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Abstract: Convergence speed and steady-state source separation performance are crucial for enable
engineering applications of blind source separation methods. The modification of the loss function of
the blind source separation algorithm and optimization of the algorithm to improve its performance
from the perspective of neural networks (NNs) is a novel concept. In this paper, a blind source
separation method, combining the maximum likelihood estimation criterion and an NN with a bias
term, is proposed. The method adds L2 regularization terms for weights and biases to the loss
function to improve the steady-state performance and designs a novel optimization algorithm with a
dual acceleration strategy to improve the convergence speed of the algorithm. The dual acceleration
strategy of the proposed optimization algorithm smooths and speeds up the originally steep, slow
gradient descent in the parameter space. Compared with competing algorithms, this strategy
improves the convergence speed of the algorithm by four times and the steady-state performance
index by 96%. In addition, to verify the source separation performance of the algorithm more
comprehensively, the simulation data with prior knowledge and the measured data without prior
knowledge are used to verify the separation performance. Both simulation results and validation
results based on measured data indicate that the new algorithm not only has better convergence and
steady-state performance than conventional algorithms, but it is also more suitable for engineering
applications.

Keywords: blind source separation; feedforward neural network; maximum likelihood estimation;
gradient optimization algorithm

1. Introduction

Electrical devices are widely applied and densely placed in marine integrated power
systems. Owing to these characteristics, electromagnetic compatibility on site tests are
susceptible to interference from the external environment, and these test results are often
mixed with electromagnetic radiation from different devices. Regarding the testing of
the electromagnetic radiation of devices in a system-level complex electromagnetic envi-
ronment, one major problem to solve is obtaining the electromagnetic radiation signal of
each device from the complex environment without a priori knowledge of such signals [1].
Blind source separation (BSS) is an important method for solving this problem. In general,
existing algorithms can be classified into the following categories: information theoretic
algorithms [2–9], algebraic algorithms [10,11], and canonical correlation analysis (CCA)
methods [12,13]. Among them, blind separation algorithms based on information theory
are usually adaptive online learning algorithms, which generally have better stability and
convergence. Some blind separation algorithms based on second-order statistics, such as
the algorithm for multiple unknown signals extraction (AMUSE) [14], and the second-order
blind identification (SOBI) algorithm [15], use the non-zero time delay correlation function
of the source signal to determine the separation matrix using matrix eigenvalue decom-
position, which has the advantage of low computational effort and good stability for the
source signal for any probability distribution. However, the decorrelation BSS algorithm
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requires the source signal to be completely uncorrelated for optimal performance; that is,
the correlation matrix of the source signal should be a diagonal array. The SOBI algorithm
can be regarded as an improvement of the AMUSE algorithm. The algorithm first requires
pre-whitening of the observed signal, and this pre-whitening process is usually performed
by the eigenvalue decomposition of the correlation matrix; however, this process reduces
the separation performance of the algorithm. Such algorithms use optimization techniques,
so that the algorithm performance will be better than that of the decorrelation algorithm.
The BSS algorithm based on higher-order statistics [16] uses the higher-order statistical
properties of the source signal to separate the signals. Such algorithms require, at most,
one Gaussian signal in the source signal in addition to statistical independence of the
source signal; this has the advantage of being resistant to Gaussian noise and allows the
extraction of a single signal without involving other signals. This is another advantage
over second-order statistics-based algorithms. The CCA method uses the autocorrelation
function of the source signals to perform BSS. This has an advantage over the ICA-based
separation method in that it not only considers the statistical distribution of the sample
values but also makes full use of the correlation between the signals. In addition, CCA can
eliminate the objective function constraint and the shortage of fixed-step gradient descent
through the recursive framework. This ensures that the method can perform real-time data
detection and source separation well even in highly damped systems.

The above-mentioned algorithms are divided into two categories in terms of im-
plementation: batch and adaptive processing. Batch processing is based on a batch of
previously acquired data, rather than the recursive processing of continuous input data.
As this method is computationally tedious and ineffective, it is less frequently used in
practical applications. Adaptive processing, such as the BSS algorithm based on the NPCA
criterion and Kalman filtering [17,18], can gradually update the processor parameters with
the acquisition of data one after another. The process uses real-time streams of data for
monitoring and source separation, so that the application is broader than batch processing,
and the computation is relatively simple. However, it experiences drawbacks of slow
convergence and large steady-state errors. More promising neural network (NN)-based
full optimization algorithms [19–21] do not require pre-whitening of observations, thus
bypassing the problem of eigenvalue decomposition. This class of algorithms reduces
the BSS problem completely to an optimization problem and, thus, has better separation
performance than the first two classes of algorithms. From the perspective of NNs, the afore-
mentioned BSS algorithm can be regarded as an optimization problem, i.e., the objective
function is set to achieve the separation of mixed signals by finding the extreme value point.
The objective function and optimization algorithm are crucial for NN solutions of the BSS
problem. Different objective functions are constructed according to different criteria to form
different BSS algorithms. For example, the SOBI algorithm [15] constructs the objective
function using the joint diagonal method, and the NMF-based BSS [22] constructs the
objective function by calculating the Kullback-Leibler (KL) divergence of X and AS (where
X is the array of mixed signals, A is the mix matrix, and S is the array of sources). Any
change in the objective function requires re-deriving the gradient descent formula, which
is unfavorable for the application of algorithm improvement. In contrast, NNs provide
a new idea: both the objective function and optimization algorithm are considered sepa-
rately, allowing for the improvement of the objective function and optimization algorithm
separately. The proposed BSS algorithm is based on the above-mentioned considerations,
and its improvement methods for the objective function and optimization algorithm are,
in general, equally applicable to the BSS that relies on other criteria. Thus, it improves the
BSS algorithms from the perspective of NNs.

