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Abstract: Due to the development of computer vision and natural language processing technologies
in recent years, there has been a growing interest in multimodal intelligent tasks that require the
ability to concurrently understand various forms of input data such as images and text. Vision-and-
language navigation (VLN) require the alignment and grounding of multimodal input data to enable
real-time perception of the task status on panoramic images and natural language instruction. This
study proposes a novel deep neural network model (JMEBS), with joint multimodal embedding
and backtracking search for VLN tasks. The proposed JMEBS model uses a transformer-based joint
multimodal embedding module. JMEBS uses both multimodal context and temporal context. It also
employs backtracking-enabled greedy local search (BGLS), a novel algorithm with a backtracking
feature designed to improve the task success rate and optimize the navigation path, based on the
local and global scores related to candidate actions. A novel global scoring method is also used for
performance improvement by comparing the partial trajectories searched thus far with a plurality
of natural language instructions. The performance of the proposed model on various operations
was then experimentally demonstrated and compared with other models using the Matterport3D
Simulator and room-to-room (R2R) benchmark datasets.

Keywords: multimodal embedding; natural language instruction; panoramic image; vision-and-
language navigation task; deep neural network; pretrained model; three-dimensional simulated
indoor environment; backtracking-enabled greedy local search

1. Introduction

Driven by the rapid growth of computer vision and natural language processing
technologies, in recent years there has been a growing interest in multimodal intelligent
tasks that require the ability to concurrently understand various forms of input data such
as images and text. Some of the typical multimodal intelligent tasks are vision question
answering (VQA) [1] that generate answers to natural language questions on the image
presented, visual dialog [2] that holds a meaningful question and answer (Q&A) dialog on
the input image, and image/video captioning that generates texts describing the contents
of the input image or video. More advanced multimodal intelligent tasks have also been
presented, including embodied question answering (EQA) [3], assuming an embodied
agent moving around in a virtual environment [3], interactive question answering (IQA) [4],
cooperative vision and dialog navigation (CVDN) [5], remote embodied visual referring
expression in real indoor environments (REVERIE) [6], and vision and language navigation
(VLN) [7].

Among these multimodal intelligent tasks, we will explore VLN tasks, in which an
agent moving in a three-dimensional virtual environment is requested to navigate to a
particular location following natural language instructions. Consider an agent placed in a
3D virtual indoor environment generated by the Matterport3D Simulator [8]. As shown in
the example presented in Figure 1, a VLN task requires the agent to progress to the target
position, relying on the natural language instructions and visual cues of the environment
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corresponding to the agent’s vision. For model training and testing, we considered room-
to-room (R2R) [7] datasets. Datasets for each navigation task include an optimal path from
a specific initial position to the target position within the environment and a set of three
different natural language instructions that describe the optimal path.

Figure 1. Examples of vision and language navigation (VLN) tasks.

As shown in Figure 1, the natural language instructions for a VLN task contain
instructions that request the agent to perform high-level actions such as “walk down”
and “continue down” around various landmarks (e.g., bathroom and stairs) within the
environment. Therefore, the VLN agent needs to solve many problems: it needs to acquire
knowledge of its location in the current environment to determine the next action; it needs
to identify the landmark in the input image mentioned in the instruction; and it needs
to choose the low-level action to implement the high-level action in accordance with the
instruction. In particular, the agent should be able to perform alignment and grounding
of multimodal input data to understand the natural language instructions coherently in
relation to the real-time input images.

Because most natural language instructions provide only partial descriptions of the
trajectory to the target position, the agent encounters difficulties in understanding the
instructions unless they are efficiently combined with visual features using the alignment
and grounding feature. In VLN-related studies [7,9–21], various attention mechanisms,
such as visual or textual attention, are employed to ensure the alignment and grounding
between natural language instruction and input images. However, these attention-based
VLN models are trained only to learn the association between natural language instructions
and images with a limited number of R2R datasets; moreover, they have difficulties acquir-
ing broader general knowledge of the relationship between natural language instruction
and images. Therefore, it is a great challenge for attention-based VLN models to extract
sufficient context from multimodal input data, including natural language instructions
and images, to make real-time action decisions. To address this drawback, researchers
proposed transformer-based pretrained models [20,21]. Unlike attention-based models,
pretrained models are equipped with feature aligning natural language instructions and
images, trained with attended masked language modeling (AMKM) and action prediction
(AP) tasks based on a transformer neural network before being used for VLN tasks. How-
ever, current pretrained models have insufficient capacity to reflect the wealth of statuses
and actions experienced by the agent in the past.

Effective path planning and action selection strategies for reaching the target position
are crucial for executing VLN tasks. Most VLN-related studies [7,9–21] applied search
techniques that rely on local scoring of candidate actions, such as greedy local and beam
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searches. In the case of the greedy area search, the search speed is increased because the
search range is limited; however, its success rate is low because it is difficult to return to
the original path once a wrong path is selected. Beam search, developed in an attempt
to overcome this problem, has a higher task success rate compared with the greedy area
search owing to the concurrent search of several candidate paths in parallel. However,
its search efficiency is low considering the total length of the search path to be explored
in parallel. It is also associated with implementation problems because one agent cannot
simultaneously search multiple paths in parallel in an actual navigation environment.

