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Abstract: This paper introduces a reactive self-collision avoidance algorithm for differentially driven
mobile manipulators. The proposed method mainly focuses on self-collision between a manipulator
and the mobile robot. We introduce the concept of a distance buffer border (DBB), which is a 3D
curved surface enclosing a buffer region of the mobile robot. The region has the thickness equal
to buffer distance. When the distance between the manipulator and mobile robot is less than the
buffer distance, which means the manipulator lies inside the buffer region of the mobile robot,
the proposed strategy is to move the mobile robot away from the manipulator in order for the
manipulator to be placed outside the border of the region, the DBB. The strategy is achieved by
exerting force on the mobile robot. Therefore, the manipulator can avoid self-collision with the mobile
robot without modifying the predefined motion of the manipulator in a world Cartesian coordinate
frame. In particular, the direction of the force is determined by considering the non-holonomic
constraint of the differentially driven mobile robot. Additionally, the reachability of the manipulator
is considered to arrive at a configuration in which the manipulator can be more maneuverable. In this
respect, the proposed algorithm has a distinct advantage over existing avoidance methods that do
not consider the non-holonomic constraint of the mobile robot and push links away from each other
without considering the workspace. To realize the desired force and resulting torque, an avoidance
task is constructed by converting them into the accelerations of the mobile robot. The avoidance
task is smoothly inserted with a top priority into the controller based on hierarchical quadratic
programming. The proposed algorithm was implemented on a differentially driven mobile robot
with a 7-DOFs robotic arm and its performance was demonstrated in various experimental scenarios.

Keywords: self-collision avoidance; whole-body motion planning and control; mobile manipulation

1. Introduction

A mobile manipulator, which is a manipulator mounted on a mobile robot, has infinite
workspace based on the mobility offered by the mobile robot. Furthermore, the degrees
of freedom (DOFs) of the mobile robot typically provide the mobile manipulator with
redundancy with respect to the tasks such as end-effector trajectory tracking. By utilizing
these properties, a mobile manipulator can perform complex and diverse tasks such as
painting [1], production [2], and manufacturing [3]. However, to perform these complex
tasks in dynamic and unstructured environments, one of the most critical capabilities
for a mobile manipulator is to detect self-collision by using proprioceptive or exterocep-
tive sensors and reactively generate sensor-based avoidance motion. In this paper, we
present a new algorithm for reactive self-collision avoidance for a differentially driven
mobile manipulator.
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1.1. Related Works

Self-collision can be avoided using either offline or online motion generation. Plan-
ning collision-free motion is typically implemented offline, whereas online motion gen-
eration is mainly embedded with the controllers. First, in the field of motion planning,
Kuffner et al. [4] proposed a motion planning algorithm to compute dynamically stable
and collision-free trajectories for humanoid robots based on Rapidly-exploring Random
Trees (RRT). Oriolo and Mongillo [5] proposed a randomized planner that resolves the
redundancy of non-holonomic mobile manipulator. The planner allows a mobile robot
to be located within a compatible region for a given end-effector position so that the
inverse kinematics solutions for the manipulator can be derived. Regarding pose con-
straints on the end-effector, Berenson et al. [6] developed Constrained Bi-directional RRT
(CBiRRT) that plans the trajectory by projecting sampled position onto Task Space Region
(TSR). Burget et al. [7] proposed a planning framework called Bi-directional Informed
RRT∗(BI2RRT∗) that can efficiently obtain optimal paths for mobile manipulation under
task space constraints. Furthermore, Welschehold et al. [8] proposed a motion planner for
the mobile manipulator, which exploited the concept of dynamical system approach for
obstacle avoidance and the concept of inverse reachability for approximating the inner and
outer boundaries of workspace. Kang et al. [9] proposed a sampling-based method that
efficiently explores whole-body configuration space by sampling more around a region
close to obstacles. However, these methods are difficult to implement in unstructured
and dynamic environments because trajectories may have to be regenerated in real time.
Additionally, their computational cost is relatively high for robots with large number of
DOFs, such as humanoids or mobile manipulators.

To overcome these limitations, many reactive methods have been proposed to de-
tect and avoid self-collision in real time. Our proposed method belongs to this category.
Seto et al. [10,11] designed the outer parts of links as elastic elements so that the reac-
tion forces are generated between elastic elements when links move close to each other.
In [12,13], motions for self-collision avoidance were generated based on the gradient of
a cost function related to the distances between links. Dariush et al. [14] penalized joint
motions using the inverse matrix of weighted Jacobian based on the gradient of a collision
function. Fang et al. [15] proposed a method for generating relative motion between the
links using an inequality task. Quiroz-Omaña et al. [16] designed a distance function and
converted it to the form of inequality constraint to generate relative acceleration. However,
these methods are not applicable to non-holonomic mobile manipulators because they
were developed for holonomic systems. Specifically, the methods may not instantaneously
generate motion of the mobile robot in a certain direction because the non-holonomic
constraint is not considered [17,18]. On the other hand, Dietrich et al. [19,20] proposed a
repulsive force-based approach with an efficient damping design and extended continuous
null space projection method. Sugiura et al. [21] proposed a method using only 1-DOF
repulsive force while dynamically swapping the priority of the tasks. Gonon et al. [22] pro-
posed a modified artificial potential field that includes a viscous damping term to dissipate
energy and enforces a limit on the repulsive forces, thus can prevent the repulsive force
from oscillating with high frequency. Although repulsive force-based methods are conser-
vative and effective solution for avoiding collisions, the methods repel two proximate links
and thus the modified motion may be farther away from the reference motion more than
necessary. Lei et al. [23] proposed a method for humanoid dual-arm robot that generates
smooth repulsive velocity based on designing the links as discretized spheres. However,
the method does not consider self-collision between the manipulator and mobile robot.

1.2. Overview of This Paper

In this paper, we propose a new self-collision avoidance algorithm for a differentially
driven mobile manipulator. Our focus is on avoiding self-collision between a manipulator
and mobile robot. Our goal is to generate a motion in which the manipulator can avoid
self-collision without modifying its reference motion. To this end, we propose the concept
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of the DBB, a border of the buffer region surrounding the mobile robot. This region has
a thickness equal to the buffer distance (see Figure 1a). When the manipulator and the
mobile robot are close to each other, meaning their distance is less than the buffer distance
(see Figure 1b), our strategy is to position the manipulator outside the DBB by moving the
mobile robot. This can be accomplished by generating a force exerted on the mobile robot
because the DBB is attached to the mobile robot and moves with it (see Figure 1c). Therefore,
the manipulator can avoid self-collision with the mobile robot without modifying reference
motion of the manipulator (see Figure 1d).

(a) (b) (c)

Offline Self-Collision Avoidance(Online)

EvaluateDBB

(Sec. II-C)

FindActingPoint

& GenerateMobAcc

(Sec. III-A)

ConstructDBB

(Sec. II-A and B) FindClosestPoints
GenerateAvoidanceTask

(Sec. III-C and D)

(d)

Buffer 

region

Buffer 

distance

Figure 1. Overview of the proposed algorithm. (a) For each link colliding with the mobile robot, the DBB is defined as the boundary
of the buffer region enclosing the mobile robot. (b) For example, when the distance between the manipulator and mobile robot is
less than the buffer distance, the two closest points (pa, pb ∈ R3) are calculated. (c) To avoid self-collision, our strategy is to exert a
force fm ∈ R3 on the mobile robot to ensure that the manipulator lies outside the DBB. To accomplish this goal, a point on the DBB is
selected as the acting point pact ∈ R3 for the force after evaluating the 3D points on the DBB as scores. The target direction of the force
is toward the closest point pb on the manipulator. (d) To realize the desired force and resulting torque, we construct the avoidance task
by converting them to the accelerations for the mobile robot. As the task is continuously inserted into the controller, self-collision
between the manipulator and mobile robot can be avoided.