Additionally, the combination of the NN algorithms with the latest optimization
algorithms can yield algorithms with a higher convergence rate and better steady-state
performance facilitating the engineering application of BSS algorithms. For example, a mini-
batch optimization algorithm [23] is used to improve the performance of BSS. However,
the monotonous learning rate is usually too aggressive, and learning stops prematurely.
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Currently, the commonly used optimization algorithms for NNs are stochastic gradi-
ent descent and its variant the Nesterov accelerated gradient (NAG) [24], AdaGrad [25],
Adadelta [26], RMSprop [27], and Adam [28]. The NAG (an improved momentum method)
makes a correction during the gradient update, which accelerates the convergence and
suppresses the oscillation. AdaGrad uses the cumulative sum of squared gradients as an
accelerating variable; however, at the middle and late stages of training, the parameter
update amount tends towards 0, resulting in a failure to continue learning. Adadelta
adopts an exponential moving average of the sum of squared gradients, i.e., a closer cur-
rent gradient corresponds to a larger gradient weight. In adadelta algorithm, the learning
accelerates quickly at the early and middle stages but jitters around the local minimum at
the late stage. RMSprop changes the cumulative sum of squared gradients of AdaGrad
to an exponentially weighted moving average, thereby improving the aggressive and
monotonously decreasing learning rate of AdaGrad. Adam incorporates the momentum
directly into the estimation of the gradient first-order moment, which avoids the high bias
of RMSProp at the beginning of training; consequently, the learning rate lies in a fixed range
for each epoch, making the parameters comparatively smoother. There is a wide variety of
optimization algorithms, but the dominant approach is to obtain the constraint term of the
learning rate from the historical gradients to improve the convergence rate and steady-state
performance. The foregoing optimization algorithms are not all applicable to BSS. In the
case of BSS, there are numerous training samples. Gradient estimation through mini-batch
gradient descent is even more inaccurate, which causes the training process to oscillate
violently. Therefore, it is necessary to develop a more stable and reliable optimization
algorithm. According to an analysis of the literature, we propose a new neural-network
optimization algorithm that is suitable for BSS.

Many studies have proposed performance metrics, such as PI [29,30], ζij [31], and
signal-to-noise ratio (SNR) [32], for simulation experiments. These experiments and their
evaluation metrics are useful for the study of algorithms because the simulated (or even
experimental) signal carries information that accurately characterizes the system (i.e.,
the source signal and its statistical characteristics, and the system mixing matrix). This
helps evaluate the model and improve the algorithm. For example, the source signal
can be used to calculate the correlation of the separation result or estimate its probability
density function. In contrast, the mixing matrix characterizes the coupling properties of
the system and can be used to evaluate the estimated mixing matrix, or even evaluate
the intermediate results of NN model training to obtain the dynamic properties of the
algorithm. However, it is not suitable for engineering applications because, in practical
applications, only the observed signal of the system can be obtained. Without a priori
knowledge, such as the source signal and mixing matrix, the above performance metrics
would be invalid. Studies on the evaluation indices of the separation performance of
blind signals are lacking, making the engineering application of the algorithm difficult.
Therefore, a performance index suitable for measuring the effect of BSS should be designed
to guide the parameter adjustment of the algorithm and to evaluate the advantages and
disadvantages of the algorithm.

In summary, the advantage of NNs for solving BSS problems is that the objective
function and optimization algorithm are relatively independent. In engineering applica-
tions, the objective function and optimization algorithm can be combined with different
criteria in any combination according to the actual demand, which is highly flexible. Sec-
ond, the optimization algorithm of NN can overcome the problems of conventional BSS
with a fixed step size, as well as batch processing, using a small batch variable step size
algorithm. Based on the above-mentioned advantages of NNs and considering the slow
convergence and low separation performance of conventional BSS methods in engineering
applications [31], a BSS method that combines the maximum likelihood estimation (MLE)
criterion and an NN with a bias term is proposed in this study. The method addresses
problems in engineering applications in the following three ways:
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1. Improving the cost function for BSS: According to the MLE cost function, the training
parameters of the feedforward NN (W and b) are added to the cost function as penalty
terms through regularization to improve the learning performance.

2. Improving the optimization algorithm of the NN: A dual-acceleration strategy is
adopted. First, the cumulative historical gradient is obtained using the momentum
term. Simultaneously, the learning rate is adaptively adjusted according to the modi-
fied exponentially weighted root mean square. The learning rate is increased at the
early stage of training to ensure the convergence rate and reduced at the late stage of
training to avoid excessive oscillation, so that the cost function in the parameter space
descends rapidly along a flat path.

3. A performance index suitable for engineering applications, i.e., ζ, is proposed. This
index does not rely on source signals or the mixing matrix, making it useful for
parameter adjustment in practical applications.

The remainder of this paper is organized as follows: In Section 2, the BSS method
based on an NN with a bias term and the MLE criterion is briefly introduced according to
three aspects: the NN structure, cost function, and optimization algorithm. In Section 3,
the proposed algorithm is applied to the simulation data. The convergence speed and
steady-state performance of the proposed algorithm are compared with those of conven-
tional and real-time methods. In Section 4, the proposed algorithm is applied to actual
test data to verify the separation performance of the algorithm in complex engineering
applications. The conclusions are presented in Section 5.

