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Abstract: The continuous development of intelligent video surveillance systems has increased the
demand for enhanced vision-based methods of automated detection of anomalies within various
behaviors found in video scenes. Several methods have appeared in the literature that detect different
anomalies by using the details of motion features associated with different actions. To enable the
efficient detection of anomalies, alongside characterizing the specificities involved in features related
to each behavior, the model complexity leading to computational expense must be reduced. This
paper provides a lightweight framework (LightAnomalyNet) comprising a convolutional neural
network (CNN) that is trained using input frames obtained by a computationally cost-effective
method. The proposed framework effectively represents and differentiates between normal and
abnormal events. In particular, this work defines human falls, some kinds of suspicious behavior,
and violent acts as abnormal activities, and discriminates them from other (normal) activities in
surveillance videos. Experiments on public datasets show that LightAnomalyNet yields better
performance comparative to the existing methods in terms of classification accuracy and input
frames generation.

Keywords: anomaly detection; behavior analysis; fall detection; violence detection; suspicious
behavior detection; convolutional neural network

1. Introduction

As a part of continuously strengthening video surveillance systems, the automated
detection of abnormal behaviors is becoming more relevant [1,2]. The need for improved
techniques of autonomous detection is gaining more and more focus, mainly because
of enormous amounts of surveillance data being generated and the impracticality of its
manual monitoring because of the human toil involved. Several traditional (e.g., [3–5]) as
well as deep learning-based methods (e.g., [6–8]) have focused on the problem. Abnormal
events detection encompasses two types of video scenes: crowded and uncrowded [9]. The
detection of anomalies in crowded scenes involves observing global motion patterns and
events deviating from a normal behavior, e.g., sudden evacuation of everyone at the scene
in an emergency. In contrast, movement patterns of individuals within an uncrowded scene
are distinct and must be recognized in detail in order for them to be classified as abnormal.
Some examples of abnormal behaviors at an uncrowded scene include falling, loitering,
suspicious behavior (e.g., loitering, being in the wrong place (intrusions), a strange action
that deviates from the learned behavior), and violence. There are two major difficulties in
developing efficient abnormal behavior detection systems, and the existing literature has
provided several methods to address both problems. First, there are difficulties inherent in
the problem’s essence, i.e., recognizing the specifics of various (fundamentally different)
behaviors. The challenge is further augmented because behaviors resemble each other
in more than one way. So, for example, the acts of balancing attempts made by a person
falling have much in common with the patterns commonly found in suspicious and violent
behaviors. Therefore, the solutions targeting this problem mostly aim at providing inclusive
methods for detecting multiple anomalies [3,10,11], customizing datasets to learn specific
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features of targeted behaviors [10], and using advanced techniques of learning the motion
patterns [12–14], often by incorporating both spatial and temporal features. The second
difficulty involves the computational complexity of behavior representation and detection
algorithms, resulting in the high expense of computing resources, thus impeding their
utilization in many real-world scenarios. To achieve the required efficiency that may
enable real-time detection, the complexity of the model must be reduced. Therefore, many
existing methods have aimed at reducing the complexity in various ways, such as by
cascading local and global descriptors [15], using combinations of low complexity features
instead of semantic features [16], and using spatiotemporal auto-encoder networks to
extract abnormal behaviors [17]. It should be noted that a major contributing factor to
the computational cost of video recognition systems is the underlying mechanism used
for motion representation. Consequently, several proposals (e.g., [14,18,19]) have aimed
at enhancing the recognition efficiency by focusing on computationally efficient methods
representing temporal information. Furthermore, the architectural complexity of the
learning models also affects the computational cost of recognition systems. Kim et al. [14]
provided an interesting approach that, on one hand, encodes the temporal information
efficiently, and on the other hand, eliminates the need for training highly complex 3D
convolutional neural networks (3D CNNs) on large video datasets. In particular, they
proposed the stacked grayscale 3-channel image (SG3I) format [14] that contains reasonably
rich motion information with reduced computational expense, as compared with the
same involved in other approaches like optical flow [20]. Later, they use a two-stream
2D architecture pre-trained on image datasets to learn the motion features for behavior
recognition.

The current paper proposes a framework (termed LightAnomalyNet) that adopts the
aforementioned approach of encoding the temporal information, and augments it by using
a lightweight CNN architecture to distinguish between normal and abnormal events in
surveillance videos. The framework essentially deals with the detection of anomalies as
a binary classification problem by identifying some specific behaviors, including human
falls, a few types of suspicious behavior, and some violent acts as abnormal activities, and
discriminating them from other (normal) activities in surveillance videos. In this way, the
proposed framework aims to address the two difficulties mentioned previously. It enables
an accurate classification of normal and abnormal behaviors found in an uncrowded scene
by learning the features related to each behavior. The framework deals with the problem
of computational expense in two ways: (i) it adopts the SG3I format to create a dataset
of images, thus eliminating the need for expensive optical flow computations, and (ii) it
provides an approach using a lightweight CNN architecture that, unlike complex CNNs
such as C3D [21] or ResNet [22], trains capably on a small to medium-sized dataset. The
proposed framework is aimed at supporting a system that can be extended to work in a way
like a typical intelligent video monitoring system deployed on a computer with a camera
and network connectivity. It is important to emphasize here that the current work has a
limited scope, as mentioned previously. A practical implementation of abnormal behavior
detection systems also involves exploring many other aspects, including a consideration
of the person–environment interaction, such as those reported in [4,23] for a fall detection
system. Once implemented, such a system can take a video file or a webcam video stream
as input, detect the abnormal behaviors as trained, and generate multiple types of alerts.
The following are the major contributions of this study.

• The paper reviews the recent proposals of abnormalities detection, and determines
a common set of those found in uncrowded scenes in videos. Specifically, it focuses
on scenes featuring only one or a few persons, involving actions related to falling,
suspicious behavior (e.g., loitering, being in the wrong place (intrusions), a strange
action that deviates from the learned behavior), or violence.

• By focusing on more than one anomaly, as mentioned above, the study combines the
classification of various commonly found abnormal behaviors in an uncrowded scene.
As reported by previous studies such as [10], because of the challenges resulting from
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the essential similarities in the acts of various abnormal behaviors, the efficient joint
detection of different anomalies (leading to an accurate classification as normal and
abnormal behavior) is an interesting problem, and hence a notable contribution of the
current study.

• A dataset based on SG3I image format is provided by selecting videos from publicly
available datasets that are suitable for learning the behaviors involved in the study.

• The framework uses an advanced deep learning architecture that employs an effective
method of motion representation, thus avoiding the use of expensive optical flow.

• We use a lightweight CNN architecture that effectively learns to classify the anomalies
with high accuracy at low computational cost.

In the rest of this paper, we outline related studies in the next section. Section 3
discusses the details of the LightAnomalyNet framework. Section 4 provides a discussion
of the experiments and an evaluation of the framework. Section 5 concludes the paper.