Especially, the direction of force is determined by considering the following two
factors. First, the singularity of the differentially driven mobile robot due to non-holonomic
constraint is considered in order not to lose the controllability of the mobile robot. Second,
we consider the reachability of the manipulator, which is a representation of the robot’s
workspace with information regarding pose quality. Because the direction of force is
determined to enhance the reachability, the resultant configuration of the robot can secure
a large workspace of the manipulator.

To implement the proposed algorithm on a robot, an avoidance task is constructed
by combining two types of motions depending on whether a link collides with the mobile
robot or not. First, for a link pair including the mobile robot, the desired force and resulting
torque are generated and converted into accelerations of the mobile robot. Second, for a
link pair that does not includes the mobile robot, 1-DOF acceleration is generated in the
direction in which that the distance between the closest points of the link pair increases.
The avoidance task is then constructed by stacking two types of accelerations and their
Jacobian matrices. The task is inserted continuously with the highest priority depending on
the distances between the link pairs by using a controller based on Hierarchical Quadratic
Programming (HQP) with the continuous task transition algorithm [24,25]. The HQP can
handle multiple tasks with strict priorities, Stack of Tasks (SoT).

The remainder of this paper is organized as follows. First, Section 2 details the DBB
and the computation of its score for deriving the desired force. Second, Section 3 explains
our overall strategy for self-collision avoidance. Next, Section 4 describes the experimental
validation of the proposed strategy. Finally, the paper is concluded in Section 5. To enhance
readability of this paper, Table 1 lists the symbols used in this paper and their corresponding
definitions. Bold Roman letters denote vectors and matrices while normal Roman letters
denote real numbers.
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Table 1. Notation and symbols.

Symbol Description

< la, lb > Pair of the links a and b
L = Lm ∪ Lc

m Set of potentially colliding link pairs
Lm Subset of L including the mobile robot
Lc

m Complement set of Lm
DBBi DBB of i-th link pair in Lm

n DOFs of the mobile manipulator
nm DOFs of the manipulator
Tj j-th equality or inequality task

Tj ≺ Tj+1 Tj has higher priority than Tj+1

2. Distance Buffer Border and Its Score Computation

This section introduces the concept of the DBB for generating a force that avoids
self-collision between a manipulator and mobile robot. Additionally, we describe how
to compute the score of the DBB to determine the direction and magnitude of the force.
In Section 2.1, all link pairs that can potentially collide with each other are identified based
on the collision model and kinematic information of the robot. Next, for the link pairs
including the mobile robot, we define the DBB in Section 2.2. Finally, two factors are
introduced to calculate the scores of the points on the DBB in Section 2.3.

2.1. Identification of Potentially Colliding Link Pairs

To decrease the computational cost for checking self-collision, simplified collision
models are designed by using the convex shapes based on the kinematic structure of
the manipulator. Figure 2a,b shows the kinematic structure of our robot and collision
models of the robot, respectively. Utilizing these models and the joint position ranges of
the manipulator, the link pairs which never collide with each other can be precomputed by
randomly sampling the joint position of the manipulator. From this analysis, the link pairs
potentially colliding with each other are identified. The set of the link pairs is defined as
follows (note that l2 never collides with lm because the range of the 2nd joint position of
the manipulator is physically limited from −101 deg to 101 deg).

𝑙𝑚

𝑙1

𝑙2

𝑙3

𝑙𝐸𝐸

𝟎. 𝟑𝟑𝟑𝟎
𝐗𝟎

𝒁𝟎

𝐗𝟏, 𝐗𝟐
𝒁𝟏

𝒁𝟐

𝒁𝟑

𝐗𝟑𝐗𝟒

𝒁𝟒

𝟎. 𝟑𝟏𝟔𝟎

𝟎. 𝟑𝟖𝟒𝟎

𝐗𝟓, 𝐗𝟔

𝒁𝟓

𝒁𝟔

𝒁𝟕 𝑿𝟕

𝟎. 𝟎𝟖𝟖𝟎

𝟎. 𝟎𝟖𝟐𝟓

(a)

𝑙𝑚

𝑙1

𝑙2

𝑙3

𝑙𝐸𝐸

(b) (c)

Figure 2. Our mobile manipulator system consists of a four-wheel differentially driven mobile robot called Husky (Clearpath Robotics.
Co.) and 7-DOFs manipulator called Panda (Franka Emika. Co.). (a) Kinematic structure of the manipulator is shown with the scale of
meter; (b) the simplified collision models of the robot consist of five links; (c) based on the collision models and joint range of the
manipulator, all link pairs that potentially collide with each other are identified. Lm(i) denotes the link pair including the mobile robot,
whereas Lc

m(j) denotes the link pair not including the mobile robot.
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L = {< lm, lEE >,< lm, l3 >,< l1, lEE >,< l1, l3 >,< l2, lEE >}, (1)

where l• denotes an individual link in Figure 2b. Because the avoidance motion is generated
differently depending on whether or not the link pair includes the mobile robot lm, the set
L is divided into two subsets, namely Lm and its complement Lc

m, and shown in Figure 2c
as follows.

Lm = {< lm, lEE >,< lm, l3 >}
Lc

m = {< l1, lEE >,< l1, l3 >,< l2, lEE >}.
(2)

In (2), we denote each element of subset as Lm(i) and Lc
m(j) respectively. Therefore,

to avoid self-collision, we generate a force on the mobile robot for Lm as discussed in
Section 3.1 and 1-DOF repulsive acceleration for Lc

m as discussed in Section 3.2.

2.2. Distance Buffer Border

Our avoidance strategy is to move the mobile robot in order to place the manipu-
lator outside a region surrounding the mobile robot with a thickness equal to the buffer
distance. To this end, we define a border of the region as the DBB of Lm. Geometrically,
the DBB represents a group of 3D points located away from the mobile robot lm by the
buffer distance.

Algorithm 1 describes the construction of the DBB in detail and is implemented offline.
The input for the algorithm is the set of stored points on the manipulator’s link for Lm.
For each link pair in Lm, the two closest points are calculated after randomly sampling the
joint positions of the manipulator. The point on the link of the manipulator is then stored
to the set. This process repeats until the set contains a sufficient number of points. For the
i-th link pair in Lm, each set is denoted by Pi as shown in Figure 3. The algorithm operates
as follows.