2. Blind Source Separation Method Based on Neural Network (NN) with Bias Term
and MLE Criterion
2.1. Neural Network (NN) Model with Bias Term

A neural-network model (as shown in Figure 1) based on the proposed algorithm was
designed. The dense layer represents the fully connected layer, and the weight of this layer
is the unmixing matrix of BSS to be solved. The lambda layer and loss layer jointly provide
optimization objectives for the NN. The output of the loss layer is the objective function
to be optimized by the NN. Similar to parts of the feedforward network, the lambda and
loss layers do not involve training parameters, and their structures do not change with
the optimization of the model. The aforementioned objective function contains a penalty
term for the weight of the dense layer. In this manner, a regularization term for the weight
is added to the loss function, which avoids model overfitting and allows for better BSS.
The parameter settings of the NN are presented in Table 1.

Table 1. Parameter settings of the neural-network model.

Neural-Network Layers Parameters

Input layer Input dimensions: n

Dense layer
Output dimensions: m

Activation function: sigmoid
Trainable parameters: W and b

W regularization: Loss1
b regularization: Loss2

Lambda layer Fuzzy factor: ε = 1 × 10−8

Output: Loss3

Loss layer Output: Loss1 + Loss2 + Loss3
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Figure 1. Structure diagram of a neural network (NN).

The structure of the BSS method based on the MLE criterion and a self-organizing
NN is shown in Figure 2. This algorithm uses the MLE criterion to achieve unsupervised
learning in a feedforward NN with a bias term, and its learning criterion adopts an
improved RMSprop optimization algorithm (see Section 2.3 for details), which can quickly
and accurately converge to the global minimum by changing the MLE criterion to the
negative log likelihood (NLL) loss (see Section 2.2), making it possible to estimate the
mixing matrix A for BSS.

X
W

 NLL Loss

Learning
Criterion

 2 updatef W

 1f 

 2 2 ( )update updateL W L b
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the neural network model

Figure 2. Structure diagram of the blind source separation (BSS) method based on the maximum
likelihood estimation (MLE) criterion and a self-organizing NN.

Compared with the conventional BSS methods, the self-organizing NN BSS method
considers the BSS problem from the perspective of NNs, and can use the mature NN
architecture Keras to implement the algorithm. Thus, it does not require the derivation of
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a parameter update formula by using the maximum likelihood function, Infomax (infor-
mation maximization), minimum mutual information, or absolute value of the maximum
kurtosis. Instead, these criteria must be converted into the regularization terms of the layer
weights, layer biases, and layer outputs of the NN to obtain the loss function. Subsequently,
the BP algorithm is used to learn W and b in the BSS algorithm. In addition, the learning
criterion in the BSS+NN implementation is an improved RMSProp optimization algorithm,
which does not require the participation of all samples for gradient computation. It is,
therefore, less computationally intensive than conventional BSS algorithms. In summary,
the proposed method has advantages over conventional BSS methods in terms of both
implementation and computational complexity.

Additionally, the proposed algorithm is more scalable than the conventional meth-
ods. Because the computation of the loss function is relatively independent of the BP
algorithm, various optimization algorithms can be applied to this structure to improve the
algorithm performance.

2.2. Loss Function of Neural Network

In contrast to the common BSS algorithms based on the minimum mutual information
criterion, the proposed algorithm introduces a bias term in the feedforward NN, subse-
quently regularizes the bias term, and adds it to the loss function. The bias term then serves
as a training parameter in model optimization. This prevents overfitting in training and
solves the problem of the loss not decreasing in the neural-network optimization process.

The following log-likelihood function (loss function) for neural-network optimization
is based on the MLE criterion:

`(W, b) = log |det(W)|+
N

∑
i=1

E
{

log g′i(Yi)
}

− E{log pX(X)}
. (1)

The constant −E{log pX(X)} can be discarded because it does not contribute to the
training of the NN. Considering that the NN training takes the minimum of the objective
function as the optimization direction, the maximum likelihood objective function takes
a negative value. In practical computation, the sample mean is the expected unbiased
estimate; thus, the objective function `(W, b) is given as follows:

`(W, b) = − log |det(W)| −
N

∑
i=1

E
{

log g′i(Yi)
}

' − log |det(W)| − 1
m

N

∑
i=1

m

∑
j=1

log g′i
(
Yij
)
,

(2)

where m and N represent the sample points and dimensions of the observed signal Yi,
respectively; gi(•) and g′ i(•) represent the probability distribution function and the proba-
bility density function (PDF) of the source signal i, respectively; W represents the to-be-
optimized weight of the NN, i.e., the unmixing matrix of the BSS problem to be solved;
and the bias term b is implicitly included in Yi. The PDF can be selected based on the
distribution type of the source signals, as displayed in Table 2. Figure 3 shows the negative
logarithmic probability density estimation functions for different distributions.

Table 2. Probability density function (PDF) corresponding to different distributions.

Distribution Type Function Expression

Super Gaussian distribution g′(s) = −2logcosh(s)
Sub-Gaussian distribution g′(s) = −(s2/2− logcosh(s))

Gaussian distribution g′(s) = g(s)(1− g(s)), g(s) = 1
/
(1 + exp(−s))
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Figure 3. Estimation of negative logarithmic probability density corresponding to different distribu-
tions.

