based on real data analysis, a simulation study was carried
out. The outcomes presented for the simulated signals confirmed our assumption that
the regime change related to data dispersion is detected first (marked in red on the plots).
Detecting this regime change initially splits the data into two parts and in the second one,
the scale parameter is stabilized. Then, as mentioned above, each of the two segments is
divided once again into two regimes. For the part of the signal corresponding to the regime
with stabilized dispersion, this step detects the moment when the impulsivity in the data
stabilizes (marked in yellow on the plots), i.e., it distinguishes between non-Gaussian and
Gaussian data. For the part of the signal corresponding to the regime with non-stabilized
dispersion, the above step also leads to detecting the regimes with different behavior of
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the pdfs (marked in purple on the plots), but it does not have an interpretation related to
any parameter.

As mentioned in Section 2, the problem formulated in the paper concerns data seg-
mentation where the parameters of the probability distribution change over time. These
considerations were motivated by real data, in which the changes in the probability distri-
bution are not sudden but occur smoothly and at some point, the parameters stabilize at a
certain level. In the analyzed signals, both real and simulated, the scale and impulsivity
of the data changed over time. To segment the signals, we proposed a method based on
the assessment of the similarity of the pdfs in the moving windows. The proposed pro-
cedure allows determining the moments at which the scale parameter and the parameter
responsible for the impulsivity of the data stabilize. For the analyzed real signals, the last
detected moment of regime change, indicating that the segment with stabilized amplitude
and stabilized impulsivity in the data, can answer the question of how long coffee should
be ground to achieve a satisfactory effect. Since the probability distribution of the acoustic
signal does not change from that moment on, we can conclude that the structure of the
ground product also remains unchanged and the ground coffee obtains its final structure.

Figure 16. Coffee beans ground for about 5 s.

Figure 17. Coffee beans ground for about 10 s.

Figure 18. Coffee beans ground for about 15 s.
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Figure 19. Coffee beans ground for about 20 s.

Figure 20. Coffee beans ground for about 25 s.

Figure 21. Coffee beans ground for about 30 s.

7. Conclusions

In this paper, an original signal segmentation procedure for a random process with
time-varying characteristics is proposed. Typically, the signal segmentation process is
related to the detection of a moment in time when the process A switches to process B.
The situation is relatively simple when the segments contain data described by different
distributions or the corresponding distribution is the same but the parameters are different
in those segments. The rule is simple here: the bigger the difference between the segments,
the easier the segmentation. In that case, the segmentation algorithm divides the data into
homogeneous parts.

The case considered in this paper is much more complicated. The analyzed input
data correspond to the model given by Equation (1). In that case, the distribution of
the time series is the same, however, we assume that the parameters are time-varying
deterministic functions which can be even disturbed by random noise. The examined
process is a specific one. It is highly non-stationary, strongly non-Gaussian (impulsive) at
the beginning, during the single realization, transforming to a nearly Gaussian process
with much smaller amplitudes.

Stable distribution with varying parameters has been proposed to describe the data.
For some combination of values of its parameters (α, σ) the signal could be impulsive or not,
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may have higher “energy”, or may be weak. It is perfectly matched with the analyzed case.
However, as it was mentioned, the segmentation algorithm does not use the assumption
of stable distribution of the data. It could be generalized to any signal containing two
processes with transitions or simply switched from A to B.

To identify the difference between parts of the signal, we used segmentation with a
priori predefined length of the segment with two versions: without or with overlapping.
For each segment, the probability density function is estimated and the difference between
them is evaluated by distance measurement (Jeffreys distance). The final step is to find
(using LogLikelihood ratio LLR) the change point in the differentiated distance time series.
Note that there is just one important parameter (segment size). For longer segments,
we will improve the quality of pdf estimation, but we will lose the resolution in time.
To minimize this effect, overlapping is used. The method is pretty intuitive and universal.

To illustrate the problem and provide evidence of the effectiveness of the proposed
method, two approaches have been proposed. A model of the signal has been proposed
using the mentioned α−stable distribution with parameters changing in time. We applied
the Monte Carlo approach to validate the segmentation efficiency statistically. Obtained
results were very good. Next, an acoustic signal acquired during the grinding of coffee
beans in a grinder has been used. It was found that the process of grinding of coffee beans
matches our research problem perfectly. In the beginning, due to the cutting of beans by
sharp spinning knives in the grinder, the process is very noisy. Moreover, the cutting process
is an impulsive one. Once the coffee beans are ground, the material in the grinder is more
powdery than grainy. The acoustic signal is much more narrow-band (no impulses) due to
rotating elements. The transition between processes is smooth—thus, the segmentation
is complicated and the regime change point is much more difficult to detect. To prove
the quality of the results for the real data, we prepared the photo documentation of the
experiment. Based on the proposed method, the identified change point corresponds to
low granularity of the coffee.

Both approaches (photos and simulations) provide similar information, so we assume
that the method is appropriate and effective.

We believe that the problem discussed in the paper may be important in many engi-
neering applications (for example, impulsive noise/vibration with damping). One may
assume also that other specific parameters of the process can vary simultaneously. There-
fore, further work might be related to validation on other real cases as well as generalization
of segmentation to any processes with smooth transition.
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4. Zimroz, R.; Madziarz, M.; Żak, G.; Wyłomańska, A.; Obuchowski, J. Seismic signal segmentation procedure using time-frequency
decomposition and statistical modelling. J. Vibroeng. 2015, 17, 3111–3120.

5. Popescu, T. Signal segmentation using changing regression models with application in seismic engineering. Digit. Signal Process.
A Rev. J. 2014, 24, 14–26. [CrossRef]

6. Gaby, J.; Anderson, K. Hierarchical segmentation of seismic waveforms using affinity. Geoexploration 1984, 23, 1–16. [CrossRef]
7. Kucharczyk, D.; Wyłomanska, A.; Obuchowski, J.; Zimroz, R.; Madziarz, M. Stochastic Modelling as a Tool for Seismic Signals

Segmentation. Shock Vib. 2016, 2016, 8453426. [CrossRef]
8. Chen, C.H. On a segmentation algorithm for seismic signal analysis. Geoexploration 1984, 23, 35–40. [CrossRef]
9. Chiaruttini, C.; Roberto, V. Automation of seismic network signal interpolation: An artificial intelligence approach. Geoexploration

1988, 11, 327–338. [CrossRef]
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30. Gąsior, K.; Urbańska, H.; Grzesiek, A.; Zimroz, R.; Wyłomańska, A. Identification, decomposition and segmentation of impulsive

vibration signals with deterministic components—A sieving screen case study. Sensors 2020, 20, 5648. [CrossRef]
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