Algorithm 1 ConstructDBB

Input: Pi : a set of points on the manipulator’s link for Lm(i)
Output: DBBi : distance buffer border of Lm(i)

1: for each pi in Pi do
2: dm ← DistanceToMobile(pi, lm)
3: if ‖dm − db‖ ≤ ε then
4: Store pi in DBBi
5: end if
6: end for

(b)
(a) (b)(b)

Figure 3. Visualization of Pi and DBBi for Lm(i). (a) Red volume represents Pi which is a point set around the mobile
robot; (b) red hyperplanes represent the distance buffer borders of Lm. The buffer distance db is set to 0.15 m and the
tolerance ε is set to 0.01 m.
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First, for each point pi of Pi, the DistanceToMobile function calculates the distance
between pi and the mobile robot (see Line 2). Second, if the distance is within a bounded
range, then the point pi is stored in the DBB (see Line 3–4). After these procedures are
repeated, the DBB is constructed as shown in Figure 3b and defined as follows:

DBBi 3 ∀pi
s. t. ‖dm − db‖ ≤ ε, pi ∈ Pi

(3)

whereDBBi denotes the DBB for Lm(i), pi ∈ R3 is the position on the link of the manipula-
tor, dm is the minimum distance between pi and lm, db is buffer distance, and ε is tolerance
value. Even though Figure 3 shows the DBB for our robot, the DBB for other differentially
driven mobile manipulator can be obtained if kinematic structure and collision models of
the robot are given. To accomplish our strategy, we generate a force on the mobile robot
based on the DBB. The direction of the force is defined to begin at a point on the DBB and
head toward a point on the manipulator. The point on the DBB becomes the acting point
of the force as shown in Figure 1c. In the following subsection, we propose a score for
evaluating every point on the DBB to select the acting point.

2.3. Evaluation of Distance Buffer Border

To select the point on the DBB that satisfies the desired capabilities of the force, the DBB
is evaluated based on a score consisting of two factors: the singularity of the differentially
driven mobile robot and the reachability of the manipulator.

2.3.1. Singularity of the Differentially Driven Mobile Robot

First, the singularity of the differentially driven mobile robot is considered to prevent
the force from generating the motion of the non-holonomic mobile robot along the singular
direction. Figure 4 shows the kinematic modeling of two-wheel differentially driven
mobile robot which simplifies that of four-wheel differentially driven mobile robot [26].
The differentially driven mobile robot is subject to a constraint in terms of the velocity
as follows.

− ẋosin(φ) + ẏocos(φ) = 0 (4)

where ẋo and ẏo are planar velocity of the center of the mobile robot and φ is the heading
angle of the robot from the X-axis in the world frame as shown in Figure 4. Physically,
(4) means that there is no velocity component parallel to the wheel-axis at the center of
the differentially driven mobile robot. The constraint is non-integrable, thus termed as
non-holonomic constraint [27,28].

{𝑾}

𝑿

𝒀
𝑏

𝑟

wheel-axis

ሶ𝜽𝒍

ሶ𝜽𝒓

Figure 4. Schematic drawing of the differentially driven mobile robot. pc is the control point of the mobile robot in the
world frame {W} and po,c is the planar vector from the center of the mobile robot, po, to pc in {W}. b and r are the
distance between the wheel and center of the mobile robot and the radius of the wheel, respectively. θ̇r and θ̇l are the
spinning velocities of the right and left wheel, respectively.
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The velocity relationship between the control point and the configuration of the
differentially driven mobile robot is given by

ṗc = Jc(qc)q̇b, (5)

where ṗc =
[
ẋc ẏc

]T ∈ R2 is the planar velocity of the control point of the mobile robot.

q̇b =
[
θ̇r θ̇l

]T ∈ R2 is spinning velocity of the wheels and the subscripts r and l of θ̇

denote the right and left wheel, respectively. Jc(qc) ∈ R2×2 is Jacobian matrix given by

Jc(qc) =

[
c(b cos φ− yo,c) c(b cos φ + yo,c)
c(b sin φ + xo,c) c(b sin φ− xo,c)

]
, (6)

where c = r/2b, r is the radius of the wheel, b is the distance between the wheel and the
center of the mobile robot, and qc =

[
po,c φ

]T . po,c =
[
xo,c yo,c

]
are the coordinates

of the control point from the center of the mobile robot in the global frame and φ is the
orientation of the mobile robot.

To identify the singularity, we derive the determinant of the product of the Jacobian
matrix Jc(qc) as

det(Jc JT
c ) = 4b2c4(xo,c cos φ + yo,c sin φ)2. (7)

From (7), the Jacobian matrix Jc(qc) loses rank when

xo,c cos φ + yo,c sin φ = 0. (8)

Geometrically, the left side of (8) represents the distance between the control point and
the line of the wheel-axis. As the value of (8) tends to zero, meaning the control point is
located on the wheel-axis, the control point of the differential-driven mobile robot cannot
instantaneously move along the wheel-axis [29].

Thus, assuming that each point pi of DBBi is set to the control point of the mobile
robot, we can measure how close it is to the singularity by setting qc =

[
xi yi 0

]T where
xi and yi are the coordinates of pi along X-axis and Y-axis, respectively. For our robot, r is
set to 0.165 m and b is set to 0.51 m. In Figure 5a, the value of (7) for each point on DBB1 is
computed. As shown in Figure 5a, the determinant value is symmetric about X-axis.

(a) (b) (c)

Figure 5. All the points in DBB1 are colored depending on (a) the determinant value in (7), (b) the reachability in (9), and (c)
the score in (10) (yellow: high, blue: low).

2.3.2. Reachability of the Manipulator

Second, the reachability of the manipulator is considered in order for the force to
place the manipulator in the suitable workspace. The reachability is defined as the density
of Inverse Kinematics (IK) solutions for the pose of the end-effector [30]. Reachability is
computed by uniformly sampling the pose of the end-effector over the entire workspace
and recording the number of IK solutions for each pose. The reachability of our robot
is illustrated in Figure 6. One can see that the value of reachability increases and then
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decreases as the pose of the end-effector moves outwards from the base of the manipulator.
Based on this observation, reachability can be expressed as a scalar concave function of the
distance from the base of the manipulator. Among the various types of concave functions,
the following second-order polynomial function was selected in this paper.

R(pi) = −A(‖pi − pbase‖2 − B)2 + C, (9)

where R(pi) : R3 → R+ maps points on the DBB to reachability values, pbase ∈ R3 is
the position of the base of the manipulator, and A, B, C are positive coefficients of the
polynomial. Based on the reachability data in Figure 6, we set A to 525.9 /m2, B to
0.575 m, and C to 100. Figure 5b presents the reachability value for each point on DBB1.
Although reachability is originally defined for the pose of the end-effector, the reachability
of other link of the manipulator can also be obtained using kinematics information.

(a) (b)

Figure 6. Visualization of reachability shown in OPENRAVE [31]. (a) The contour of reachability of the end-effector; (b) the
reachability cut by a horizontal plane at the base of the manipulator is colored (right, red: high, blue: low).

2.3.3. Score of the DBB

We compute a score for every point on the DBB denoted as S(pi) ∈ R. A score is
expressed as

S(pi) = sign(xi)det(Jc JT
c )R(pi) (10)

where

sign(x) =

{
1 x ≥ 0
−1 x < 0.

(11)

Note that the function sign ensures that the DBB has a point of global maximum score as
shown in Figure 5c.

3. Self-Collision Avoidance Algorithm

In this section, we explain how to avoid self-collision for the differentially driven mo-
bile manipulator. Algorithm 2 details the procedure. First, the FindClosestPoints function
calculates the closest pair of points for each link pair. The link pair in Lm then generates the
acceleration of the mobile robot, whereas the acceleration of the manipulator is generated
for Lc

m. For the subset Lm, the FindActingPoint function determines the acting point of
the force based on the computation for the score of the DBB. Next, the GenerateMobAcc
function generates the force and the resulting torque exerted on the mobile robot and
converts them to the linear and angular acceleration of the mobile robot as ẍm ∈ R2

(see Line 5–6 and Section 3.1). On the other hand, for the subset Lc
m, the GenerateRepAcc

function generates a 1-DOF repulsive acceleration which pushes the two proximal links
of the manipulator away from each other and stacks the accelerations for k link pairs of
Lc

m as ẍr ∈ Rk (see Line 10 and Section 3.2). Then, the GenerateAvoidanceTask function
combines these accelerations and constructs the task for avoiding self-collision, Tsca, as an
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equality task (see Line 13 and Section 3.3). Finally, the UpdateSoT function inserts the task
Tsca as a top priority in the original SoT by using the continuous task transition scheme,
as summarized in Line 14–15 and Section 3.4. In the following subsections, each function
in the Algorithm 2 is described in detail.