The L2 regularization term is added to the loss function given by Equation (2) as
a penalty term to avoid overfitting in the optimization. Therefore, the proposed neural-
network loss function `(W, b) comprises two parts: the NLL cost and the L2 regularization
cost. The impact of the latter part on the gradient manifests in the weight decay of the
gradient:

`(W, b) = − log |det(W)| − 1
m

N

∑
i=1

m

∑
j=1

log g′i
(
Yij
)

︸ ︷︷ ︸
NLL cost

+
1
m

λ

2

(
‖W‖2

2 + ‖b‖
2
2

)
︸ ︷︷ ︸

L2 regularization cost

, (3)

where m represents the sample points, and λ is the weight factor of the regular term,
which essentially controls the weight decay of W and b. Namely, the weight is reduced
by a quantity proportional to W by λ. When λ = 0, `(W, b) degenerates to the NLL cost.
In addition, if λ is too large, the negative logarithmic likelihood loss insignificant. To obtain
the appropriate hyperparameter λ, this study uses the GridSearchCV API in Scikit-learn
(Machine Learning in Python) [33,34] to debug the parameters of the NN.

2.3. Improved Optimization Algorithm

After the loss function of the NN is obtained, the model parameters W and b can
be learned using the back propagation (BP) algorithm. The proposed neural-network
optimization algorithm is an improved version of the RMSprop optimization algorithm [25],
as indicated by Equation (4).

r(w, t) = ρr(w, t− 1) + (1− ρ)(∇Qi(w))2

w = w− η√
r(w, t) + ε

∇Qi(w)
, (4)
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r(w, t) = ρr(w, t− 1) + (1− ρ)(∇Qi(w))2

g(w, t) = ρg(w, t− 1) + (1− ρ)∇Qi(w)

v(w, t) = βv(w, t− 1) +
η√

r(w, t)− (g(w, t))2 + ε
∇Qi(w)

w = w− v(w, t)

. (5)

Here, ρ represents the decay rate of the exponential moving average; β is the mo-
mentum term; ε is a minimal constant, which avoids divide-by-zero errors in the update
process; η represents the global learning rate;∇Qi(w) represents the gradient at the current
time t; g(w, t) represents the estimate of the (exponentially weighted) first-order moment
of the gradient; and r(w, t) is the gradient accelerating variable. RMSprop uses the decay
average of the previous squared gradient (second-order moment) instead of the value.

As indicated by Equation (5), in this study, the standard RMSprop optimization
algorithm is improved with regard to two aspects:

1. The momentum term is introduced to accumulate the previous gradients for acceler-
ating the current gradient .

2. g(w, t), i.e., the estimate of the first-order moment of the gradient, is introduced.
The original r(w, t) in RMSprop is modified to the central second-order moment
through the operation r(w, t) − (g(w, t))2. In order to stabilize the exponentially
weighted root mean square, this operation flattens the steep gradient in the parameter
space. In practice, the algorithm finds a smoother descent direction in the parameter
space, increasing the training speed.

To qualitatively analyze the optimization process of the improved algorithm, we
plotted the direction, step size, and descent process of the gradient at each step of iteration
for the common optimization algorithms and the improved algorithm, as shown in Figure 4.
The direction of stochastic gradient descent (SGD) roughly represents the direction of the
gradient at the current position. Although the algorithms can finally reach the target
point through stepwise descent along the gradient direction, the entire descent process
oscillates violently, and the descent is slow. The update direction at each step is not
optimal in the proposed algorithm. However, the introduction of the momentum term
ensures gradient inertia and overcomes the unevenness of changes among different training
parameters, making the whole descent process smoother and reducing the oscillation of
the descent process. The descent speed of Adagrad is slow, although its optimization
direction is similar to that of the improved algorithm. The improved algorithm ensures
rapid descent at the early stage and slower descent at the late stage of training through
gradient accumulation, which allows the optimization process to converge quickly and
smoothly in the target direction.

To quantitatively verify the effectiveness of the proposed optimization algorithm, we
compare the improved optimization algorithm presented in this paper with the commonly
used optimization algorithms reported in the literature [35]. The parameter settings of each
optimization algorithm are presented in Table 3.

Table 3. Different optimization algorithms and their parameter settings.

Optimization Algorithm Parameter Settings

SGD η = 0.01
NAG η = 0.01, β = 0.9, decay = 1 × 10−6

Adagrad η = 0.4
Adadelta η = 0.4
RMSprop η = 0.001, ρ = 0.9, ε = 1 × 10−7

Proposed optimization algorithm η = 0.01, ρ = 0.9, β = 0.9, ε = 1 × 10−7
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Figure 4. Changes of the gradient vector in the contour curve.

Figure 5 shows the final performance of each algorithm after their parameters are
repeatedly debugged. We conclude that compared to commonly used optimization algo-
rithms, the proposed optimization algorithm can ensure comparatively faster convergence
at the early stage of the training process and can span multiple local minima of the loss
function; it has a higher descent rate at both the early and mid-late stages of the training
process. It is more suitable for dealing with non-smooth targets. The proposed optimiza-
tion algorithm has a higher descent rate at the early stage because of its dual-acceleration
strategy. The previous gradients are accumulated using the momentum term. At the early

stage, the centralized exponentially weighted root mean square
√

r(w, t)− (g(w, t))2 is
small; thus, the learning rate of the global η increases significantly. With increasing training

epochs,
√

r(w, t)− (g(w, t))2 increases gradually to ensure a decline in the global learning
rate, preventing oscillation at the global optimum.