2. Related Work

Abnormal behavior detection is associated with the broader context of human action
recognition and classification. Many studies in this background have extended the classical
architectures such as [24,25] to further enhance the performance. To this end, Dai et al. [26]
fine-tuned ResNet models pre-trained in Kinetics dataset on the UCF-101, and extracted
the spatio-temporal features from video clips. Optical flow graphs obtained from the
UCF-101 dataset were passed as input to optical stream to obtain optical features. Finally,
a combination of both features was used for classification. We give some examples of
the recent works in this area in the following. Ramya and Rajeswari [27] proposed an
approach centered on the distance transform and entropy features extracted from images
of human silhouettes obtained by subtracting the background. These features containing
shape and local variation information are input to deep networks to classify human actions.
Enhancing the efficiency of action recognition has been focused in many ways. Afza
et al. [28] provided a framework that fuses and selects the most relevant features in order
to enhance its computational and recognition performance. The method comprises four
significant steps of frames enhancement, motion features extraction, length control fusion,
and best feature selection, leading to efficient action recognition on selected datasets.
Several techniques, such as discarding redundant features, extracting segments of interests,
and feature descriptor mining, were adopted to improve the efficiency of human action
recognition in uncontrolled environments in [29]. In a similar work [30], a reduction
scheme was used to improve computational time and the accuracy of action recognition.
Khan et al. [31] employed the fusion of segmented frames followed by implementing an
entropy-skewness-based features reduction technique to obtain distinguishing features.
Rashid et al. [32] proposed an object classification method that is based on multi-layer
deep features fusion and selection. The fusion of features using the proposed technique
and the selection of robust features have positively affected the computational time and
classification accuracy. Another study [33] selects robust features by fusing three feature
categories based on their highest values, and then using specialized methods to obtain
most optimal features. Recently, Tsai et al. [34] proposed a deep learning-based system to
recognize multiple concurrent actions performed by more than one person. They combined
various algorithms to perform the essentials, such as locating individuals in the scene,
tracking them, and recognizing them. An inflated 3D CNN (I3D) [35] was extended for
action recognition.

Another area that is closely related to work in this study involves the detection of
abnormal behaviors or events in a crowded scene. Ionescu et al. [36] formalized the crowd
abnormal event detection as a one-versus-rest binary classification problem. They used
object-centric convolutional auto-encoders that learn motion and appearance information.
Each cluster of the training samples contained a specific normality. A binary classifier
was then trained by distinguishing the positively labeled data points in a cluster from
negatively labeled samples in all other clusters. Similarly, Smeureanu et al. [37] detected
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abnormal events by building and training a normality model using a one-class SVM
classifier. At test time, they labeled the outliers detected by the approach as abnormal
events. Zhang et al. [38] used the change of energy-level distribution to detect abnormal
crowd behavior. Their approach treats image pixels as particles, and uses optical flow
to obtain the velocities of those particles. They segmented the crowd motion based on
flow field texture representation, and analyzed it based on changes in descriptors for
the energy-level co-occurrence matrix. In a previous work, the author also proposed an
approach [39] for crowd abnormal behavior detection by considering global abnormal
events. That approach aimed at improving the overall efficiency by adopting a lighter form
of a pre-trained 2D CNN for motion information. The model was trained on videos from
crowd datasets, with high occlusion common for crowded scenes. The current work is
essentially different from the previous work, since it focuses on detecting anomalies in
scenes containing one or a few individuals (uncrowded) by learning specifics of actions. As
the motion patterns of individuals in uncrowded videos are generally discrete, the current
work has relied on using a lightweight model structure trained on videos containing
uncrowded scenes. The combination of an effective motion representation technique with
the lightweight structure has resulted in significant performance gains.

In addition, there are other wider contexts of anomaly detection. For example, Bakalos
et al. [40] proposed an approach to detect abnormalities involved in various forms of attacks
on water infrastructure. They proposed a framework based on multimodal data fusion and
adaptive deep learning for the purpose. In the following, this section reviews the recent
research aimed at providing efficient methods for autonomous monitoring systems for
abnormal events in the specific context of uncrowded video scenes. A summary of the
state-of-the-art anomaly detection methods for uncrowded scenes is provided in Table 1.

Table 1. Summary of the abnormal behavior detection methods.

Reference Data Used Feature/Model Type(s) of
Anomaly Detected Dataset(s)

Traditional Methods

Harari et al. [4] Accelerometer data,
gyroscope signals

Acceleration threshold,
logistic regression-based

classifier
Falling Self-collected

Vishnu et al. [5] RGB GMM, FMMM, fall
motion vector Falling UR Fall Detection,

Montreal

Min and Moon [41] RGB
Embedding module,

attended memory
module

Falling AI Hub DS

Zerrouki and
Houacine [42] RGB

Curvelet transforms, area
ratios features,

SVM-HMM
Falling UR Fall Detection

Cheoi [3] Optical flow Optical flow, temporal
saliency map

Falling, violence,
suspicious

UMN, Avenue,
Self-collected from CCTV

footage

Kim et al. [11] RGB Object detection,
YOLOv4

Falling, intrusion,
loitering, violence

Korea Internet & Security
DS

Deep Learning-Based Methods

Nunez et al. [43] RGB, optical flow 2D-CNN Falling UR Fall Detection,
Multicam, FDD

Yao et al. [6] RGB GMM, 2D-CNN Falling Self-collected

Khraief et al. [44] RGB, depth
images Multi-stream CNN Falling Self-collected, UR Fall

Detection, FDD

Pan et al. [7] RGB, optical flow 3D-CNN Violence UCF-Crime, UCF-101
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Table 1. Cont.

Reference Data Used Feature/Model Type(s) of
Anomaly Detected Dataset(s)

Roman and Chavez
[45] RGB CNN Violence Hockey Fights, Violent

Flows, UCFCrime2Local

Rendón-Segador et al.
[8] RGB, optical flow

Multi-head self-attention,
bidirectional

convolutional LSTM
Violence

Hockey Fights, Movies,
Violent Flows, Real Life

Violence Situations

Ullah et al. [46] RGB, optical flow CNN Violence Hockey Fights, Violent
Flows, Surveillance Fight

Asad et al. [13] RGB Feature fusion, 2D-CNN,
LSTM Violence Hockey Fights, Movies,