Algorithm 2 Self-Collision Avoidance

Input: A set of link pairs L = Lm ∪ Lc
m; DBBs of the links DBB

1: while IsControl() do
2: UpdateKinematics(q)

// Avoidance between mobile robot and manipulator
3: for each Lm(i) do
4: (pa,i, pb,i)← FindClosestPoints(Lm(i))

// pa,i on mobile robot, pb,i on manipulator
5: pact,i ← FindActingPoint(q, pb,i,DBBi)
6: ẍm ← GenerateMobAcc(pact,i, pb,i)
7: end for

// Avoidance between links of manipulator
8: for each Lc

m(j) do
9: (pa,j, pb,j)← FindClosestPoints(Lc

m(j))
10: ẍr ← GenerateRepAcc(pa,j, pb,j)
11: end for

// Insert the task continuously to the controller
12: if ‖ẍm‖2 > 0 or ‖ẍr‖2 > 0 then
13: Tsca ← GenerateAvoidanceTask(ẍm, ẍr)
14: SoT ← UpdateSoT(Tsca)
15: u← HQPSolver(SoT) // See (29)
16: else
17: u← HQPSolver(SoT) // See (26)
18: end if
19: end while

3.1. Generation of the Acceleration for the Mobile Robot

This subsection describes the generation of the force. The direction of the force is
designed to start from the selected point on the DBB and head to the closest point on the
manipulator. Thus, we focus on how to select the acting point of the force that satisfies the
following requirements.

First, the acting point should be located with the same height of the closest point on
the manipulator because the force should act on a horizontal plane to move the mobile
robot. Second, the acting point should be selected so that the force has two orthogonal
components that play different roles. As shown in Figure 7a, the direction of the force can be
decomposed into two orthogonal directions. One is the direction of the line connecting the
closest point on the manipulator and the DBB. The other is its normal direction. The former
increases the distance between the mobile robot and the manipulator as the DBB moves
closer to the manipulator as shown in Figure 7b. On the other hand, as shown in Figure 7c,
the latter places the manipulator closer to the DBB with high score in order to avoid
selecting the acting point, i.e., the control point of the mobile robot near the singularity
and enhance the reachability of the manipulator. Combining two orthogonal components,
self-collision between the manipulator and the mobile robot can be avoided in Figure 7d.
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(a) (b)

(c) (d)

Figure 7. Illustration of the direction of force considering collision between the end-effector lEE and mobile robot lm.
DBBxy,1 denotes the points whose heights are same as that of the closest point pb,1 on the end-effector. The points are
colored by the score (yellow: high, blue: low). (a) The direction of the force starts from the acting point pact,1 and points
toward pb,1. The force can be decomposed into two orthogonal components; (b) one of them moves the mobile robot away
from the end-effector; (c) the other direction places the high-score part of DBB closer to the end-effector; (d) by combining
these components, self-collision between the end-effector and mobile robot can be avoided.

The FindActingPoint function (see Algorithm 3 and Figure 8) finds the acting point
that satisfies these requirements. Algorithm 3 operates as follows. First, the Transform-
ToWorld function transforms the points of DBBi to be expressed in the world frame. Next,
the FindSameHeight function finds the points in DBBi whose height are same as that of
the closest point pb,i on the manipulator, which satisfies the first requirement (see Line 1–3).
The obtained points are denoted asDBBxy,i. Then, for the second requirement, we calculate
the acting point on DBBxy,i that the generated force can have two orthogonal components.
Among the points inDBBxy,i, the point pn,i closest to the point pb,i is identified (see Line 4).
Starting at pn,i, the position of point pt,i translated along the tangential direction ti with a
step size αi as follows (see Line 5 and Figure 8a):

pt,i = pn,i + αi(
∇S(pn,i) · ti

‖∇S(pn,i)‖
)ti,

ti⊥(pn,i − pb,i), ‖ti‖2 = 1,
(12)

where the inner product of ∇S(pn,i) and ti determines the direction of ti to the higher
score of the DBB. The step size αi is calculated as

αi ∝
di

|S(pn,i)|
. (13)

where di is the distance of the i-th link pair of Lm. Therefore, the acting point pact,i is
calculated as that with the shortest distance from pt,i to DBBxy,i (see Line 6). In (13), as the
distance between the manipulator and mobile robot decreases, the step size decreases to
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generate both orthogonal directions of the force. However, a larger step size can be used
to proceed more rapidly toward a higher score of the DBB when the distance increases.
Additionally, the step size increases as the absolute value of the score of point pn,i decreases
to zero, indicating that the point pn,i is near the singularity. To prevent obtaining a step
size that is too small or too large as shown in Figure 8b, the step size is bounded by lower
and upper limits.

Algorithm 3 FindActingPoint(q, pb,i,DBBi)

1: zb,i ← height of pb,i
2: DBBi ← TransformToWorld(q,DBBi)
3: DBBxy,i ← FindSameHeight(zb,i, DBBi)
4: pn,i ← FindMinDistancePoint(DBBxy,i, pb,i)
5: pt,i ← Equation (12) and (13)
6: pact,i ← FindMinDistancePoint(DBBxy,i, pt,i)
7: return pact,i

(a) (b)

Figure 8. Illustration of finding the acting point. (a) The acting point on the DBB is selected as the closest to the point pn,1

which is translated along the tangential direction t1 with a step size α1; (b) with a large step size, the generated force may
not have a component along the direction connecting the closest point on the manipulator and DBB.

After finding the acting point, the GenerateMobAcc function first computes the force
as follows:

fm,i = fmax(1−
di
db

)
pb,i − pact,i

‖pb,i − pact,i‖2
, (14)

where fm,i ∈ R3 is the force for the i-th link pair and fmax is the maximum force. Figure 9
presents the variables in (14) when the link pair Lm(1) is considered.

The resultant force for all link pairs in Lm is calculated by adding each force as follows:

fm =
N(Lm)

∑
i=1

fm,i, (15)

where fm ∈ R3 and N(Lm) are the resultant force and number of link pairs in Lm, respec-
tively.

To realize the resultant force, the corresponding accelerations and corresponding
Jacobian matrices are derived as follows:

ẍm =
[
v̇d ẇd

]T , (16)
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where
mv̇d = fm · ex, (17)

Iẇd = (
N(Lm)

∑
i=1

(pact,i − po)× fm,i) · ez. (18)

In (17) and (18), m ∈ R, v̇d ∈ R, and ex ∈ R3 are the mass of the mobile robot, desired linear
acceleration, and a unit vector perpendicular to the rolling axis of the wheel and pointing
forward, respectively. In addition, I ∈ R, ẇd ∈ R, and ez ∈ R3 are the moment of inertia,
desired angular acceleration, and a unit vector perpendicular to the ground and pointing
upward, respectively. By (17) and (18), the resultant force can be converted into the desired
linear and angular accelerations. The Jacobian matrix of the differentially driven mobile
robot can be expressed as

Jm =
[

Jm O2×nm

]
,

Jm =

[ r
2

r
2

r
2b − r

2b

]
,

(19)

where Jm ∈ R2×2 and O2×nm ∈ R2×nm are the Jacobian matrix of the mobile robot and the
zero matrix, respectively.
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Figure 9. Illustration of generating the desired force and resulting torque for the link pair Lm(1). When the end-effector and
mobile robot are close to each other, the force fm,1 and resulting torque τm,1 with respect to the center of the mobile robot,
po, are generated. The generated force and resulting torque are projected onto the acceleration directions of the mobile
robot under the non-holonomic constraint. The directions are expressed as the unit vectors, ex and ez.