0 1000 2000 3000 4000 5000
epoch

-15

-10

-5

0

5

10

15

lo
ss

SGD( = 0.01)
NAG( = 0.01, decay = 1 × 10 6, = 0.9)
Adagrad( = 0.4)
Adadelta( = 0.4)
RMSprop( = 0.001, = 0.9, = 1 × 10 7)

Optimization algorithm proposed in this paper

Figure 5. Learning curves of different optimization algorithms.

As shown in Figure 6, the figure shows the weight update rate of each gradient of
each algorithm. As can be seen from the graph, the optimization algorithm designed in
this paper can advance to the goal with a large range, and the amplitude of the whole
learning process is kept in a high range and decreases slowly. The NAG algorithm in the
initial training update range is too large, it is too radical, and the medium update range
is too small, easy to fall into local optimum, and not easy to find the global optimum.
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The other algorithms in the initial training update range is relatively small, indicating that
the algorithm update process is conservative and convergence speed will be relatively a
small, comprehensive comparison, and the proposed algorithm update range of the whole
training process is moderate, both to ensure the convergence speed and stability.

0 1000 2000 3000 4000 5000
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0.30
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ti
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SGD( = 0.01)
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Adadelta( = 0.4)
RMSprop( = 0.001, = 0.9, = 1 × 10 7)

Proposed optimization algorithm

0 20 40
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0.1

0.2

Figure 6. Weight update rate of different optimization algorithms.

In summary, the proposed algorithm combines an NN with a bias term, a loss func-
tion with a weight and bias penalty, and an improved optimization algorithm (Figure 2).
The detailed flow of the algorithm is shown in Algorithm 1. It is worth noting that the loss
function is highly nonconvex, and, if the initial value is determined randomly according
to the conventional algorithm, then each algorithm is unstable and may obtain a different
local minimum each time. This is very unfavorable for algorithm tuning and practical ap-
plications. The above-mentioned analysis of the algorithm clearly shows that the parameter
optimization process of the algorithm can be divided into two parts:

1. the parameters of Equation (3), that is, λ, W0, b0, which determine the starting point
of the cost function optimization; and

2. the optimization algorithm and its parameters, which determine the descent path of
the cost function `(W, b).

Algorithm 1: BSS based on an NN with a bias term and the MLE criterion

Input: Dataset comprising observation channels: data_t f ;
Training epochs: epochs = 5000;
Sample batch size: batch_size = 200;
Regularization function for W and b: t f .keras.regularizers.l2();
Constructed neural-network model: creat_model();
Performance index: PI as shown in Equation (9);
Performance index: ξ, as shown in Equation (10);
Output: Estimated source signal dataset: estimated_data

1 Define the NN inputs InputLayer and DenseLayer based on the data samples;
2 Randomly initialize the weight matrix W and bias term b;
3 Design the neural-network loss function my_loss according to Equation (3);
4 Construct a neural-network model based on the proposed algorithm (Figure 2)

create_model(w_reg = t f .keras.regularizers.l2(), b_reg = t f .keras.regularizers.l2());
5 Import data into the training network, and record the weight W and bias term b during training;
6 Calculate the performance index PI = my_metrics(), ξ = episilion() for each step using W and b in the process;
7 Return the estimated signal source dataset estimated_data;
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Therefore, to ensure that each operation of the algorithm can obtain stable and reliable
separation results, the following steps were considered according to the optimization
process of the algorithm. First, initial values W0, b0 were fixed using random seeds or
debugging experience to ensure that the algorithm has the same starting point for each run
of the loss function. Next, all hyperparameters of the whole optimization process were
searched using GridSearchCV with PI as the evaluation index grid. Finally, the optimal
hyperparameters with PI < 0.02 are extracted. According to the above-mentioned strategy,
this not only avoids the instability of the algorithm caused by the uncertainty of the
initial values but also improves the algorithm’s optimization search path to obtain suitable
separation results through the hyperparameter search.

3. Simulation Analysis of Algorithm Performance

This section validates the proposed algorithm using simulation data with a priori
knowledge (i.e., the source signal waveform and mixing matrix are known). The advantage
of simulation data validation is that a priori knowledge is available, and the separation
results of the algorithm can be evaluated by calculating the performance metrics associated
with a priori knowledge. The simulation validation in this study is divided into six parts:

1. First, the real-time algorithm in the recursive framework is used as a competing
algorithm to verify the computational performance of the proposed algorithm.

2. The second part focuses on the adjustment of the algorithm hyperparameters and
the adaptation capability of the algorithm under different numbers of samples
and sources.

3. The third part verifies the influence of the distribution type of the source signal on
the performance of the algorithm.

4. The fourth part verifies the impact of the added regularization term on the perfor-
mance of the algorithm.

5. The fifth part comprehensively compares the performance of the proposed algorithm
with that of the conventional algorithm through several performance metrics.

6. The sixth part verifies the separation performance of the proposed algorithm for
sparse data.

We set the source signal as shown in Equation (6).

S =


s1 = sin(2t)

s2 = s ign(sin(3t))

s3 = sawtooth(2πt)

. (6)

The source signal parameters are set as follows: t represents the time series that is
determined when the number of sampling points is N = 2000 and the sampling frequency
is fs = 125 Hz. Here, s ign(•) can be expressed by Equation (7). The sawtooth wave s3 has
a time period of 1 . Its value increases from −1 to 1 at the time interval from 0 to 1 and then
decreases from 1 to −1 at the time point 1.

s ign(x) =


− 1, x < 0

0, x = 0

1, x > 0

. (7)

The source signal mixing matrix A is randomly generated by the standard normal
distribution, as given by Equation (8). The Gaussian white noise is added to the source
signal at a certain SNR to verify the noise immunity of the proposed algorithm.