Violent Flows, BEHAVE

Ullah et al. [47] RGB
Spatiotemporal features,

CNN, bidirectional
convolutional LSTM

Violence UCF-Crime,
UCFCrime2Local

Ullah et al. [48] RGB 3D-CNN Violence UCF-Crime

Song et al. [49] RGB Key frames sampling,
3D-CNN Violence Hocky Fights, Movies,

Violent Flows

Fang et al. [50] RGB CNN, YOLOv3 Suspicious Self-collected

Sha et al. [51] RGB, optical flow Two-stream 2D-CNN Suspicious Self-collected

Chriki et al. [52] RGB HOG, HOG3D, CNN Suspicious Mini-Drone Video
Dataset

Mehmood [10] RGB, optical flow 2-stream 3D-CNN Falling, loitering,
violence UFLV

2.1. Traditional Methods

Several existing traditional methods have focused on fall events detection. Harari
et al. [4] used the accelerometer and gyroscope sensors’ data collected by a smartphone to
train a fall detection model. The detection was carried out by a continuous screening for
the pre-defined acceleration threshold, followed by classification using a logistic regression
model pre-trained in a dataset of simulated actions of falling. Vishnu et al. [5] developed a
high-dimensional representation of falls and non-falls based on a fall motion mixture model
that implicitly captures the motion attributes of each act. A low dimensional representation
containing the attributes of abnormal actions for a specific video is extracted by performing
factor analysis on the model. The method efficiently identifies falls in various scenarios.
Min and Moon [41] detected falls found within a streaming video. They used an attended
memory reference network to learn the features of the ongoing action by connecting the
past information and visual memory pertaining to the action. A dedicated unit within
the network detects the current action by referencing the visual information at each step.
Zerrouki and Houacine [42] proposed a method for detecting falls by first characterizing
the human body using curvelet transforms and area ratios features. To identify the posture,
they adopted an SVM classifier and applied a hidden Markov model to distinguish fall
events from other activities.

Some solutions in this category combined the detection of more than one abnormal
behavior. Cheoi [3] proposed a method to detect various types of suspicious behaviors,
including falling, suspicious (sudden) running, and violence in real-time, based on the
underlying idea of detecting sudden changes in the magnitude and direction of motion.
They used optical flow to determine distinct motion vectors for magnitude and direction
of motion, which are processed to obtain a temporal saliency map. The regions with
strong reactivity are recognized as abnormal. Kim et al. [11] merged various algorithms of
detecting and tracking objects with those for the analysis of abnormal behaviors to provide
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a method to detect behaviors such as falling, loitering, violence, and intrusion, based on
the surveillance of pedestrians.

2.2. Deep Learning-Based Methods

Many CNN-based methods have been proposed to detect falls. Nunez et al. [43] used
a CNN that extracts motion features from optical flow images to identify falls from non-
falls. Specifically, they adopted a VGG-16 architecture that is first trained on the ImageNet
dataset from scratch, and then fine-tuned on the optical stacks of UCF-101. Later, transfer
learning is applied to fine-tune the network on three datasets specific to fall events. Yao
et al. [6] also provided a fall detection system by adopting geometric features for training
a CNN. They obtained the geometric features by segmenting the head and torso using
the traditional ellipse fitting method, and they employed the same information to extract
motion features. Next, they used a shallow CNN structure to learn the motion features.
Khraief et al. [44] used a multi-stream CNN comprising four streams to detect falls using
multimodal data captured by RGB-D cameras. Each stream of the CNN dealt with a distinct
modality. Specifically, by combining various modalities, including RGB and depth images,
they could deal distinctly with static appearance, shape variations and motion information,
and achieve higher classification accuracy.

Most of the recent methods of abnormal behavior detection focus specifically on
detecting violence. Pan et al. [7] used a two-stream inflated 3D CNN (inception-v1) to
work on spatial and temporal (optical flow) information, to extract the features from
video streams. The features extracted from two streams of the network are fused and
passed to a GRNN classifier, which replaces the softmax classification layer of the original
i3D model, for making predictions. For violence detection, the model achieved high
accuracy on a UCFCrime dataset. Roman and Chavez [45] proposed a semi-supervised
method that, besides detecting violence, also aims to address the problem of the lack
of violence datasets with spatial annotations. For violence detection, they summarized
the video sequences into dynamic images [53] and used these images to train a CNN
classifier. Rendón-Segador et al. [8] adopted a 3D DenseNet and combined it with a self-
attention mechanism, and a bidirectional convolutional LSTM, to detect violence. The
method relies on the optical flow as input, which is first encoded by the DenseNet into
sequences of feature maps, and then passed on to self-attention and ConvLSTM layers
before carrying out prediction by the fully connected layers of the classifier. Ullah et al. [46]
analyzed the sequential patterns found in surveillance videos to develop a method for
violence detection in industrial video stream. This method addressed resource expense
by preprocessing the video stream to select the most informative shots. It encoded the
dynamics related to various actions involved in violence using optical flow features. An
LSTM network finally learned and classified the violent activity patterns over a period.
Asad et al. [13] adopted a multi-level feature fusion approach to integrate local motion
patterns from an equally spaced sequence of input frames. They combined a wide-dense
residual block with a 2D-CNN to learn combined features obtained from pairs of input
frames. LSTM units lastly captured temporal dependencies. The model yielded high
accuracy in four datasets of violent behaviors. Ullah et al. [47] adopted a pre-trained
ResNet-50 architecture to extract the spatio-temporal features, and passed them on to a
multi-layer bidirectional LSTM model to classify anomalies in surveillance videos. Ullah
et al. [48] exploited the one-shot learning strategy for anomaly recognition to develop a
method for violence detection. The method adopted a lightweight Siamese 3D CNN on the
underlying principle of learning the similarities between shots, and efficiently classified
the anomalies based on the dissimilarities between two given sequences. Similarly, a 3D
CNN was implemented in [49] to sample the key frames based on a gray centroid before
passing them for classification.

Some methods have addressed the detection of various types of suspicious behaviors.
Since these behaviors are of many types, each method has focused on a specific subset
pertaining to a context. Fang et al. [50] used a modified form of the YOLOv3 algorithm to
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detect abnormal behaviors commonly observed during an examination. For this purpose,
the authors also produced a video dataset of common violations in an exam setting, such as
a person bending over the desk or placing a hand under the table. Sha et al. [51] detected
five different behaviors (including two abnormal behaviors) in a specific industrial setting.
They adopted a two-stream DenseNet to extract spatial and temporal features from a
self-collected dataset. Chriki et al. [52] have proposed a method for surveillance with the
help of unmanned aerial vehicles (UAVs). It combined the use of CNN with hand-crafted
methods (HOG and HOG3D) for feature extraction. It carried out the classification of
different abnormal behaviors using a one class SVM. The method could accurately classify
different suspicious behaviors found in the mini-drone video dataset. Mehmood [10]
studied the specifics of motion patterns involved in three abnormal behaviors, i.e., falling,
loitering, and violence, and developed a new dataset by selecting videos pertaining to
those patterns from public datasets. A two-stream inflated 3D CNN model pre-trained on
the Kinetics dataset was then fine-tuned on the newly developed dataset for the detection
of the three anomalies. This work is closely related to the current study in the sense that it
aims at detecting different abnormal behaviors in uncrowded scenes. However, it works
on a dataset created by selecting videos from public datasets related to each of the three
abnormal behaviors detected by the study. It conducted the performance evaluations
based on the customized dataset, instead of the original public datasets. The current study
trains and evaluates the model on public datasets directly. Besides, instead of using optical
flow and a 3D network, the current study uses a more optimized form of both the motion
representation and the network, as detailed in the next section.