In an effort to overcome the limitations of previous studies for solving VLN tasks,
we propose the joint multimodal embedding and backtracking search (JMEBS), a novel deep
neural network model. The proposed model uses a transformer-based, joint multimodal
embedding module to obtain a text context that is efficient for action selection based
on natural language instructions and real-time input images. Unlike the conventional
transformer-based pretrained models, the JMEBS model uses multimodal context at each
time step that connects the current image to natural language instructions, and temporal
context that contains the agent’s past statuses and actions. One of its salient features is
that the context information extracted by the module can be integrated into various path
planning and action selection strategies. It is also equipped with a backtracking-enabled
local search feature designed to improve the task success rate and optimize the navigation
path based on the local and global scores related to candidate actions. Additionally,
a global scoring method is used to compare partial trajectories searched with various
natural language instructions. In summary, our contributions include:

• A novel deep neural network model, with joint multimodal embedding and back-
tracking search for VLN tasks.

• Rich context utilization based on a transformer-based multimodal embedding module
and a temporal contextualization module.

• A backtracking-enabled greedy local search algorithm to improve the success rate and
optimize the path.

• A novel global scoring method to monitor task progress by comparing the partial
trajectories searched thus far with a plurality of natural language instructions.

• State-of-the-art results on the VLN task.

The remainder of this article is organized as follows: Section 2 presents an overview
of the related literature. Section 3 provides a detailed explanation of the design of the
proposed JMEBS model. Section 4 presents the JMEBS implementation environment and the
results of various experiments using R2R benchmark datasets. Section 5 draws conclusions
and presents directions for future research.

2. Related Works

In a study on VLN tasks [7], a relatively simple deep neural network model of the
sequence-to-sequence (Seq2Seq) type was proposed, in which an action sequence was
output from two input sequences with input video stream and natural language instruc-
tions, respectively. A few other VLN-related studies [9,15,16] presented methods to solve
the problem of insufficient R2R datasets for training VLN models. They undertook var-
ious data augmentation techniques, including the development of a speaker module to
generate additional training data [9], new training data through environment dropout
(eliminating selected objects from the environment) [15], and more sophisticated task data
by concatenating the existing R2R data [16].

Researchers have attempted to understand the association between natural language
instructions and real-time input images in a range of studies on VLN tasks. One of these at-
tempts resulted in an attention mechanism for co-grounding multimodal input data [9–11].
In particular, Object-and-Action Aware Model (OAAM) [10] separated object-centered
instruction from action-centered one, and then matches them to their own counterpart
visual perception and action orientation. Another work [11] proposed a relationship graph
for modeling the inter-modal relationships between natural language instruction and in-



Sensors 2021, 21, 1012 4 of 22

put image, and the intra-modal relationships among visual entities. These models used
an end-to-end training to train the association between the words appearing in natural
language instructions and input images. However, only R2R datasets with limited range
were used. This training mechanism is thus unsuitable for training comprehensive vision–
language knowledge. Another drawback of the models is the use of a recurrent neural
network to model the sequence of words used in natural language instructions, which
is unsuitable for parallel processing. To overcome these limitations, some researchers
developed pretrained models [20,21] in which natural language instructions and images
for the VLN task are embedded together with large-scale benchmark datasets in addition
to R2R datasets. VisualBERT [22], Vision-and-Language BERT (ViLBERT) [23], Visual-
Linguistic BERT (VL-BERT) [24], and UNiversal Image-TExt Representation (UNITER) [25],
are pretrained models applicable to various vision–language tasks. There are also models
pretrained specifically for VLN tasks [20,21]. These VLN-specific models have a simple
structure that immediately selects one of the candidate actions because they use only the
multimodal context of the concurrently embedded data extracted according to natural
language instructions and input images. Therefore, these pretrained VLN models cannot
sufficiently use the temporal context reflecting the statuses and actions experienced by the
agent in the past, nor can they deviate from the built-in greedy local search to combine
with other search approaches. To overcome this limitation, we developed the JMEBS model
using the pretrained model proposed in [20] as a joint embedding module to obtain a
multimodal context. By adding the temporal contextualization module, the JMEBS model
is designed to enable the agent to select actions by taking into account its own past statuses
and actions. Moreover, by adopting the pretrained model of [20] as an independent mod-
ule, the JMEBS model can be easily combined with a novel greedy local search capable of
conducting backtracking actions.