A =

 1.3316 0.7153 −1.5454
−0.0084 0.6213 −0.7201
0.2655 0.1085 0.0043

. (8)
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For the application scenario of this study, the performance metric (Equation (9) is
customized) to measure the similarity between the global matrix and the identity matrix.
The metric is based on the literature [30] for improving the generic performance metric [29],
which is essentially a normal form of the literature [30]. A smaller PI corresponds to a
better separation effect. When PI = 0, the waveform of the separated signal perfectly
matches that of the source signal.

PI(G) = PI(BA)

=
1
n

n

∑
i=1

(
m

∑
j=1

∣∣gij
∣∣2

maxk|gik|2
− 1

)

+
1
m

m

∑
j=1

(
n

∑
i=1

∣∣gij
∣∣2

maxk|gki|2
− 1

) (9)

Here, gij is an element in the global matrix G = BA, where B represents the unmixing
matrix, and A represents the mixing matrix. maxk|gik|2 denotes the maximum value of the
square of the element in the jth column of G, and maxk|gki|2 denotes the maximum value
of the square of the element in the ith row of G. k represents the index of the row/column
to which the maximum element corresponds. However, in most cases, PI [36] is only
applicable to the measurement of the separation effect of the known simulated signals in
the mixing matrix A. Therefore, we introduce the correlation coefficient as a performance
index [37] to evaluate the advantages and disadvantages of the separation algorithm.

ξij = ξ
(
yi, sj

)
=

∣∣∣∣∣ k

∑
t=1

yi(t)sj(t)

∣∣∣∣∣/
√√√√ k

∑
t=1

y2
i (t)

k

∑
t=1

s2
j (t). (10)

Here, ξij represents the similarity coefficient between the ith column of the separated
signal y and the jth column of the source signal s; and k represents the number of sampling
points of the data. Here, 0 ≤ ξij ≤ 1; when yi = csj ( c is a constant), ξij = 1. When yi and
sj are independent of each other, ξij = 0. A larger ξij corresponds to a larger similarity
coefficient between yi and sj and a better separation effect. The similarity coefficients of
the proposed algorithm and the conventional MLE-based ICA algorithm are presented in
Table 4. As shown, the similarity coefficients of the components in the proposed algorithm
are > 0.9975, indicating that the proposed algorithm exhibits a better separation effect than
the conventional MLE-based ICA algorithm.

Table 4. Similarity coefficients of the proposed algorithm and the conventional MLE-based ICA algo-
rithm.

Proposed Algorithm MLE-Based ICA

ξ

0.0259 0.9978 0.0083
0.9980 0.0230 0.0117
0.0733 0.0593 0.9975

 0.9823 0.0275 0.0767
0.0535 0.9989 0.0185
0.0739 0.0164 0.9968


3.1. Computational Performance Verification of the Proposed Algorithm

To verify the performance of the proposed algorithm in terms of computation, AMUSE,
SOBI, FOBI, and RCCA implemented in the recursive framework were used as compet-
ing algorithms in this study; this avoids matrix inversion operations and is simpler to
compute compared with batch computation. In addition, the online real-time recursive
implementation of the competitive algorithms helps view the optimization process of the
unmixing matrix and facilitates the comparison of the proposed algorithms. The conver-
gence rate is also used as an indicator to compare the performance of the above algorithms
with the proposed algorithm. Figure 7a shows the change in performance metrics during
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the iterations of the proposed and competing algorithms, which reflects the convergence
speed and steady-state performance of the different algorithms. As shown in Figure 7a,
although the competing algorithms implemented in the recursive framework are compu-
tationally simpler, their overall convergence speed is inferior to that of the RMLE-ICA
algorithm with a dual acceleration strategy, and the proposed algorithm RMLE-ICA has a
smaller PI in terms of steady-state performance; this proves that the proposed algorithm
is more thorough in separating the mixed signals. While SOBI, an improved AMUSE
algorithm, has improved steady-state performance, it has reduced convergence speed.
Figure 7b shows the convergence speed of different algorithms when they reach the steady
state, characterized by the number of iterations of the algorithm at convergence. As shown
in the figure, the convergence speed of the proposed algorithm in this study is significantly
better than that of the competing algorithms, which is mainly owing to the fact that the
proposed algorithm uses a dual acceleration strategy in the optimization part to better
balance the convergence speed and steady-state performance. In summary, the proposed
algorithm has better convergence speed and steady-state performance than the competing
algorithms in the recursive framework.
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Figure 7. Comparison of computational performance between the proposed algorithm and competing algorithms.

3.2. Algorithm Hyperparameter Tuning and Performance Verification

In this section we focus on the impact of hyperparameters batch_size, and λ on the
performance of the algorithm and how they can be adjusted. In addition, we verify the
adaptability of the proposed algorithm to the number of samples m and the number of
source signals N, as well as the effect of increasing the number of samples N on the running
time of the algorithm.