3. The Proposed Framework

The key goal of this work is to provide an efficient framework for detecting anomalies
in behaviors found in uncrowded video scenes. As efficiency is one of the key design
goals of the proposed framework, we must specify the context of the study and the way
it aims at dealing with improving the detection efficiency. The main idea is to develop a
general-purpose technique that can be further customized and deployed in a variety of
environments. In this way, our proposal essentially resembles many existing approaches
of abnormality detection detailed in Section 2. As far as the efficiency is concerned, we
consider a specific perspective of reducing the computational complexity and memory
space requirements. In other words, our objective is to propose an approach that accurately
classifies the abnormal behaviors while reducing the number of computational operations
(such as convolution, pooling, batch normalization, and activations) and the amount of
memory required to run the system—the two key factors affecting the computational
complexity of deep learning-based systems. We aim to achieve better results comparative
to existing approaches in this context. A system that achieves better results along these lines
can be adapted for a variety of environments, such as large-scale surveillance in distributed
environments [54]. However, further investigation of the suitability of the approach in each
environment was deemed out of the scope of the current study.

Here, it will also be worthwhile to elaborate on the specific ways in which the cur-
rent study attempts to achieve the aforementioned target of reducing the computational
complexity and memory space requirements. Video data used by an action recognition
system include both spatial and temporal information. The frames extracted from a video
can directly serve as a source to learn spatial objects. In addition, some other mechanism
is required to absorb the motion information found in the sequential frames. The typical
methods used for learning the motion information, such as optical flow [20] and dynamic
images [53], require a great deal of computational load and memory space [53,55,56], which
limits their use in real problems [56], and thus identifying the alternatives is an open
research area. Over the years, many attempts have been made along these lines. For
example, 3D CNNs have been trained by directly feeding the video sequence [21,57–60].
Yet, because of the complex 3D convolutions, 3D CNNs need an exceedingly high number
of computations and memory space. A pseudo-3D (P3D) CNN [61] was also proposed
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to minimize the effect of 3D convolutions. However, it reduces the size of a 3D CNN by
only a limited factor, and is still heavy [61]. We intend to address the problem with a
different technique.

The proposed LightAnomalyNet achieves detection efficiency via two principal com-
ponents. First, rather than relying on methods that demand huge computational loads and
memory space such as using optical flow frames in two-stream network (similar to methods
of [13,43]) or feeding the video directly to 3D CNN (similar to methods of [58,60]); it adopts
a low computational cost method of modeling motion features, i.e., the stacked grayscale
3-channel image (SG3I) of Kim and Won [14]. In this way, it is expected that SG3Is will
enable capturing of motion details effectively because of the low occlusion in uncrowded
scenes and the existence of explicit actions. Second, instead of using highly complex neural
network architectures for training and classification, LightAnomalyNet uses a lightweight
network structure inspired from [62] that is simple enough to minimize the computational
loads, but can provide high accuracy when trained on SG3I images. This latter characteris-
tic of the proposed framework also relieves it from the requirement of a large video dataset
or a pre-trained network, simply because the simple CNN (unlike complex alternatives
such as C3D or i3D) can be trained well on a small-to-medium-sized dataset. An overall
view of the proposed LightAnomalyNet framework is shown in Figure 1. A detailed dis-
cussion of the process comprising the method for generating SG3I images followed by their
classification into those containing normal and abnormal behaviors using the lightweight
CNN is provided in the following subsections.
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3.1. Input Images Generation

The proposed framework for anomaly detection uses a lightweight structure of a 2D
CNN in order to avoid the computational cost involved in training 3D architectures. Here,
it must be ensured that the network is trained with an input format that enables it to learn
the motion features found in videos efficiently. Therefore, owing to its ability to detect
motion effectively while reducing the computational cost involved in methods such as
optical flow, the stacked grayscale 3-channel image (SG3I) format [14] is used to capture
the motion features pertaining to both normal and abnormal actions.

As far as the conversion to SG3I format is concerned, it is a two-step process that
takes three sequential frames from a video and outputs a single 3-channel RGB image, as
illustrated in Figure 2 with an example. In the first step, it converts each of the three frames
into a grayscale image, thus producing three grayscale images; let us call them gs1, gs2,
and gs3. In the second step, the grayscale images gs1, gs2, and gs3 are incorporated into R,
G, and B channels, respectively, of a new single-color image of SG3I format. Now, before
looking at the details of motion representation in SG3Is, let us recall that, for three identical
images, the RGB values for each pixel remain the same. For three sequential frames
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involving some motion, the RGB values for each pixel representing the moving object
differ for each of the frames. This means that the pixels with an identical value for RGB
channels providing a grayscale output in the SG3I image will represent the static regions of
the frame. Meanwhile, the pixels with difference in RGB values across the three frames,
thus resulting in a color or displacement in brightness, will show the moving objects in the
frame. Therefore, the colored regions (i.e., hue) within the SG3I are expected to characterize
the motion patterns effectively. There is one detail that must be noted here. Since the SG3I
image encodes motion information from three consecutive frames, the selection of these
frames must be carried out in an optimized way. We must keep the uniform time interval
between consecutive frames short enough to make the SG3Is insensitive to noisy motions
such as camera movement. At the same time, we must not make the time interval so
short that it prevents the SG3Is from capturing meaningful information about the motion
taking place in the consecutive frames. Therefore, a balance was accomplished by adopting
a technique similar to [14]. Specifically, the technique divides the video clip into many
sub-clips of a configurable size, followed by generating one SG3I for each sub-clip. In this
way, it is also ensured that the selected frames are representatives of all segments of the
entire video. Sample SG3Is obtained from three datasets adopted in this study are shown
in Figure 3.
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3.2. CNN Model Architecture

The LightAnomalyNet framework proposes a lightweight CNN architecture, with
a minimal number of activation resolutions and learnable parameters, instead of using
deeper architectures. The primary motivation behind adopting a lightweight architecture is
to achieve computational efficiency, while avoiding possible over-fitting. Therefore, several
lightweight CNN architectures were thoroughly experimented with SG3Is. In particular,
various options of the number of convolutional layers, channels, filter sizes, and pooling
layers were evaluated during the architecture development. Finally, it was observed that
the proposed CNN architecture inspired from [62] (see Figure 4) works best with the SG3Is
for the anomaly detection problem in resource constrained applications. Note that SG3Is
were also experimented with other recognized deep networks for the purpose, and the
results will be presented in Section 4.2.
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Figure 3. Sample SG3I images generated for Avenue (row 1), Mini-Drone Video (row 2), and Hockey Fights (row 3) datasets.