3.2. Generation of the Repulsive Acceleration for the Other Link Pair

To avoid the self-collision of Lc
m, we design a 1-DOF repulsive acceleration to push

the link pair away from each other.
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Let us consider that the distance of the j-th link pair in Lc
m is less than the buffer

distance. The task for avoiding self-collision with the repulsive acceleration ẍr,j ∈ R1 and
Jacobian Jr,j ∈ R1×n is designed as follows.

ẍr,j = uT
j (kp

pb,j − pa,j

‖pb,j − pa,j‖2
− kv(ṗb,j − ṗa,j)), (20)

Jr,j = uT
j (Jb,j − Ja,j),

uj =
pb,j − pa,j

‖pb,j − pa,j‖2

(21)

where kp and kv are gains, uj ∈ R3 is the unit vector from pa,j to pb,j, and Ja,j and
Jb,j ∈ R3×n are translation Jacobian matrices for points pa,j and pb,j, respectively. For con-
venience, we define the link to which pb,j belongs as being farther from the base of the
manipulator than the link to which pa,j belongs.

When k link pairs in Lc
m are considered, the repulsive acceleration and Jacobian matrix

are stacked as
ẍr =

[
ẍr,1, · · · , ẍr,j, · · · , ẍr,k,

]T (22)

Jr =
[

JT
r,1, · · · , JT

r,j, · · · , JT
r,k

]T
, (23)

where ẍr ∈ Rk and Jr ∈ Rk×n are the stacked accelerations and Jacobians, respectively.

3.3. Construction of an Acceleration-Based Task for Self-Collision Avoidance

Based on the obtained accelerations and Jacobians in Sections 3.1 and 3.2, we construct
a task, Tsca, for avoiding self-collision of all link pairs by stacking them as follows.

ẍsca =

[
ẍm
ẍr

]
, (24)

Jsca =

[
Jm
Jr

]
, (25)

where ẍsca ∈ R(2+k) is the desired acceleration for the avoidance task and Jsca ∈ R(2+k)×n

is the corresponding Jacobian matrix.

3.4. Insertion of the Task in HQP-Based Controller

To insert the designed task, Tsca, a controller is designed based on the HQP with the
continuous task transition approach developed in our previous work [24,25]. HQP is a
cascade of QP formulation for dealing with prioritized SoT [32,33]. The main characteristic
of the controller with the continuous task transition method is that the continuity of control
inputs is always guaranteed even if arbitrary tasks are inserted and removed from the
existing SoT. In particular, by using an activation parameter that interpolates feasible
solution between existing SoT and new SoT, the method can generate continuous control
inputs without modifying the control structure.

We consider the HQP formulation of a single equality task, T2, with ẍd2 ∈ Rm2 and
J2 ∈ Rm2×n, as follow:

min
q̈,u,w2

‖w2‖2,

s. t. Mq̈ + Cq̇ + g = u
J2q̈ + J̇2q̇ + w2 = ẍd2

(26)

where M ∈ Rn×n, C ∈ Rn×n, g ∈ Rn, and q̇ =
[
q̇T

b q̇T
m
]T ∈ Rn are the inertia matrix, Cori-

olis and centrifugal matrix, gravity vector, and joint velocity vector of the non-holonomic
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mobile manipulator, respectively [34]. In addition, w2 ∈ Rm2 is a slack variable for T2 and
u ∈ Rn is the control torque vector for the robot.

The activation parameter, β, is determined based on the distance between each link
pair. Figure 10 presents the activation trajectory when using a cubic spline to insert Tsca
smoothly. When the distance is less than the buffer distance of 0.15 m, β gradually increases,
and the avoidance task begins to be inserted. In addition, if the distance is less than 0.05 m,
β is set to 1 so that the task for avoiding self-collision is fully considered. Because the
avoidance tasks for Lm and Lc

m are stacked according to (24), we construct a diagonal
matrix B from the activation parameters as follows.

B =


βm 0 0 · · · 0
0 βm 0 · · · 0
0 0 βr,1 · · · 0
...

...
...

. . . 0
0 0 0 0 βr,k

, (27)

where B ∈ R(2+k)×(2+k) is the diagonal matrix of the activation parameters, βm is the
activation parameter for the link pairs of Lm, and βr,j is the activation parameter for the
j-th link pair in Lc

m. When considering multiple link pairs of Lm, we choose the maximum
value among the activation parameters as

βm = max (β1, · · · , βN(Lm)). (28)

Based on the activation parameter matrix B, the HQP formulation for inserting the self-
collision avoidance task as the higher-priority task than T2 (Tsca ≺ T2), can be represented as

min
q̈,u,w2

‖w2‖2,

s. t. Mq̈ + Cq̇ + g = u
J2q̈ + J̇2q̇ + w2 = ẍd2

Jscaq̈ + J̇scaq̇ + (I2+k − B)Jscaq̈∗2 + w∗sca = Bẍsca

(29)

where w∗sca ∈ R2+k is the optimal slack variable vector for the self-collision avoidance
task Tsca, I2×k ∈ R(2+k)×(2+k) is an identity matrix, and q̈∗2 is the optimal solution of (26).
Thus, if B is a zero matrix, then the feasible solution of (29) is the same as that of (26).
When B is the identity matrix, the solution of (29) is strictly satisfied with the priority order,
Tsca ≺ T2. In addition, when β gradually increases 0 to 1, the feasible solution of (29) can
be derived by interpolating the solution of the HQP of T2 and the HQP with Tsca ≺ T2.
Consequently, the HQP-based controller with the continuous task transition method can
insert a self-collision avoidance task without a discontinuous control input.
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a
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Figure 10. Value of the activation parameter depending on the distance of the link pair.
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4. Experimental Results

The self-collision avoidance algorithm was verified through various experiments using
a differentially driven mobile robot with a 7-DOFs robotic manipulator. The subsections
below describe the details of our system configuration and the experimental results for
the robot. It is worthwhile to note that the video clips of the experiments described in this
paper are available (https://youtu.be/a9dc4Ij71_M), which are applied for not only our
robot, but also other differentially driven mobile manipulators to show the generality of
the proposed algorithm.

4.1. System Overview

Our mobile manipulator consists of the velocity-controlled four-wheel differentially
driven mobile robot called Husky (Clearpath Robotics. Co.) and a 7-DOFs robot arm
manipulator called Panda (Franka Emika. Co.). The specification of the computer for the
controller is an Intel i7 4.2 GHz CPU with 16 GB of RAM and the control frequencies of
the manipulator and mobile robot are 1 kHz and 10 Hz, respectively. The desired velocity
command for the mobile robot is computed from the desired torque calculated in (29) by
applying the admittance control law [35].