The essence of the optimization algorithm of the NN is gradient descent. At present,
gradient descent adopts the mini batch gradient algorithm. However, the gradient is easy
to run off, which affects the performance of the algorithm. Therefore, in order to select
the appropriate method, this study compares the different effects on the convergence
and steady-state performance of the algorithm. As shown in Figure 8, when the epoch
is fixed, the smaller batch_size converges faster, while in the steady state, PI has little
difference with different value of batch_size and is essentially below 0.01. This shows
that a smaller batch_size not only has a fast convergence speed but also has good steady-
state performance.
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Figure 8. Learning curves of different batch_size algorithms.

Considering that parameter λ in Equation (3) has a great impact on the performance
of the algorithm, this study adopts GridSearchCV in Scikit-learn to adjust λ. GridSearchCV
is essentially an exhaustive method, that is, the selection of all candidate parameters is
traversed by a loop, trying every possibility, and the parameter with the best evaluation
index is the final result. The evaluation index used in this study is PI. The PI for different
λ values is shown in Figure 9. Intuitively, when λ = 0.01, the entire training process of
the algorithm not only converges quickly but also separates most thoroughly. Of course,
the selection of λ is not the smaller the better. When λ = 0, the regular term in the loss
function `(W, b) fails, and, although the algorithm can converge, the performance of the
algorithm is not the best. In summary, to obtain the best algorithm performance, in this
study, λ was set as 0.01.
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Figure 9. Learning curves for different values of λ.

Next, we compare the steady-state separation performance of the proposed algorithm
with those of the MLE-based ICA, L1 regularization algorithm for different sampling
points m. The experimental results are shown in Figure 10a, which shows the steady-state
separation performance of all three algorithms is improved to different degrees with an
increase in the number of sample points. This could mainly be because when the number
of sample points increases, the number of sample points used for gradient calculation at
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the current position of the loss function increases, thus yielding more accurate gradient
estimates and causing the algorithm to converge to the optimal position along a more
suitable path. In summary, the steady-state performance of both the L1 regularization and
proposed algorithms is significantly better than that of MLE-ICA. The small difference
between the steady-state performances of the L1 regularization and proposed algorithms
indicates that the regularization term mainly improves the convergence speed of the
algorithm in the pre-training period and has little effect on the steady-state performance of
the algorithm. In addition, the increase in sample points does not significantly improve the
steady-state performance of the algorithm; this indicates that the proposed algorithm can
achieve better performance even with smaller samples.

In additon, we also investigated the effect of m on the running time of the algo-
rithm. The running times of different algorithms with different values of m are shown in
Figure 10b. As shown in the figure, the training time of the three algorithms gradually
increases as the number of sample points increases; this is because the increase in samples
leads to an increase in the number of samples involved in the calculation of the gradient at
the current position, and this in turn increases the running time of the algorithms. Thus, we
can conclude that the improvement in the separation effect is at the cost of the training time.
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Figure 10. Effect of sampling points m on algorithm performance and training time.

Finally, we explored the impact of increasing the number of sources N on the per-
formance of the algorithm. The number of source signals is increased by changing the
frequency of s1 while keeping s2 and s3 of Equation (6) constant. The test results are
shown in Figure 11. As shown, among the three algorithms, only the algorithm proposed
in this paper can guarantee that the performance index PI is always less than 0.2 as the
number of source signals increases, and the algorithm can be considered to be successful in
engineering applications. The separation results of the other two algorithms are not stable,
and the L1 algorithm can only separate successfully at the number of individual source
signals. Therefore, the algorithm proposed in this paper can adapt to the change in the
number of source signals and can obtain satisfactory separation performance for both large
and small numbers of sources.
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Figure 11. Separation performance of proposed algorithm and comparison algorithm under different
number of sources.

3.3. Influence of Distribution Type of Source Signal on Algorithm Performance

In the derivation of the loss function of the neural algorithm, the greatest influence on
the whole optimization process is the negative logarithmic probability density estimation
function − log g′i

(
Yij
)

in Equation (3). Most application scenarios assume that gi(•) is the
sigmoid function in− log g′i

(
Yij
)
, where the default source signal distribution is a Gaussian

distribution. However, the probability density distribution of the actual signal does not
necessarily satisfy this assumption. Only when the probability density of the signal is
close to the estimated probability density can the algorithm achieve better separation
performance [38]. Considering that the signal characteristics of the source signal in the
simulated signal are known, the proposed algorithm adopts the following flow to process
the simulated signal.

1. Calculate the statistical indicators (skewness, kurtosis) of the simulation signal.
2. Determine the general distribution type to which the source signal belongs by means

of statistical indicators.
3. Select the corresponding g′(s) from Table 2 according to the distribution type.

Next, we process the simulated signal as described above. The distribution indicators
(skewness, kurtosis) are shown in Table 5, which shows that the kurtosis of the simulation
signal is negative (the kurtosis of the normal distribution is 0), indicating that the source
signal is a sub-Gaussian distribution. Accordingly, the probability density function of
the source signal is obtained by kernel density estimation method (kernel = ‘Gaussian’).
Figure 12 also proves that the source signal is more consistent with the characteristics of
the sub-Gaussian distribution.

Table 5. Distribution index of simulation signals.

Source Signal S Observation Signal X

s1 s2 s3 x1 x2 x3

Skewness −0.252 −0.094 0.026 −0.15 −0.02 −0.16
Kurtosis −1.153 −1.640 −1.027 −0.506 −0.701 −0.927

Next, we discuss the influence of the probability distribution type of the estimated
source signal on the performance of the algorithm from two aspects:

• The algorithm employs different PDFs corresponding to those in Table 2 for the
simulated signals of the sub-Gaussian distribution, aiming to verify the performance
of the proposed algorithm under the model mismatch condition.
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• The algorithm for selecting the sub-Gaussian distribution is compared with ICA-
EBM [9] and ICA-EMK [38] to verify the effectiveness of the proposed algorithm.