Before passing to the lightweight CNN, the input SG3Is are resized to 75 × 75 by
cropping a patch of this size around the pixels containing motion (specifically, color or hue,
which is determined by the difference of values among RGB channels in the same pixel of
SG3I). This step of resizing is carried out so that only the part containing potentially higher
amount of useful information can be preserved. A reduction in the spatial dimensions by a
technique that is considerate of the informative pixels allows the use of a simplified model
with fewer network parameters without affecting the accuracy. As shown in Figure 4,
following the input layer, the proposed CNN comprises 3 sets of a 3-layer structure, each
containing convolutional, batch normalization, and ReLu layers. The 3-layer structures
are separated by respective max pooling layers. In this way, the first 3-layer structure
contains a convolutional layer that uses 5 × 5 filters with 8 channels, followed by a batch
normalization, and a ReLu activation layer. A 3 × 3 max pooling operation follows the first
structure. Furthermore, apart from the batch normalization and ReLU layers, the second
3-layer structure contains the convolutional layer with 3 × 3 filters and 16 channels and
is followed by a 2 × 2 max pooling. Similarly, the convolutional layer within the third
structure uses 3 × 3 filters with 32 channels and the structure is followed by a 2 × 2 max
pooling. Finally, a fully connected layer comprising two nodes is applied, and the softmax
is employed for predictions. An analysis of the proposed CNN architecture containing the
details of activation resolutions and learnable parameters is also presented in Figure 4. Note
that the low number of total learnable parameters (7154) is a distinguishing characteristic
of the proposed network, as we will see in comparison with the other popular networks in
Section 4.2.
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3.3. Model Training and Testing

To train and test the model on the designated datasets, the techniques described in
Section 3.1 were applied to obtain SG3I images from video clips. For each of the training
and testing phases, the SG3I images were generated for the corresponding split of each of
the datasets. More details of the train/test splits of the datasets are provided in Section 4.1.
Furthermore, data augmentation is a standard technique to deal with class imbalance and
the lack of data for training [63]. We performed data augmentation with a goal to increase
the generalizability of the model. While the model constantly sees new, slightly changed
versions of the inputs, there is a greater possibility that it learns more robust data patterns
quickly. For data augmentation, a random cropping to the center was performed on the
originally obtained SG3Is that were followed by a horizontal flip, and finally resizing
into dimension 75 × 75. During training, we analyzed the model performance with two
different optimizers, i.e., stochastic gradient decent (SGD) and Adam. For each of these
optimizers, different learning rates, momentum, weight decay, and nesterov acceleration
parameters were experimented. To this end, after setting a learning rate, we followed a
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general approach of reducing it by 1/10 whenever there was no loss reduction for over
10 epochs. The best results were observed with the Adam optimizer when used with a
learning rate of 0.001, beta1 value of 0.9, beta2 value of 0.999, epsilon value of 1 × 10−8,
and amsgrad value of false. The same network configuration was used consistently for all
datasets during the testing phase, and for the experiments presented in the next section.

4. Experiments

The proposed LightAnomalyNet was thoroughly evaluated experimentally to measure
its strength in detecting abnormal behaviors in uncrowded scenes and to compare it with
the existing methods in the literature. The entire system was implemented in Python and
Keras with TensorFlow 2.0 in an Ubuntu 20.04 environment. The experiments involving the
proposed model and SG3Is were conducted using a CPU-only configuration (Intel i7-8650
@2.11 GHz 32 GB RAM). As detailed later in Section 4.2, some experiments conducted for
comparison required optical flow computations, for which a GPU (NVIDIA GTX 1080Ti 11
GB, Santa Clara, CA, USA) setting was used.

4.1. Datasets

Four public datasets closely related to the behaviors involved in the current study, i.e.,
UR Fall [64], Avenue [65], Mini-Drone Video [66], and Hockey Fights [67] datasets were
adopted to evaluate the proposed framework of anomaly detection. A summary of the
statistical information of the datasets adopted for SG3Is formation is given in Table 2.

Table 2. Statistical Information of the datasets adopted for SG3Is preparation.

Anomalous Samples Non-Anomalous
Samples

Dataset
# Video
Samples

Used

Frame
Rate Resolution # Samples # Anomaly

Sequences # Frames # Samples
# Non-

Anomaly
Sequences

# Frames

UR Fall * 48 30 640 × 480 24 24 720 24 250 7500

Avenue 37 25 640 × 360 18 57 3750 19 238 10,350

Mini-
Drone
Video

38 30 640 × 480 24 43 6380 10 24 2925

Hockey
Fights ** 70 25 360 × 280 35 35 875 35 35 875

* a separate set of 12 videos was used for testing. ** a separate set of 20 videos was used for testing.

UR Fall dataset: The UR Fall dataset [64] contains a total of 70 videos (30 falls and
40 not-falls) with a resolution of 640 × 480. Fall events are recorded from two different
perspectives with separate cameras, whereas only one camera was used for the other events.
Each video contains a single actor performing the activity. For the training and testing of
our model, we used the videos obtained from the same perspective (camera 0) for both
types of events. Since the dataset documentation does not explain the train/test splits, the
videos were divided into three groups. Each group contains 16 videos (8 for each of the fall
and not-fall categories). Testing was carried out using a separate split of 12 videos.

Avenue dataset: The Avenue dataset comprises 16 training and 21 testing videos
with a resolution of 640 × 360. The videos are captured on a CUHK campus avenue. The
training set contains videos that capture normal situations only, whereas the videos in
the test set include both normal and abnormal events. The abnormal behaviors include
sudden running, holding an abnormal object, loitering, entering a group of people from
the opposite direction, and other actions that would draw the attention of the surveillance
staff. To enable the model’s learning of the features related to both normal and abnormal
behaviors, we divided the videos into 3 groups each containing 13, 12, and 12 videos,
respectively, in a way that each group contained a judicious mix of videos from both sets.
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Furthermore, a consistent approach for the train/test splits was adopted. In particular,
while testing a video from each group, all videos except the one being tested were used to
train the model.

Mini-Drone Video dataset: The Mini-Drone Video dataset contains 15 training and
23 testing HD videos of resolution 1920 × 1080 with a Phantom 2 Vision+ in a car parking.
To optimize for minimizing the unnecessary processing load while maintaining quality, the
videos were initially converted to a resolution of 640 × 480. Both the training and testing
sets contain various videos containing normal and abnormal scenes. Here, the anomalies
include people engaging in suspicious activities such as loitering around parked cars,
and other abnormal actions such as mis-parking their cars, stealing, and other activities
that would attract the interest of the surveillance staff. To create an assortment of videos
containing various abnormal behaviors, we redistributed the 38 videos into 3 subsets of 13,
13, and 12 videos each. Each subgroup contains videos related to normal and abnormal
behaviors. As far as the train/test splits are concerned, the same approach was used as
described above for the Avenue dataset. So, in order to test a video, only the video being
tested was left out, and all the remaining videos in the subset were used for training.