4.2. Experimental Results
4.2.1. Self-Collision Avoidance While Tracking the Predefined Trajectory

To validate the effectiveness of the proposed method, we conducted a comparative
experiment using the repulsive force-based method [19,20]. This experiment was designed
for the end-effector to track a predefined trajectory that approaches the mobile robot.
The task for trajectory tracking of the end-effector is denoted as Tee ∈ R6 and the task
for the repulsive force-based method is denoted as Trep ∈ R3. The target position is
−0.2 m along the Y-axis from the end-effector. The left snapshots in Figure 11a,b shows
the initial positions. The red dots and arrows depict the target position and desired
trajectory, respectively. The trajectory was generated for a time period of 30 s using a cubic
spline function.

The experimental results are presented in Figures 11 and 12. In Figure 11a, as the
end-effector moves close to the mobile robot, force is exerted to move the mobile robot
back. As a result of the force, the end-effector reaches the target position while avoiding
self-collision. In contrast, in Figure 11b, because repulsive force is generated to push the
end-effector away from the mobile robot, self-collision is avoided, but the end-effector can
not reach the target position. The distances between the link pairs are shown in Figure 12a.
Because the distances are less than 0.15 m, the self-collision avoidance tasks (Tsca and Trep)
are inserted continuously with top priority. In Figure 12b, the repulsive force-based method
has a position error, while the proposed method does not.

https://youtu.be/a9dc4Ij71_M
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t = 15s t = 30s
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t = 15s t = 30st = 0s

𝑿

𝒀
𝒁
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Figure 11. Snapshots during experiments in which the end-effector tracks a predefined trajectory: (a) The proposed method
generates force to move the mobile robot back, enabling the manipulator to not only avoid self-collision but also reach the
target position; (b) the repulsive-force based method pushes the manipulator from the mobile robot so that the manipulator
cannot reach the target position.

Activation 

Buffer

(a) (b)

Figure 12. Experimental results of self-collision avoidance while tracking the predefined trajectory. (a) Distances of the link
pairs (Lm(1),Lm(2)); (b) the norm of the position error.

4.2.2. Self-Collision Avoidance While Manually Guiding the End-Effector

In this experiment, the end-effector was manually guided by an operator to approach
the mobile robot to validate reactive self-collision avoidance during human–robot interac-
tion. In the initial state, no tasks are executed other than the gravity compensation of the
manipulator. Two directions are considered: the lateral direction and the front direction.
The left snapshots in Figure 13 show the initial positions of the mobile manipulator and
the guiding directions are depicted by red arrows.
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t = 7s t = 12st = 0s

(a)

t = 7s t = 12st = 0s

(b)

Figure 13. (a) The snapshots during the experiment that the manipulator approaches the mobile from the lateral direction;
(b) the snapshots during the experiment that the manipulator approaches the mobile robot from the front direction. Red
arrows show the guiding directions.

As shown in Figure 13a, self-collision between the manipulator and mobile robot
are avoided by generating a force exerted on the mobile robot. As shown in Figure 13b,
as the manipulator approaches the mobile robot, the mobile robot moves back to avoid
self-collision. Figure 14 presents the distances between the links of the manipulator and
mobile robot and the values of the activation parameter. As the distance decreases below
the buffer distance of 0.15 m, the value of the activation parameter increases accordingly
and the self-collision avoidance task, Tsca, is inserted continuously as shown in Figure 14b.
In Figure 15, the command values of the linear and angular accelerations of the HQP-based
controller are plotted. Therefore, self-collision can be avoided regardless of the approach
direction of the manipulator, which is an advantage over existing methods [11,20] that do
not consider the non-holonomic constraint of the differentially driven mobile robot.

Activation 

Buffer

(a) (b)

Figure 14. Experimental results of self-collision avoidance while manually guiding the end-effector. (a) The distances
between the link pairs (Lm(1),Lm(2)); (b) the value of the activation parameter.



Sensors 2021, 21, 890 18 of 22

(a) (b)

Figure 15. Experimental results of self-collision avoidance while manually guiding the end-effector. (a) The desired linear
accelerations multiplied by activation parameter; (b) the desired angular accelerations multiplied by activation parameter.

4.2.3. Extension to Obstacle Avoidance When Opening the Refrigerator

In this subsection, we extend our method to obstacle avoidance. The proposed method
was tested in a reactive scenario representing a typical example of mobile manipulation.
We consider the scenario of opening the refrigerator as shown in Figure 16a. We assume
that the end-effector achieves a fixed grasp on the door of the refrigerator, meaning there is
no relative motion between them. In this respect, collision between the door and mobile
robot is considered. We used a hyper-ellipsoid to design a collision model for the door as
shown in Figure 16b.

To open the refrigerator, a control strategy based on adaptive control [36,37] was
utilized. The strategy estimates the radial direction of the door based on the force measured
at the end-effector so that the end-effector can open the door even with the incomplete
knowledge regarding door models. The strategy uses only the manipulator to open the
door, meaning the robot may collide with the door depending on the initial pose of the
mobile robot. We validated our extension to obstacle avoidance by comparing the results of
experiment with and without obstacle avoidance. The scenario of opening the refrigerator
was validated in both simulation and experiment.

The simulation results are presented in Figures 17 and 18. In Figure 17a, the mobile
robot moves back and turns clockwise as the door moves closer to the mobile robot.
In contrast, the door collides with the mobile robot at 30 s in Figure 17b. As the distance
between the door and mobile robot is less than the buffer distance in Figure 18a, the obstacle
avoidance task is inserted continuously as shown in Figure 18b.

The experimental results are presented in Figure 19. As shown in Figure 19a, as the
distance between the door and robot decreases, the mobile robot begins to move back
at 20 s and the manipulator opens the door completely at 40 s, while avoiding collision.
In contrast, in Figure 19b, the manipulator stops opening the door at 30 s because the robot
is about to collide with the door.
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Figure 16. (a) Illustration of the scenario of the mobile manipulator opening a refrigerator; (b) collision models including
the door of the refrigerator are shown. The collision model for the door is colored with magenta.
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t = 30st = 20st = 15st = 10st =  0s

(a)
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(b)
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(b)

Figure 17. Simulation results of opening a refrigerator. (a) Snapshots of opening a refrigerator with obstacle avoidance; (b)
snapshots of opening a refrigerator without obstacle avoidance.
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Figure 18. Simulation results of opening the refrigerator. (a) The distance between the door and the mobile robot; (b) the
value of the activation parameter.



Sensors 2021, 21, 890 20 of 22

t =  0s

t =  0s

(a)

(b)

t = 10s

t = 10s t = 20s t = 30s

t = 30s

t = 40s

t = 20s

(a)

t =  0s

t =  0s

(a)

(b)

t = 10s

t = 10s t = 20s t = 30s

t = 30s

t = 40s

t = 20s

(b)

Figure 19. Experimental results of opening a refrigerator. (a) Snapshots of opening a refrigerator with obstacle avoidance;
(b) snapshots of opening a refrigerator without obstacle avoidance.

4.3. Discussion

The experimental results in Section 4.2 demonstrate that the proposed method can
place the manipulator outside the DBB. Specifically, the proposed method has the following
advantages. First, the force can always generate motion for the differentially driven mobile
robot with non-holonomic constraint as shown in Section 4.2.2. This is because the acting
point is selected such that it is away from the singularity of the mobile robot. Second,
the proposed method can be applied to holonomic mobile manipulators if the score of the
DBB is designed to include only the reachability of the manipulator. Finally, command
values are free from chattering and vibration problems caused by the mobile robot unlike
repulsive force-based method [38]. This is because the continuous task transition of (29)
can calculate continuous control input. Therefore, the desired accelerations of the mobile
robot are smooth, as shown in Figure 15.