Conversely, one of the most important issues associated with the solution of a VLN
task is an efficient path planning and action selection strategy. In a VLN task, the agent is
not explicitly given the target position; it is given only the natural language instructions
that provide directions to the target position. Hence, the agent needs to perform efficient
path planning and action selection strategies to reach the target position based on the
real-time input image and natural language instructions. In a VLN task, a graphic map
is predefined for each environment, and the agent should move from one node to the
next to navigate to the target position. Therefore, in previous studies, greedy local [7,9,10]
and beam searches [14], which were suitable for graph searches, were mostly used for
VLN tasks. In general, a greedy local search—a technique for searching the node with
the highest local score among adjacent nodes of the current node at each time step—has
high-search efficiency owing to its narrow search range. However, it has a high-task failure
rate once a false path is selected during the search. Beam search, developed in an attempt
to overcome the drawback of greedy local search, has a higher task success rate compared
to the greedy area search owing to the concurrent search of k-number of candidate paths
in parallel. However, it has low practicability given that one agent cannot simultaneously
search multiple paths in parallel in an actual navigation environment, and low search
efficiency, considering the total length of the search path to be explored in parallel.

Attempts to overcome these drawbacks of greedy local search and beam search
have been made in two VLN-related studies [13,14]. In [13], an extended local search,
including rollback action, was proposed, using a progress monitor for the position of
each action with respect to the target position as heuristics for search. In [14], a new
frontier-aware search with a backtracking (FAST) search algorithm or FAST navigator
was proposed that upgraded the efficiency of the beam search. The FAST navigator can
backtrack if it detects a mistake by simultaneously comparing partial paths of different
lengths using local and global information. Going a step further, the proposed model
JMEBS employs a backtracking-enabled greedy local search (BGLS), which is similar to
rollback [13] or FAST [14] in that the agent is backtracking-enabled, but uses a different local
and global scoring strategy for action selection. The JMEBS model performs local scoring
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using the multimodal context extracted from the natural language instruction, real-time
image, and the temporal context reflecting the agents’ experience over time. Furthermore,
its global scoring involves a comparison of all partial trajectories of each point visited from
the initial position to the current position using a new scoring function.

3. Materials and Methods
3.1. Problem Description

The VLN is a task in which the agent navigates to an unknown target position follow-
ing natural language instructions. It is assumed that the real-time input of the panoramic
image of the environment is provided to the agent that performs the task. Figure 2 illus-
trates the VLN task environment.

Figure 2. Illustration of the VLN environment.

As shown in Figure 2 (top), a graphic topological map (G) consisting of nodes (way-
points) and edges (connections) is defined at each position visited by the agent. The VLN
server controls the agent to navigate only on G. In this way, it is not exposed to the agent
that determines each navigation action by perceiving the environment. As shown in
Figure 2 (bottom), the agent must estimate its own position and the composition of the
environment by relying on the 360◦ panoramic image (observation Ot) acquired at the
current position (state St) at each time step. Accordingly, the panoramic image is divided
into 36 partial images of equal size, each of which is a candidate action. If the agent selects
and executes any of these candidate actions, the management system moves the agent
to the node closest to the chosen direction on G. The agent navigates by repeating this
process and performs the “stop” action at the position predicted as the goal. If the agent’s
final position is within 3 m of the target position, the management system marks the task
as successful.

3.2. Proposed Model

The proposed model JMEBS performs the local scoring of a candidate action based on
the multimodal context extracted from the natural language instruction and panoramic
image using the pretrained joint embedding module and temporal contextualization re-
flecting past statuses and actions. Additionally, it performs global scoring to determine
the need for backtracking by comparing the natural language instructions describing the
entire trajectory from the initial to the final position with the partial trajectories up to the
current position.
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Accordingly, the JMEBS model is largely divided into a local scoring network, a global
scoring network, and an action selection network, as shown in Figure 3. The global scoring
network gives a local score to each of the candidate actions based on multimodal and
temporal contexts. The agents select one of the candidate actions based on the local scores
given to them and navigate. Finally, the global scoring network is used to determine the
need for backtracking by comparing the natural language instructions describing the entire
trajectory with the partial trajectories up to the current position.

Figure 3. Overall architecture of the proposed model, JMEBS.

The local scoring network consists of three stages: multimodal embedding, temporal
contextualization, and local scoring. In the multimodal embedding stage, panoramic im-
ages and natural language instructions are embedded to enable the use of real-time input
data. The joint multimodal embedding module proposed in this study is used in the multi-
modal embedding process to enable information exchange between the image and natural
language modes. This process involves visual information embedding based on natural
language instruction, and natural language embedding based on visual information. The
temporal contextualization stage is composed of a context decoding module for updating
temporal context and a co-attention module for detecting the focus area from the input
data using the context feature. In the context updating stage, a new context ht is set using
the input data (visual feature and previous action) delivered to the agent at each time step
t from the environment and the previous context ht−1. The co-attention stage includes
the attention network for each mode that determines the area to focus on according to
the instruction and image received based on context. Finally, in the local scoring stage,
the actual candidate actions are rated. A detailed explanation of the local scoring stage is
provided in Section 3.3.