Hockey Fights dataset: The Hockey Fights dataset contains two groups (fights and
non-fights) of a total of 1000 videos of resolution 360 × 280. The videos were shot from
different angles and contain normal and violent activities occurring in both crowded and
uncrowded scenes. To fulfill the requirements of the current study, 210 uncrowded video
clips (involving 2–3 players) were selected. The clips were then divided into 3 groups, each
containing 35 videos from the fights and 35 from the non-fights classes. A separate split of
20 videos was created for testing.

4.2. Overall Performance Evaluation

During experiments, the train and test splits of the four datasets described in Section 4.1
were used for the respective phases of training and testing. For this purpose, 10 SG3I
images per video clip were used to train the model, and 10 SG3Is to test it. The SG3Is were
sampled using the techniques described in Section 3.1. The number of SG3I images to be
used for training and testing was adopted from [14], wherein the authors of SG3I reported
the best performance results using 10 SG3I images in the temporal stream (see Table 1
in [14]). So, the performance of the proposed lightweight model with SG3Is was evaluated
using the test split of each dataset. It was measured in terms of the number of correct
predictions made for abnormal as well as normal classes. Figure 5 presents the confusion
matrix showing the results of model performance against both classes. The proposed
framework correctly classified 98.92%, 95.69%, 96.59%, and 99.81% of the abnormal test
cases from UR Fall, Avenue, Mini-Drone Video, and Hockey Fights datasets, respectively.
Similarly, it accurately classified 98.79%, 94.87%, 95.03%, 99.66% of the normal test cases
from UR Fall, Avenue, Mini-Drone Video, and Hockey Fights datasets, respectively. We
notice that the percentage of normal behavior mis-classified as anomaly is a little higher
than that of anomalies mis-classified as normal behavior for all four datasets. However, it
was deemed satisfactory, since having a slightly higher number of false positives is more
acceptable than a higher false negative rate for an anomaly detection system. By looking at
the results on different datasets individually, one can see that the model’s misclassification
rates are significantly higher for Avenue and Mini-Drone Video datasets comparative to
the other two datasets. This was attentively investigated during experiments to exclude
any potential erroneous performance of the model. However, it was concluded that the
misclassifications can be attributed to the extent of variation observed in the actions found
in the datasets and the scene complexity. The two datasets with higher misclassification
rates contain scenes with much more complexity and diversity as compared to the UR
Fall and Hockey Fights datasets. Furthermore, the ROC curves and AUC values for each
dataset shown in Figure 6 provide more insight into the true positive and false positive
rates of the model. The AUC values of the model on UR Fall, Avenue, Mini-Drone Video,
and Hockey Fights datasets are 98.71, 94.97, 96.11, and 99.78, respectively.
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The overall classification results of the proposed framework for all four datasets are
shown in Table 3. The results indicate that the model exhibits the ability to generalize well
for the variety of abnormal behaviors found in the datasets. The generalization ability
enables the model to distinguish accurately between unique events and yields adequate
classification performance. Specifically, the F1 score, which is a combination of recall
and precision of a model, is 98.86%, 95.30%, 95.84%, and 99.74% on UR Fall, Avenue,
Mini-Drone Video, and Hockey Fights datasets, respectively. Table 4 shows the results
of a detailed statistical analysis of the proposed framework for all four datasets. For this
purpose, the accuracy of the proposed model was obtained for 100 iterations to give the
minimum, average, and maximum values of accuracy. The standard deviation, standard
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error, and margin of error (MoE) values were computed and observed to further assess the
performance of the classification model. Figure 7 shows a comparison of the performance
results achieved with the model on different splits of the four datasets. It shows that the
overall performance of the model remains nearly identical in different splits of each dataset.

Table 3. Classification results of the proposed framework on four datasets adopted in the study.

UR Fall Avenue Mini-Drone Video Hockey Fights

Recall 0.9892 0.9569 0.9659 0.9981

FP Rate 0.0121 0.0513 0.0497 0.0034

Precision 0.9879 0.9491 0.9511 0.9966

Accuracy 0.9886 0.9528 0.9581 0.9974

F1 0.9886 0.9530 0.9584 0.9974

Table 4. Statistical analysis of the proposed framework based on Margin of Error (MoE) at confidence level 95%.

Dataset Accuracy (%)—100 Iterations Statistical Measures

Minimum Average Maximum Standard Deviation Standard Error MoE

UR fall 97.01 98.06 98.88 0.5574 0.0258 0.1098

Avenue 93.06 94.21 95.54 0.7432 0.0342 0.1464

Mini-drone video 93.09 94.24 95.83 0.7643 0.0435 0.1506

Hockey fights 98.76 99.34 99.92 0.3247 0.0147 0.0640Sensors 2021, 21, x FOR PEER REVIEW 16 of 22 
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4.3. Evaluation Based on Execution Time

As discussed in the introduction, the architectural complexity of the learning models
significantly affects the computational cost of behavior recognition systems. Therefore, one
motivation behind using SG3Is within LightAnomalyNet framework was to eliminate the
need for expensive motion representation methods, such as optical flow [20] and dynamic
images [53]. Therefore, it is imperative to verify the computational effectiveness of the
use of SG3Is. We provide a comparison of the execution times (measured as frames per
second or fps) for the three methods, i.e., optical flow, dynamic images, and SG3I, in Table 5.
Note that this evaluation was carried out to substantiate the results shared by the SG3I
paper [14], which reported results on UCF-101 and HMDB-51, on the datasets adopted by
the current study. As shown in the table, despite the use of a GPU-based environment for
obtaining and executing optical flows, the SG3I method generates input frames with much
higher speed compared with the other two methods.

Table 5. Comparison of the execution times (frames per second) taken for input frames generation.

Dataset Optical Flow Dynamic Image SG3I

UR fall 16.59 175.10 719.61

Avenue 15.93 184.65 776.12

Mini-drone video 16.09 189.14 789.36

Hockey fights 16.77 177.85 745.70

4.4. Comparison with Other Networks

As the dataset of SG3I images works with any pre-trained network, we also evaluated
the performance of the combination of the proposed lightweight CNN and SG3Is compared
to the other deep networks commonly used in the literature for abnormity detection.
Specifically, we used a combination of SG3Is with each of the ResNet-50 [25], Inception-
V3 [68], and DenseNet-250 [69], and compared the results. For these networks, transfer
learning was performed by adjusting the input image sizes to match with those of each
of the pre-trained network, and replacing the final layers of networks to output only
two classes, i.e., normal and abnormal. The results are shown in Table 6. In general, all
networks perform almost equally in terms of accuracy. As the deep architectures require
large datasets for training, the proposed lightweight architecture works well with the
existing commonly used anomaly detection datasets, while requiring an exceedingly low
number of trainable weights (a total of 7154 weights, as detailed in Figure 4). It is important
to recall here that this work aimed at reducing the number of computational operations
and the amount of memory required to run the system. As shown in Table 6, the network
latency (measured as time per inference step) and the model size are noticeably lower than
other networks.