From a practical perspective, a trade-off relationship exists between the density of the
DBB and the discontinuous position of the acting point. The denser the DBB, the more
computational cost increases. However, with a denser DBB, the position of the acting point
can be obtained more continuously. According to our practical experience, the proper
number of points in the DBB is approximately 50,000 for running the algorithm at a control
frequency of 1 kHz.

5. Conclusions

We presented a reactive self-collision avoidance algorithm for differentially driven
mobile manipulator. The proposed algorithm generates a force exerted on a mobile robot in
a direction that the manipulator is placed outside the DBB. The force is designed based on
the concept of the DBB and its score measurement. The score consists of two components,
the determinant value of the Jacobian matrix of differentially driven mobile robot and
the reachability of the manipulator. After calculating the score for each point on the
DBB, a point with high score is selected as the acting point of force, which means that
the point is away from the singularity of differentially driven mobile robot and has high
reachability of the manipulator. Based on the force and resulting torque, an avoidance
task is formulated and inserted into the HQP-based controller with a continuous task
transition algorithm. The results of several experiments validated the proposed self-
collision avoidance algorithm. Our future work will involve extending the proposed
method to other mobile platforms like car-like robots and developing collision avoidance
method by using external sensors like cameras. Additionally, we will apply the proposed
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algorithm to a wider range of mobile manipulation tasks that needs to detect collision in
dynamic and unstructured environment.

Author Contributions: Conceptualization, K.J.; methodology, K.J., S.K.; software, K.J., S.K.; valida-
tion, K.J.; formal analysis, K.J., J.P.; investigation, K.J., S.K., J.P.; writing—original draft preparation,
K.J.; writing—review and editing, K.J., S.K., J.P.; visualization, K.J.; supervision, J.P.; project adminis-
tration, J.P.; funding acquisition, S.K., J.P. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was partially supported by Industrial Strategic Technology Development Pro-
gram (No. 10077538) funded by the Ministry of Trade, Industry & Energy (MI, Korea). Furthermore,
this study is a part of the research project “Development of core machinery technologies for au-
tonomous operation and manufacturing”, which has been supported by a grant from National
Research Council of Science & Technology under the R&D Program of Ministry of Science, ICT and
Future Planning.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
DBB Distance Buffer Border
DOFs Degrees Of Freedom
HQP Hierarchical Quadratic Programming
SoT Stack of Tasks

References
1. Asadi, E.; Li, B.; Chen, I.M. Pictobot: A cooperative painting robot for interior finishing of industrial developments.

IEEE Robot. Autom. Mag. 2018, 25, 82–94. [CrossRef]
2. Engemann, H.; Du, S.; Kallweit, S.; Cönen, P.; Dawar, H. OMNIVIL—An Autonomous Mobile Manipulator for Flexible Production.

Sensors 2020, 20, 7249. [CrossRef] [PubMed]
3. Outón, J.L.; Villaverde, I.; Herrero, H.; Esnaola, U.; Sierra, B. Innovative Mobile Manipulator Solution for Modern Flexible

Manufacturing Processes. Sensors 2019, 19, 5414. [CrossRef] [PubMed]
4. Kuffner, J.J.; Kagami, S.; Nishiwaki, K.; Inaba, M.; Inoue, H. Dynamically-stable motion planning for humanoid robots.

Auton. Robot. 2002, 12, 105–118. [CrossRef]
5. Oriolo, G.; Mongillo, C. Motion Planning for Mobile Manipulators along Given End-effector Paths. In Proceedings of the Robotics

and Automation (ICRA), 2005 IEEE International Conference, Barcelona, Spain, 18–22 April 2005; pp. 2154–2160.
6. Berenson, D.; Chestnutt, J.; Srinivasa, S.S.; Kuffner, J.J.; Kagami, S. Pose-Constrained Whole-Body Planning using Task Space

Region Chains. In Proceedings of the Humanoid Robots (Humanoids), 2009 9th IEEE-RAS International Conference, Paris,
France, 7–10 December 2009; pp. 181–187.

7. Burget, F.; Bennewitz, M.; Burgard, W. BI2RRT*: An efficient sampling-based path planning framework for task-constrained
mobile manipulation. In Proceedings of the Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International Conference,
Daejeon, Korea, 9–14 October 2016; pp. 3714–3721.

8. Welschehold, T.; Dornhege, C.; Paus, F.; Asfour, T.; Burgard, W. Coupling Mobile Base and End-Effector Motion in Task Space.
In Proceedings of the Intelligent Robots and Systems (IROS), 2018 IEEE/RSJ International Conference, Madrid, Spain, 1–5 October
2018; pp. 1–9.

9. Kang, M.; Kim, D.; Yoon, S. Harmonious Sampling for Mobile Manipulation Planning. In Proceedings of the Intelligent Robots
and Systems (IROS), 2019 IEEE/RSJ International Conference, Macau, China, 3–8 November 2019; pp. 3185–3192.

10. Seto, F.; Kosuge, K.; Hirata, Y. Real-time self-collision avoidance system for robots using robe. Int. J. Humanoid Robot. 2004,
1, 533–550. [CrossRef]

11. Seto, F.; Kosuge, K.; Hirata, Y. Self-collision avoidance motion control for human robot cooperation system using RoBE.
In Proceedings of the Intelligent Robots and Systems (IROS), 2005 IEEE/RSJ International Conference, Edmonton, AB, Canada,
2–6 August 2005; pp. 50–55.

12. Stasse, O.; Escande, A.; Mansard, N.; Miossec, S.; Evrard, P.; Kheddar, A. Real-time (self)-collision avoidance task on a HRP-2
humanoid robot. In Proceedings of the Robotics and Automation (ICRA), 2008 IEEE International Conference, Pasadena, CA,
USA, 19–23 May 2008; pp. 3200–3205.

http://doi.org/10.1109/MRA.2018.2816972
http://dx.doi.org/10.3390/s20247249
http://www.ncbi.nlm.nih.gov/pubmed/33348813
http://dx.doi.org/10.3390/s19245414
http://www.ncbi.nlm.nih.gov/pubmed/31835307
http://dx.doi.org/10.1023/A:1013219111657
http://dx.doi.org/10.1142/S0219843604000241


Sensors 2021, 21, 890 22 of 22

13. Schwienbacher, M.; Buschmann, T.; Lohmeier, S.; Favot, V.; Ulbrich, H. Self-Collision Avoidance and Angular Momentum
compensation for a biped humanoid robot. In Proceedings of the Robotics and Automation (ICRA), 2011 IEEE International
Conference, Shanghai, China, 9–13 May 2011; pp. 581–586.

14. Dariush, B.; Bin Hammam, G.; Orin, D. Constrained Resolved acceleration control for humanoids. In Proceedings of the
Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference, Taipei, Taiwan, 18–22 October 2010; pp. 710–717.

15. Fang, C.; Rocchi, A.; Hoffman, E.M.; Tsagarakis, N.G.; Caldwell, D.G. Efficient self-collision avoidance based on focus of interest
for humanoid robots. In Proceedings of the Humanoid Robots (Humanoids), 2015 15th IEEE-RAS International Conference,
Seoul, Korea, 3–5 November 2015; pp. 1060–1066.

16. Quiroz-Omaña, J.J.; Adorno, B.V. Whole-Body Control With (Self) Collision Avoidance Using Vector Field Inequalities.
IEEE Robot. Autom. Lett. 2019, 4, 4048–4053. [CrossRef]

17. De Luca, A.; Oriolo, G.; Robuffo Giordano, P. Kinematic modeling and redundancy resolution for nonholonomic mobile
manipulators. In Proceedings of the Robotics and Automation (ICRA), 2002 IEEE International Conference, Orlando, FL, USA,
15–19 May 2006; pp. 1867–1873.