The optimal action to take at the current time step (t) decided in the local scoring
stage is stored in the trajectory memory wherein the entire trajectory sequence from the
initial to the target position is stored. Furthermore, the global scoring network is used to
determine whether to execute the selected action or rollback. The global scoring network is
subdivided into three stages: the trajectory encoding stage to encode the stored trajectory;
the instruction decoding stage to generate natural language instructions to describe the
trajectory; and the global scoring stage that requires a process step to check the trajectories
generated thus far against the ground truth trajectories. Given that the agent is not provided
the ground truth trajectories owing to the nature of the VLN tasks, scoring is performed by
generating the instructions describing the trajectories executed up to the current position
and checking them against the ground truth instructions. A detailed explanation of the
local scoring stage is provided in Section 3.4.
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3.3. Local Scoring

Figure 4 illustrates the local scoring network that rates candidate actions based on
multimodal and temporal contexts. At each time step t, the agent takes action according
to the instruction I that describes the entire trajectory, panoramic image Ot, previous
action at−1, and candidate actions acand

t to choose from at the current position. The local
scoring network is subdivided into the multimodal embedding stage, temporal contextual-
ization stage, and local scoring stage. The local scoring process comprises distinct processes
for the generation of instruction features (red line) and visual features (blue line).

Figure 4. Architecture of local scoring network.

First, in the multimodal embedding stage, instruction I performs word embedding
using pretrained BERT and positional embedding, including the positional information
of the word. For the panoramic image, the convolutional neural network (CNN) visual
features are based on the pretrained ResNet-152 and the agent’s orientation feature. The
institutional embedding dataset for each mode is input as the joint multimodal embedding
module so that embedding features can be generated based on intermodal data exchange.

Figure 5 illustrates the architecture of the joint multimodal embedding of the JMEBS.
The joint embedding module is composed of a mode-specific embedding layer and trans-
former layers for intermodal exchange. The embedding layer accommodates the text
embedder to embed the instructions and the visual embedder for processing the panoramic
image. Textual embedding is performed to generate the embedding feature of each word
by concatenating the BERT embedding data (wn) of each word of instruction I and the
positional embedding (Pwn ) of each word.

Figure 5. Architecture of joint multimodal embedding module.
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The visual embedding process uses two types of features: the image feature (vn) of each
of the 36 partial images extracted from the panoramic image with a CNN and the orientation
feature (Pvn , orientation feat) viewed from the agent’s current position. The orientation
feature is the value corresponding to each of the 36 partial images, that is, a 128-dimensional
directional vector based on real numbers in the form of [sinϕ; cosϕ; sinθ; cos θ], where ϕ is
the orientation of the horizontal field-of-view (heading), and θ is the vertical field-of-view
(elevation). In this case, “;” denotes the features that are used in the concatenated state.
Conclusively, the orientation feature and CNN image features are fused into the visual
embedding feature depending on the agent’s current orientation. Finally, the embedded
text string and visual feature undergo intermodal data exchange through the co-transformer
module (gray area), resulting in the acquisition of the embedded textual feature reflection
image data and the visual feature reflecting the natural language instruction data.

The proposed model JMEBS contains a temporal contextualization module, as shown
in Figure 4. As mentioned previously, the temporal contextualization stage context decod-
ing module for context updating and the co-attention module for detecting the focus area
from the input data use the context feature. The co-attention module contains a mode-
specific attention (visual or textual attention) network for searching visual and textual
features. The context decoding module is a network based on the long short-term memory
(LSTM) used to reflect the sequence feature at each time step; it enables the generation
of a new context (ht) that reflects the current input data by inputting the visual feature,
previous action, and previous temporal context (ht−1), as expressed by Equation (1):

ht = LSTM
([

f̃ vis
t ; f action

t−1

]
, ht−1

)
(1)

Herein, the input visual feature should be updated using the time-step data best suited
for the current status instead of the embedded visual feature. Therefore, visual attention
is used as an element of the co-attention module, thereby applying the soft-attention
mechanism expressed by Equation (2) to the existing visual feature ( f vis

t ) with the help
of the previous temporal context ( ht−1). This leads to the generation of attended visual
features ( f̃ vis

t ) reflecting the actual temporal context, where g denotes a multilayer neural
network and αvis

t denotes the textual attention weight for the visual feature:

zvis
t = (Wvht−1)

>g
(

f vis
t
)
, αvis

t = softmax
(
zvis

t
)
,

f̃ vis
t = αvis

t f vis
t

(2)

The next process is sentence encoding in which the embedding feature of each word
extracted based on the joint embedding process is subjected to the LSTM model to generate
an instruction feature ( finst) that reflects the word sequence feature. The instruction feature
generated is used for candidate action scoring. It is designed to perform textual attention
according to the current status to select the instructed action that corresponds to a specific
focus area. The textural attention process is expressed by Equation (3), wherein the focus
word is selected based on the images up to the current time step and the current context
(ht), where αinst

t denotes the textual attention weight:

zinst
t = (Wxht)

>, αinst
t = softmax

(
zinst

t
)

f̃inst = αinst
t finst

(3)

Subsequently, a new situation (h̃t) is generated, with the entire temporal context (ht)
and the attended instruction feature ( f̃inst) reflected in it, as expressed by Equation (4). This
is the final process for generating the core feature, with all word data most closely associated
with the current status and action decisions reflected in it. To compute the predefined
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candidate action at each position of the agent ( f cand
t ) and the weight of each action using

the situation data (h̃t), the same soft-attention process is executed as in Equation (3):

h̃t = tanh
(

W
[

f̃inst; ht

])
(4)

Using the attended candidate action feature f̃ cand
t , the local score logit for ak

t is com-
puted based on Equation (5). In this candidate action scoring from the local perspective
based on the agent’s current input data and situation, the action with the highest score is
selected as the next action:

Lt

(
ak

t

)
= so f tmax

(
Wa h̃t f̃ cand

t
>
)

(5)

The function LossLSN for the loss of the local scoring network is defined as the cross-
entropy loss of action decision, as expressed by Equation (6), where yGT

t denotes the ground
truth action and pk

t denotes the action probability for each candidate action ak
t .