Table 6. Comparison of the proposed lightweight model with different networks.

Network
No. of

Learnable
Parameters

Size
(MB)

Time per
Inference Step

(ms)—CPU

Time per
Inference Step

(ms)—GPU

UR Fall
Accuracy%

Avenue
Accuracy%

Mini-Drone
Video

Accuracy%

Hockey Fights
Accuracy%

ResNet-50 + SG3I 25M+ 106 698.40 45.50 97.92 95.78 95.18 99.78

Inception-V3 +
SG3I 23M+ 101 507.00 68.60 98.89 95.17 95.86 99.71

DenseNet-250 +
SG3I 15M+ 93 1526.88 66.70 97.21 94.91 95.66 99.08

LightAnomalyNet 7154 14 278.45 23.05 98.86 95.28 95.81 99.74
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4.5. Comparison with the State-of-the-Art

The performance of the proposed framework for anomaly detection was also eval-
uated in comparison with the existing state-of-the-art works in the area. To this end, we
selected the methods that have reported the highest performance in each of the three major
categories addressed by this study, i.e., falling, suspicious actions, and violence. Note
that, since researchers have presented the performance results using a variety of metrics,
the comparative results in this section are shown using the metrics and datasets used in
the original study. The results of comparison with methods in the falling category are
presented in Table 7. The proposed framework outperforms the existing methods in UR
Fall dataset by yielding an accuracy of 98.86% versus the preceding accuracies of 97.0%
(Zerrouki and Houacine) and 95.0% (Nunez et al.). Nunez et al. and Khraief et al. reported
better results in terms of recall (100.0%). However, the superior precision provided by
the proposed framework (i.e., the fraction of predictions of falling that were actually falls)
shows that it has a better prediction performance as compared with the state-of-the-art.

Table 7. Comparison of classification accuracy with the state-of-the-art methods in falling category.

UR Fall Dataset

Method AUC% Recall% Precision% Accuracy%

Vishnu et al. [5] - 97.5 96.9 -

Zerrouki and Houacine [42] - - - 97.0

Nunez et al. [43] - 100.0 - 95.0

Khraief et al. [44] - 100.0 95.0 -

LightAnomalyNet 98.71 98.92 98.79 98.86

The results of comparison with approaches in the suspicious action category are tab-
ulated in Table 8. For this category, LightAnomalyNet provides higher results in both
Avenue and Mini-Drone Video datasets. Specifically, it yields an accuracy of 95.28% as
compared with the accuracy of 90.1% reported by Cheoi on the Avenue dataset. Further-
more, the proposed framework is more accurate on Mini-Drone Video dataset (95.81%
versus 93.57% of Chriki et al.). Table 9 presents a comparison of methods in the violence
category. Here, the proposed LightAnomalyNet provides better results in the Hockey
Fights dataset. Specifically, it achieves an accuracy of 99.74% on the dataset in comparison
with the existing methods in the category, such as Roman and Chaves (96.40%), Song et al.
(99.62%), Ullah et al. (98.00%), Asad et al. (98.80%), and Mehmood (99.71%). Hence, the
results in all three categories of anomalies in the uncrowded scenes show that the proposed
lightweight framework achieves better results than the existing methods of abnormality
detection. The overall gains in accuracy comparative to the existing methods can be at-
tributed to the following key factors. SG3I captures the patterns of motion and differences
in actions effectively. This enables the model to learn the discriminative features well to
distinguish between normal and abnormal actions. The learning is further augmented
by supplying only the most relevant part of the SG3I, thus allowing the network to focus
on the significant features. The combination of lightweight structure with SG3I has also
contributed positively as determined by the results of comparison with other networks.

Table 8. Comparison of classification accuracy with the state-of-the-art methods in suspicious actions category.

Avenue Dataset Mini-Drone Video

Method AUC% Recall% Precision% Accuracy% AUC% Recall% Precision% Accuracy%

Cheoi [3] - 94.5 93.2 90.1 - - - -

Chriki et al. [52] - - - - - 100.0 88.37 93.57

LightAnomalyNet 94.97 95.69 94.91 95.28 96.11 96.59 95.11 95.81
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Table 9. Comparison of classification accuracy with the state-of-the-art methods in violence category.

Hockey Fights

Method AUC% Recall% Precision% Accuracy%

Roman and Chavez [45] - - - 96.40

Song et al. [49] - - - 99.62

Ullah et al. [46] - 98.10 98.10 98.00

Asad et al. [13] - - - 98.80

Mehmood [39] 99.76 99.82 99.59 99.71

LightAnomalyNet 99.78 99.81 99.66 99.74

5. Conclusions

This paper presented a framework (called LightAnomalyNet) that uses a lightweight
CNN architecture for detecting anomalies in the actions found in videos. The study ad-
dressed three categories of the abnormal behaviors that are commonly found in uncrowded
scenes, i.e., falling, suspicious action, and violence. To achieve high classification perfor-
mance while allowing for low computational costs, the proposed LightAnomalyNet adopts
SG3Is (stacked grayscale 3-channel images) to train a lightweight CNN. When combined
with the lightweight CNN structure, SG3Is provide a potent alternative to classical meth-
ods of motion representation, such as optical flow and dynamic images. The proposed
framework achieves relatively better recognition performance and computation efficiency
as compared to the existing methods. So far as classification accuracy is concerned, the
experiments on UR Fall, Avenue, Mini-Drone Video, and Hockey Fights datasets show that
the proposed framework can efficiently detect various anomalies found in these datasets
with accuracies of 98.86%, 95.28%, 95.81%, and 99.74%, respectively.

Funding: This work was supported by the Deanship of Scientific Research, King Faisal University,
Saudi Arabia, through Nasher Track [Grant Number 206055].

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets used in this study are publicly available from the sources
cited in the paper.

Acknowledgments: The author is truly thankful to the anonymous reviewers and Qazi Mudassar
Ilyas (King Faisal University) for their suggestions for the improvement of this article. The author
also appreciates the guidance provided by Shabir Ahmad (Imam Abdulrahman Bin Faisal University)
in carrying out the statistical analysis.