18. De Luca, A.; Oriolo, G.; Robuffo Giordano, P. Kinematic control of nonholonomic mobile manipulators in the presence of steering
wheels. In Proceedings of the Robotics and Automation (ICRA), 2002 IEEE International Conference, Anchorage, AK, USA,
3–7 May 2010; pp. 1792–1798.

19. Dietrich, A.; Wimböck, T.; Täubig, H.; Albu-Schäffer, A.; Hirzinger, G. Extensions to reactive self-collision avoidance for torque
and position controlled humanoids. In Proceedings of the Robotics and Automation (ICRA), 2011 IEEE International Conference,
Shanghai, China, 9–13 May 2011; pp. 3455–3462.

20. Dietrich, A.; Wimböck, T.; Albu-Schäffer, A.; Hirzinger, G. Integration of reactive, torque-based self-collision avoidance into a
task hierarchy. IEEE Trans. Robot. 2012, 28, 1278–1293. [CrossRef]

21. Sugiura, H.; Gienger, M.; Janssen, H.; Goerick, C. Reactive Self Collision Avoidance with dynamic task prioritization for humanoid
robots. Int. J. Humanoid Robot. 2010, 7, 31–54. [CrossRef]

22. Gonon, D.; Jud, D.; Fankhauser, P.; Hutter, M. Safe Self-collision Avoidance for Versatile Robots Based on Bounded Potentials.
In Field and Service Robotics; Springer: Berlin/Heidelberg, Germany, 2018; pp. 19–33.

23. Lei, M.; Wang, T.; Yao, C.; Liu, H.; Wang, Z.; Deng, Y. Real-Time Kinematics-Based Self-Collision Avoidance Algorithm for
Dual-Arm Robots. Appl. Sci. 2020, 10, 5893. [CrossRef]

24. Kim, S.; Jang, K.; Park, S.; Lee, Y.; Lee, S.Y.; Park, J. Continuous Task Transition Approach for Robot Controller based on
Hierarchical Quadratic Programming. IEEE Robot. Autom. Lett. 2019, 4, 1603–1610. [CrossRef]

25. Kim, S.; Jang, K.; Park, S.; Lee, Y.; Lee, S.Y.; Park, J. Whole-body Controller for non-holonomic mobile manipulator based on HQP
with continuous task transition. In Proceedings of the Advanced Robotics and Mechatronics (ARM), 2019 IEEE International
Conference, La Mirada, CA, USA, 3–5 July 2019; pp. 414–419.

26. Campion, G.; Bastin, G.; Dandrea-Novel, B. Structural properties and classification of kinematic and dynamic models of wheeled
mobile robots. IEEE Trans. Robot. Autom. 1996, 12, 47–62. [CrossRef]

27. Bloch, A.M.; Reyhanoglu, M.; McClamroch, N.H. Control and stabilization of nonholonomic dynamic systems. IEEE Trans.
Autom. Control 1992, 37, 1746–1757. [CrossRef]

28. Campion, G.; d’Andrea Novel, B.; Bastin, G. Modelling and state feedback control of nonholonomic mechanical systems.
In Proceedings of the IEEE Conference on Decision and Control, Brighton, UK, 11–13 December 1991; pp. 1184–1189.

29. Yamamoto, Y.; Xiaoping, Y. Coordinating locomotion and manipulation of a mobile manipulator. IEEE Trans. Autom. Control
1994, 39, 1326–1332. [CrossRef]

30. Diankov, R. Automated Construction of Robotic Manipulation Programs. Ph.D. Thesis, Carnegie Mellon University, Pittburgh,
PA, USA, 2010.

31. Diankov, R.; Kuffner, J. OpenRAVE: A Planning Architecture for Autonomous Robotic; Technical Report CMU-RI-TR-10-29; Robotics
Institute, Carnegie Mellon University: Pittsburgh, PA, USA, 2008.

32. Escande, A.; Mansard, N.; Wieber, P.B. Hierarchical quadratic programming: Fast online humanoid-robot motion generation.
Int. J. Robot. Res. 2014, 33, 1006–1028. [CrossRef]

33. Hong, S.; Jang, K.; Kim, S.; Park, J. Regularized Hierarchical Quadratic Program for Real-Time Whole-Body Motion Generation.
IEEE/ASME Trans. Mechatron. 2020. [CrossRef]

34. White, G.D.; Bhatt, R.M.; Tang, C.P.; Krovi, V.N. Experimental evaluation of dynamic redundancy resolution in a nonholonomic
wheeled mobile manipulator. IEEE/ASME Trans. Mechatron. 2009, 14, 349–357. [CrossRef]

35. Dietrich, A.; Bussmann, K.; Petit, F.; Kotyczka, P.; Ott, C.; Lohmann, B.; Albu-Schäffer, A. Whole-body impedance control of
wheeled mobile manipulators. Auton. Robot. 2016, 40, 505–517. [CrossRef]

36. Karayiannidis, Y.; Smith, C.; Viña, F.E.; Ogren, P.; Kragic, D. “Open sesame!” adaptive force/velocity control for opening unknown
doors. In Proceedings of the Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference, Vilamoura, Portugal,
7–12 October 2012; pp. 4040–4047.

37. Karayiannidis, Y.; Smith, C.; Barrientos, F.E.V.; Ögren, P.; Kragic, D. An Adaptive Control Approach for Opening Doors and
Drawers Under Uncertainties. IEEE Trans. Robot. 2016, 32, 161–175. [CrossRef]

38. Khatib, O. Real-time obstacle avoidance for manipulators and mobile robots. In Autonomous Robot Vehicles; Springer:
Berlin/Heidelberg, Germany, 1986; pp. 396–404.

http://dx.doi.org/10.1109/LRA.2019.2928783
http://dx.doi.org/10.1109/TRO.2012.2208667
http://dx.doi.org/10.1142/S0219843610001976
http://dx.doi.org/10.3390/app10175893
http://dx.doi.org/10.1109/LRA.2019.2896769
http://dx.doi.org/10.1109/70.481750
http://dx.doi.org/10.1109/9.173144
http://dx.doi.org/10.1109/9.293207
http://dx.doi.org/10.1177/0278364914521306
http://dx.doi.org/10.1109/TMECH.2020.3032522
http://dx.doi.org/10.1109/TMECH.2008.2008802
http://dx.doi.org/10.1007/s10514-015-9438-z
http://dx.doi.org/10.1109/TRO.2015.2506154

	Introduction
	Related Works
	Overview of This Paper

	Distance Buffer Border and Its Score Computation
	Identification of Potentially Colliding Link Pairs
	Distance Buffer Border
	Evaluation of Distance Buffer Border
	Singularity of the Differentially Driven Mobile Robot
	Reachability of the Manipulator
	Score of the DBB


	Self-Collision Avoidance Algorithm
	Generation of the Acceleration for the Mobile Robot
	Generation of the Repulsive Acceleration for the Other Link Pair
	Construction of an Acceleration-Based Task for Self-Collision Avoidance
	Insertion of the Task in HQP-Based Controller

	Experimental Results
	System Overview
	Experimental Results
	Self-Collision Avoidance While Tracking the Predefined Trajectory
	Self-Collision Avoidance While Manually Guiding the End-Effector
	Extension to Obstacle Avoidance When Opening the Refrigerator

	Discussion

	Conclusions
	References