LossLSN =
T

∑
t = 1

yGT
t log

(
pk

t

)
(6)

3.4. Global Scoring

The global scoring network illustrated in Figure 6 determines the need for backtracking
from a global perspective. The global scoring network operates in sync with trajectory
memory (M), which stores the trajectories executed by the agent to reach the current
position, as expressed by Equation (7):

τt = 〈s0, a0, st〉, sk
ak→ sk+1 f or 0 ≤ k ≤ t (7)

Figure 6. Architecture of global scoring network.

An R2R dataset contains three different natural language instructions that describe
the same trajectory of each VLN task. In the global scoring network, the extent to which
the current trajectory is advancing toward the target position is assessed by checking the
trajectories τt executed thus far against natural language instructions Ik ∈ I, k = 1, 2, 3.
To enable the comparison of the trajectories τt having a different mode (visual mode)
with the natural language instructions I (textual mode), the speaker model [9] is used
to transform τt to I′t . The final global scores are obtained by computing the similarity of
the transformed instructions I′t to the original instructions Ik ∈ I, k = 1, 2, 3. To calculate
the similarities among natural language instructions, we used dynamic time warping
(DTW) in which a natural language instruction is considered a sequence of words, and the
similarity between natural language instructions is calculated by applying the method of
calculation of the similarity between two time-series data.



Sensors 2021, 21, 1012 10 of 22

The global scoring network of JMEBS consists of three stages: trajectory encoding of
the current trajectory τt, instruction decoding to transform the current trajectory to natural
language instruction I′t , and the final global scoring calculation. First, the trajectory τt is
encoded as an image sequence-type trajectory vector f traj

t with the encoder LSTM, and then
retransformed with an LSTM-based decoder to natural language instruction I′t to match the
trajectories executed to reach the current position. In the process of instruction decoding,
we used the speaker model [9] with bidirectional LSTM (bi-LSTM) pretrained based on the
instruction data in the existing R2R datasets.

In the final global scoring stage, the global score Gt of the action at is calculated by
comparing the trajectory transformed to the natural language I′t with the three natural
language instructions Ik ∈ I, k = 1, 2, 3 provided by the R2R datasets, as expressed by
Equation (8):

Gt(at−1) =
1
3

3

∑
k = 1

DTW
(

Ik, I′t
)

(8)

The loss function LossGSN of the global scoring network is defined as the function of
cross-entropy loss incurred in the course of trajectory encoding and instruction decoding,
as expressed by Equation (9), where zGT

t denotes the ground truth word, and wk denotes
the word probability for each candidate word constituting the instruction I.

LossGSN =
T

∑
t = 1

zGT
t log(wk) (9)

3.5. Backtracking-Enabled Greedy Local Search

The action selection strategy described in Algorithm 1 represents the BGLS algorithm
used in JMEBS. In Algorithm 1, the algorithm is expressed as a function that receives input
data (Ot = image, I = natural language instruction, at−1 = previous action) and transforms
them into output data (ât = the optimal action at the current position).

Algorithm 1. Pseudocode of backtracking-enabled greedy local search (BGLS) algorithm.

BGLS(Ot, I, at−1)

1: τt = 〈s0, s1, . . . , st〉 ← Get_Tarjctory(M)
2: if (Goal(st)) then return astop
3: Gt(at−1)← Global_Scoring (at−1, τt)
4: if (Gt(at−1) ≤ Gt−1(at−2)) then
5: aback ← Backtracking(st)
6: τ̂t+1 ← Expand_Trajectory(τt, ŝt+1 )
7: M← Update_Memory(M, τt+1)
8: return aback
9: end if
10: for each possible action ak

t at state st do
11: Lt

(
ak

t

)
← Local_Scoring

(
ak

t

)
12: end for
13: ât ← argmaxk∈K

(
Lt

(
ak

t

))
14: ŝt+1 ← Update_State(st, ât)
15: τ̂t+1 ← Expand_Trajectory(τt, ŝt+1 )
16: M← Update_Memory(M, τt+1)
17: return ât