Conflicts of Interest: The author declares no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Khan, M.A.; Javed, K.; Khan, S.A.; Saba, T.; Habib, U.; Khan, J.A.; Abbasi, A.A. Human Action Recognition Using Fusion of

Multiview and Deep Features: An Application to Video Surveillance. Multimed. Tools Appl. 2020, 79, 1–27. [CrossRef]
2. Khan, M.A.; Zhang, Y.D.; Khan, S.A.; Attique, M.; Rehman, A.; Seo, S. A Resource Conscious Human Action Recognition

Framework Using 26-Layered Deep Convolutional Neural Network. Multimed. Tools Appl. 2021, 80, 35827–35849. [CrossRef]
3. Cheoi, K.J. Temporal Saliency-Based Suspicious Behavior Pattern Detection. Appl. Sci. 2020, 10, 1020. [CrossRef]
4. Harari, Y.; Shawen, N.; Mummidisetty, C.K.; Albert, M.V.; Kording, K.P.; Jayaraman, A. A Smartphone-Based Online System

for Fall Detection with Alert Notifications and Contextual Information of Real-Life Falls. J. Neuro Eng. Rehabil. 2021, 18, 124.
[CrossRef]

5. Vishnu, C.; Datla, R.; Roy, D.; Babu, S.; Mohan, C.K. Human Fall Detection in Surveillance Videos Using Fall Motion Vector
Modeling. IEEE Sens. J. 2021, 21, 17162–17170. [CrossRef]

http://doi.org/10.1007/s11042-020-08806-9
http://doi.org/10.1007/s11042-020-09408-1
http://doi.org/10.3390/app10031020
http://doi.org/10.1186/s12984-021-00918-z
http://doi.org/10.1109/JSEN.2021.3082180


Sensors 2021, 21, 8501 19 of 21

6. Yao, C.; Hu, J.; Min, W.; Deng, Z.; Zou, S.; Min, W. A Novel Real-Time Fall Detection Method Based on Head Segmentation and
Convolutional Neural Network. J. Real-Time Image Process. 2020, 17, 1939–1949. [CrossRef]

7. Pan, J.; Liu, L.; Lin, M.; Luo, S.; Zhou, C.; Liao, H.; Wang, F. An Improved Two-Stream Inflated 3d Convnet for Abnormal Behavior
Detection. Intell. Autom. Soft Comput. 2021, 30, 673–688. [CrossRef]

8. Rendón-Segador, F.J.; Álvarez-García, J.A.; Enríquez, F.; Deniz, O. ViolenceNet: Dense Multi-Head Self-Attention with Bidirec-
tional Convolutional LSTM for Detecting Violence. Electronics 2021, 10, 1601. [CrossRef]

9. ben Mabrouk, A.; Zagrouba, E. Abnormal Behavior Recognition for Intelligent Video Surveillance Systems: A Review. Expert Syst.
Appl. 2018, 91, 480–491. [CrossRef]

10. Mehmood, A. Abnormal Behavior Detection in Uncrowded Videos with Two-Stream 3D Convolutional Neural Networks. Appl.
Sci. 2021, 11, 3523. [CrossRef]

11. Kim, D.; Kim, H.; Mok, Y.; Paik, J. Real-Time Surveillance System for Analyzing Abnormal Behavior of Pedestrians. Appl. Sci.
2021, 11, 6153. [CrossRef]

12. Sikdar, A.; Chowdhury, A.S. An Adaptive Training-Less Framework for Anomaly Detection in Crowd Scenes. Neurocomputing
2020, 415, 317–331. [CrossRef]

13. Asad, M.; Yang, J.; He, J.; Shamsolmoali, P.; He, X.J. Multi-Frame Feature-Fusion-Based Model for Violence Detection. Vis. Comput.
2020, 17, 1415–1431. [CrossRef]

14. Kim, J.; Won, C.S. Action Recognition in Videos Using Pre-Trained 2D Convolutional Neural Networks. IEEE Access 2020, 8,
60179–60188. [CrossRef]

15. Li, N.; Wu, X.; Xu, D.; Guo, H.; Feng, W. Spatio-Temporal Context Analysis within Video Volumes for Anomalous-Event Detection
and Localization. Neurocomputing 2015, 155, 309–319. [CrossRef]

16. Hu, X.; Huang, Y.; Duan, Q.; Ci, W.; Dai, J.; Yang, H. Abnormal Event Detection in Crowded Scenes Using Histogram of Oriented
Contextual Gradient Descriptor. Eurasip J. Adv. Signal Process. 2018, 2018, 54. [CrossRef]

17. Bansod, S.D.; Nandedkar, A.V. Crowd Anomaly Detection and Localization Using Histogram of Magnitude and Momentum. Vis.
Comput. 2020, 36, 609–620. [CrossRef]

18. Zhang, X.; Ma, D.; Yu, H.; Huang, Y.; Howell, P.; Stevens, B. Scene Perception Guided Crowd Anomaly Detection. Neurocomputing
2020, 414, 291–302. [CrossRef]

19. Singh, G.; Kapoor, R.; Khosla, A. Optical Flow-Based Weighted Magnitude and Direction Histograms for the Detection of
Abnormal Visual Events Using Combined Classifier. Int. J. Cogn. Inform. Nat. Intell. 2021, 15, 12–30. [CrossRef]

20. Brox, T.; Bruhn, A.; Papenberg, N.; Weickert, J. High Accuracy Optical Flow Estimation Based on a Theory for Warping. In
Proceedings of the Computer Vision—ECCV 2004, Prague, Czech Republic, 11–14 May 2004; Pajdla, T., Matas, J., Eds.; Springer:
Berlin, Heidelberg, 2004; pp. 25–36.

21. Tran, D.; Bourdev, L.; Fergus, R.; Torresani, L.; Paluri, M. Learning Spatiotemporal Features with 3D Convolutional Networks. In
Proceedings of the IEEE International Conference on Computer Vision 2015, Santiago, Chile, 7–13 December 2015; Volume 2015,
pp. 4489–4497. [CrossRef]

22. Xie, S.; Sun, C.; Huang, J.; Tu, Z.; Murphy, K. Rethinking Spatiotemporal Feature Learning: Speed-Accuracy Trade-Offs in Video
Classification. In Proceedings of the Computer Vision—ECCV 2018, Munich, Germany, 8–14 September 2018; Ferrari, V., Hebert,
M., Sminchisescu, C., Weiss, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 318–335. [CrossRef]

23. Lapierre, N.; St-Arnaud, A.; Meunier, J.; Rousseau, J. Implementing an Intelligent Video Monitoring System to Detect Falls of
Older Adults at Home: A Multiple Case Study. J. Enabling Technol. 2020, 14, 253–271. [CrossRef]

24. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with
Convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA,
USA, 7–12 June 2015; pp. 1–9. [CrossRef]

25. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]

26. Dai, W.; Chen, Y.; Huang, C.; Gao, M.K.; Zhang, X. Two-Stream Convolution Neural Network with Video-Stream for Action
Recognition. In Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19
July 2019; pp. 1–8. [CrossRef]

27. Ramya, P.; Rajeswari, R. Human Action Recognition Using Distance Transform and Entropy Based Features. Multimed. Tools Appl.
2021, 80, 8147–8173. [CrossRef]

28. Afza, F.; Khan, M.A.; Sharif, M.; Kadry, S.; Manogaran, G.; Saba, T.; Ashraf, I.; Damaševičius, R. A Framework of Human Action
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