First, the trajectories executed thus far τt = 〈s0, a0, . . . , st〉 are retrieved from tra-
jectory memory M. If the current status st is in the target position range Goal(St), the
stop action astop is returned (lines 1–2 in Algorithm 1). Otherwise, the global scoring
Global_Scoring(at−1, τt) for the previous action at−1 is performed based on all the trajec-
tories executed up to that time instant, τt = 〈s0, a0, . . . , st〉 (line 3 in Algorithm 1). If the
global score of the previous action at−1 has not improved compared with its previous action
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at−2, that is, Gt(at−1) ≤ Gt−1(at−2), the backtracking decision Backtracking(st) is made to
execute a rollback action aback to the previous status st−1, and Expand_Trajectory(τt, st+1),
that is, the expansion of the new trajectory τt+1 to the status st+1 and Update_Memory
(M, τt+1) are decided, and the rollback action aback is returned (lines 4–8 in Algorithm 1).
If the global score of the previous action at−1 has improved compared with its previous
action at−2, that is, Gt(at−1) > Gt−1(at−2), the local score of each candidate action ak

t

available at the current status st is calculated (Local_Scoring
(

ak
t

)
), and the action that has

the highest local score ât is selected (lines 9–10 in Algorithm 1). The new status ŝt+1, ex-
panded as a result of the execution of the selected action ât, is updated to the new trajectory
τ̂t+1 ExpandTrajectory(τt , ŝt+1)

; the trajectory memory is updated UpdateMemory(M, τt+1)
; and

the action is returned (lines 11–14 in Algorithm 1).
As explained earlier, the new BGLS search algorithm available for both local and

global scoring has a higher search efficiency compared with the conventional beam search
algorithms and a higher task success rate compared with conventional greedy local search
algorithms that have no possibility of backtracking.

4. Experiments
4.1. Dataset and Model Training

We conducted five different experiments to analyze the performance of the proposed
model JMEBS using R2R datasets and the Matterport3D simulation environment. R2R [7]
is a navigation dataset established by providing a trajectory for people to navigate the
Matterport3D indoor environment from the starting point of a specific destination, and by
collecting the natural language instructions that describe the trajectory. An R2R dataset
contains three different natural language instructions describing each trajectory, and is
configured to have training and validation data at a ratio of 2 to 1. JMEBS is implemented
with the Python deep learning library Pytorch in the Ubuntu 16.04 LTS environment
mounted with a Geforce GTX 1080Ti graphics processing unit. The performance assessment
metrics used for the experiments are the navigation error (NE, m), success rate (SR, %),
success rate weighted by path length (SPL, %), and trajectory length (TL, m). NE results
are expressed as the mean distance between the agent’s final arrival point and the target
location. SR represents the percentage of agent’s final positions less than 3m away from
the target goal position. SPL considers the path length and success rate. The mean distance
can be calculated using Equation (10):

1
N

N

∑
i = 1

Si
li

max(pi, li)
(10)

For the model training, the learning rate was set to 0.1, the optimizer was the stochastic
gradient descent (SGD), and the epoch was set to 50,000.

4.2. Experiments

The first experiment aimed to prove the positive effect of the joint embedding tex-
tual and visual features (JETVF) employed in the proposed model. For this experiment,
the JETVF are compared in three different conditions: (i) without joint embedding features
(w/o JEF), (ii) only with joint embedding visual features (JEVF), and (iii) and only with
joint embedding textual features (JETF). Figure 7a–d show the module w/o JEF, JEVF, JETF,
and JETVF, respectively. The experimental results are presented in Table 1 and Figure 8.
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Figure 7. Different embedding features: (a) without joint embedding features (w/o JEF), (b) joint embedding visual features
(JEVF), (c) joint embedding textual features (JETF), and (d) joint embedding textual and visual features (JETVF).

Table 1. Comparison among different embedding features (SR: success rate, SPL: success rate
weighted by path lengths, NE: navigation error, JEF: joint embedding features, JEVF: joint embedding
visual features, JETF: joint embedding textual features, and JETVF: joint embedding textual and
visual features).

Embedding
Features

Val-Seen Val-Unseen

SR SPL NE SR SPL NE

w/o JEF 62.0 59.0 4.0 52.0 48.0 5.2

JEVF 66.0 61.6 3.6 56.5 50.0 4.5

JETF 66.5 62.9 3.6 55.4 50.9 4.7

JETVF 67.9 63.9 3.6 58.7 53.5 4.4

The results presented in Table 1 show that the textual and visual features (JETVF)
of JMEBS outperformed all other embedding features. Similarly, the case without joint
embedding features (w/o JEF) was outperformed by all other cases. The case that used
JETF generally scored slightly higher than the case that only used the visual features (JEVF).
These findings verified the positive effect of joint multimodal embedding features on
VLN tasks.

Figure 8 illustrates the epoch-dependent performance changes in relation to the use of
different joint-embedding features. Figure 8a–c represent the performance levels measured
by the NE, SR, and SPL, respectively. In the results of this experiment, the JETVF used
in the JMEBS model had the lowest NE and highest SR and SPL values. Additionally,
JETVF, that is, the case using both text and visual features, showed faster performance
convergence than the other cases.

The second experiment was conducted to prove the positive effect of the attended vi-
sual textual action module (AvtAM), the temporal contextualizing module of the proposed
model JMEBS. For this experiment, three different implementations of the temporal contex-
tualizing module were compared, as shown in Figure 9. These included the (a) attended
visual context module (AvCM (A), (b) attended textual context module (AtCM), and (c) the
attended visual–textual action module (AvtAM). Table 2 outlines the experimental results.
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Figure 8. Comparison of performance using different embedding features: (a) navigation error (NE),
(b) success rate (SR), and (c) success rate weighted by path lengths (SPL).
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Figure 9. Different temporal contextualization modules: (a) attended visual context module (AvCM),
(b) attended textual context module (AtCM), and the (c) attended visual–textual action module
(AvtAM).

Table 2. Comparison among different temporal contextualization modules.

Temporal
Contextualization

Val-Seen Val-Unseen

SR SPL NE SR SPL NE

AvCM 67.9 64.1 3.4 58.5 51.8 4.4

AtCM 64.8 60.3 3.6 53.6 49.9 4.8

AvtAM 67.9 63.9 3.6 58.7 53.5 4.4

The results presented in Table 2 show that AvCM that uses only the visual features
(image) to update the temporal context outperformed AtCM that uses only the textual
features (instruction) to update the temporal context. Furthermore, AvtAM, the model with
the multimodal (visual and textual) attention network used in the model JMEBS, generally
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scored better than the other models. Conclusively, the temporal contextualizing method
(AvtAM) proposed in this study was proven to yield performance improvements.

The third experiment was conducted to prove the superiority of the dynamic time
warping (DTW) with triple instructions, the global scoring method used in the proposed
model JMEBS. We used the Levenshtein distance (LD) and DTW to measure the similarity
of natural language instruction measurements. The partial trajectories executed thus far
were checked against (i) single instruction and triple instructions. Table 3 outlines the
results of the experiment.

Table 3. Comparison among different global scoring methods.

No. Global Scoring
Val-Unseen

SR SPL NE

1 LD with single instruction 54.1 48.9 4.6

2 DTW with single instruction 54.7 49.2 4.6

3 LD with triple instructions 57.1 49.7 4.5

4 DTW with triple instructions 59.0 51.6 4.5

The experimental results in Table 3 show that the triple instructions in both LD and
DTW, i.e., LD with triple instructions and DTW with triple instructions, outperformed
their single-instruction counterparts in global scoring. Additionally, comparing natural
language instructions with word sequences showed that DTW slightly outperformed LD.
These research findings verified the superiority of the DTW with triple instructions global
scoring method used in the proposed model JMEBS.

The fourth experiment was conducted to prove the search efficiency of the BGLS
algorithm proposed in this study. In this experiment, three algorithms were compared:
greedy local search, beam search, and BGLS. In the case of the beam search, the number
of parallel search trajectories K was varied and took the values of 10, 20, and 30. Table 4
outlines the results of the experiment.

Table 4. Comparison among different search methods.

Search
Val-Seen Val-Unseen

SR SPL NE TL SR SPL NE TL

Greedy 67.9 63.9 3.6 12.1 58.7 53.5 4.4 13.1

Beam (K = 10) 70.3 0.01 5.2 457.9 61.5 0.01 5.2 409.1

Beam (K = 20) 76.6 0.01 4.5 771.2 62.6 0.01 4.6 688.3

Beam (K = 30) 79.2 0.01 4.2 1122.9 72.9 0.01 4.5 1015.2

BGLS 70.1 64.1 3.2 13.5 59.0 51.6 4.4 15.1

The experimental results in Table 4 show that the search algorithm BGLS proposed
in this study has a lower SR than the beam search variations, but outperforms them in all
other performance scales. This proves the higher search efficiency of the BGLS compared
with the beam search technique. In addition, BGLS showed an improved performance
compared with the conventional greedy local search in terms of the SR and NE. These
results are interpreted as the positive effect of the backtracking feature that characterized
the BGLS.

The last experiment was conducted to prove the superiority of the proposed JMEBS
model by comparing it with conventional VLN models. Table 5 outlines the results of
the experiment. Among the models compared, the beam search method was applied to
tactical-rewind [14], and the greedy local search method was applied to all other models.
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Table 5. Comparison of the-state-of-art models.

Model
Val-Seen Val-Unseen Test

SR SPL NE SR SPL NE SR SPL NE

Random [7] 15.9 - 9.5 16.0 - 9.2 13.0 12.0 9.8

T-Forcing [7] 27.4 - 8.0 19.6 - 8.6 - - -

S-Forcing [7] 38.6 - 6.0 21.8 - 7.8 20.0 18.0 7.8

Speaker-Follower [9] 66.0 - 3.4 36.0 - 6.6 35.0 28.0 6.6

RCM [18] 67.0 - 3.4 43.0 - 5.9 43.0 35.0 6.0

Self-monitoring [10] 67.0 58.0 3.2 45.0 32.0 5.5 48.0 32.0 6.0

Regretful [10] 69.0 63.0 3.2 50.0 41.0 5.3 48.0 40.0 5.7

Env-Dropout [15] 62.0 59.0 4.0 52.0 48.0 5.2 51.5 47.0 5.2

OAAM [11] 65.0 62.0 - 54.0 50.0 - 53.0 50.0 -

LVERG [12] 67.0 70.0 3.47 57.0 53.0 4.7 55.0 52.0 4.7

PREVALENT [20] 67.8 64.8 3.6 57.6 52.2 4.6 54.0 51.0 5.3

Tactical-Rewind [14] 70.0 4.0 3.1 63.0 2.0 4.0 61.0 3.0 4.3

JMEBS (Greedy) 67.9 63.9 3.6 58.7 53.5 4.4 52.1 47.4 5.4

JMEBS (BGLS) 70.1 64.1 3.2 59.0 51.6 4.4 55.7 51.8 5.2

The experimental results in Table 5 show that the proposed JMEBS model outperforms
the S-Forcing baseline model [7] by a large margin. For example, JMEBS with backtracking
search (BGLS) improves S-Forcing by 35% on success rate (SR), and 33% on success rate
weighted by path length (SPL), respectively. Furthermore, our JMEBS model achieves
better than or competitive performance against state-of-the-art models. In particular,
compared with PREVALENT [20], which is a pretrained multimodal embedding model,
JMEBS (Greedy) yields an enhanced performance on SR in both validation-seen and
validation-unseen datasets. This result can be interpreted as the positive effect of temporal
context used by JMEBS, in addition to the multimodal context. Meanwhile, JMEBS with
backtracking search (BGLS) outperforms all models using greedy search, like RCM [18], Self-
monitoring [10], Regretful [10], Env-Dropout [15], OAAM [11], and LVERG [12], on success
rate. For example, JMEBS (BGLS) improves Regretful [10] by 7% on SR and about 10%
on SPL, respectively. On the other hand, although the tactical-rewind model [14] using
beam search outperforms other models using greedy local search on SR and NE metrics,
it shows worse performance than greedy search-based models and our JMEBS (BGLS)
model on SPL because of long search paths. All five types of experiments conducted in
this study demonstrated that the proposed JMEBS model leads to significant improvement
over existing VLN models.

4.3. Qualitative Analysis

In this study, a qualitative analysis of the proposed JMEBS model was performed on
real-life examples of several VLN tasks. Figures 10–13 present examples of VLN tasks
performed using JMEBS. Each image shows the natural language instruction along with
the panoramic image of the agent on the left-hand side and the top-down view of the
environment and navigation path on the right-hand side. In particular, the former is
marked by current co-attention (textual and visual). The red arrow within the panoramic
image represents the agent’s selected navigation action. The textual attention of the natural
language instruction and the visual attention of the panoramic image captured by the
agent shows that JMEBS has a good perception of the instruction and image areas that
require attention at each time step. For example, in steps 2 and 3 in Figure 10, the agent
pays attention to the word “left” in the natural language instruction and selects the correct
direction by focusing on the left side of the panoramic image. At step 4 in Figure 11, the
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agent accurately focuses on the area of the “red abstract sculpture” indicated by the natural
language instruction and the panoramic image and decides correctly. These results can
be interpreted as the high visual–textual alignment and grounding capacity of the JMEBS.
Steps 6 and 7 in Figure 13 show an example of the agent’s use of the backtracking feature
of BGLS to return to the previous position and take the correct navigation path.

Figure 10. First example of VLN task executed by the proposed model JMEBS: Step1–3.
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Figure 11. First example of VLN task executed by the proposed model JMEBS: Step 4–6.
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Figure 12. Second example of VLN task executed by the proposed model JMEBS: Step1–4.
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Figure 13. Second example of VLN task executed by the proposed model JMEBS: Step 5–9.

However, JMEBS was observed to pay visual attention to an incorrect image area at
step 4 in Figure 11 and step 8 in Figure 13, and textual attention to meaningless tokens,
such as the <EOS> and <BOS> mid-path between Figures 10–13. These events show that
the text–image grounding of JMEBS can be improved further.

5. Conclusions

This study proposed the novel deep neural network model JMEBS as an efficient
tool to solve VLN tasks. The proposed model was designed to use the past temporal
context along with the multimodal context extracted with the joint multimodal embedding
module. Additionally, JMEBS employed BGLS, a novel greedy local search algorithm with
a backtracking feature that improved the task success rate and search efficiency. The pro-
posed model also came with a new global scoring method for the comparison of all partial
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trajectories executed to reach the current position with various natural language instruc-
tions. Finally, we verified the superiority of the proposed model by various experiments
conducted with R2R benchmark datasets.

However, the current JMEBS yielded a slightly worse performance in “unseen”
compared to “seen” environments. Previous studies used various methods to improve
model performance in unseen environments, such as environmental dropout [15] and
self-supervised imitation learning [18]. In this context, improving the generalizability
of the JMEBS model to improve its performance in unseen environments would be an
important future research project. Furthermore, as verified in the qualitative assessment,
there is still scope for improvement for JMEBS in its ability to align and ground natural
language instructions and images, despite its use of a pretrained joint multimodal em-
bedding module. We plan to address the drawbacks of the current version of JMEBS in a
follow-up study by exploring various methods that add landmark information perceived
in the image to the context generation feature in addition to basic visual features.
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