The performance indices of the three g′(s) models for the separation results of the
simulated signal where the source signal is sub-Gaussian are shown in Figure 13. By com-
parison, it is found that the super-Gaussian distribution model cannot successfully separate
the simulated signal and oscillates severely. In contrast, both the Gaussian distribution
model and the sub-Gaussian distribution model can achieve accurate separation of the
source signal (steady-state PI close to 0). The difference is that the sub-Gaussian distribution
model has a faster convergence speed. In other words, the Gaussian distribution model
mismatch of the algorithm proposed in this paper only affects the convergence speed of the
algorithm without affecting the separation results, proving that the Gaussian distribution
model has certain generalization ability, which is the reason why the algorithm takes it as
the first choice.
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Figure 12. Kernel density estimation of source signals.
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Figure 13. Performance index of corresponding algorithm with different PDFs.

From the above analysis, it is clear that for the simulated signal, the sub-Gaussian
distribution model is the best choice. To further verify the performance of the proposed
algorithm, ICA-EBM and ICA-EMK are used as competing algorithms, and the average
correlation coefficient and PI are used as performance indicators, in this study. Figure 14
presents the separation performance of the proposed algorithm with those of ICA-EBM
and ICA-EMK for the simulated signals. As far as the average correlation coefficient is
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concerned, the performances of the three algorithms do not differ significantly. However,
from the perspective of PI, the proposed algorithm separates more thoroughly than the
competing algorithms. Therefore, it can be concluded that the proposed algorithm is better
than the competing algorithms ICA-EMK, and ICA-EBM.
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Figure 14. Performance comparison of proposed algorithm with ICA-EBM density function (PDF)
and ICA-EMK density function (PDF) for sub-Gaussian distribution of source signals.

Both ICA-EMK and ICA-EBM algorithms are based on the maximum entropy prin-
ciple, which requires the mean, variance, and higher order statistics of the source signal
to be known in order to estimate the probability density function of the source signal
more accurately, which is often difficult to satisfy in practice. The algorithm proposed in
this paper, however, only requires a general understanding of the distribution type of the
source signal to obtain a more desirable separation result, which proves that the proposed
algorithm is more practical.

3.4. Impact of the Regularization Term on Algorithm Performance

To verify the effect of the regularization term introduced in the NN loss function on the
BSS, we used PI as the performance index to apply the algorithm without a regularization
term, that is, the L1 regularization algorithm and the L2 regularization algorithm to the
simulated signals. The PI changes that occurred during the training process are plotted in
Figure 15. The parameters of the three aforementioned algorithms were fixed to avoid the
effects of other factors on the training results, as shown in Table 6.

As shown in Figure 15, all three algorithms experienced fluctuations in the early
stage. With increasing epochs, the performance index (PI) decreases, and the separation
effect of the BSS algorithm improves, finally stabilizing at a certain value. The algorithms
with a regularization term performed better than the algorithm without a regularization
term in terms of both the convergence rate and steady-state performance. The proposed
algorithm converged to <0.01 after 414 epochs and finally converged to approximately
0.0073. The L1 regularization algorithm converged to <0.01 after 1664 epochs and finally
converged to approximately 0.0035. The algorithm without a regularization term failed to
converge to <0.01 and finally stabilized near 0.1946. In summary, the algorithm without a
regularization term failed to achieve the actual separation performance and fell into the
local optimum. The L1 regularization algorithm had a smaller steady-state performance
index, but its convergence rate was nearly four times higher than that of the proposed algo-
rithm. The proposed algorithm yielded good results with regard to both the convergence
and steady-state performance; compared with the MLE-ICA algorithm, the convergence
speed is increased four-fold, and the steady-state performance index is improved by 96%.
Thus, it is more suitable for situations requiring a short training time. This proves that
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the addition of a regularization term can significantly improve the separation effect of the
BSS algorithm.
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Figure 15. Comparison of learning curves between the proposed algorithm and MLE-ICA.

Table 6. Model and training parameters.

Model and Training Parameters Description

batch_size = 200 Number of samples involved in gradient calculation in the optimization algorithm
epochs = 5000 Number of times the full sample is processed during training

step = N/batch_size = 10 Number of training steps per epoch
η = 0.01, ρ = 0.9, β = 0.9, ε = 1 × 10−7 Hyperparameters of the proposed optimization algorithm

3.5. Comparison of Multi-Index with Traditional Algorithm

Considering that the prior knowledge (i.e., the mixing matrix A, the source signal s)
of the simulation signals is known, we further verify the separation performance of the
algorithm by applying Corr (Equation (11)) between the source signal s and separation
signal ŝ.

Corr(sj, ŝj) =
1
m

m−1

∑
j=0

∑
(

sj −msj

)(
ŝj −mŝj

)
√

∑
(

sj −msj

)2
∑
(

ŝj −mŝj

)2
, (11)

where s and ŝ are both n×m dimensional signal matrices, n is the sample points, m is the
signal dimension, sij is the jth column of the ith row of the matrix, and sj is the jth column
of the matrix.

The proposed algorithm is compared with four competitive ICA algorithms: FastICA,
JADE density function (PDF)[39,40], CuBICA [41], and TDSEP [42]. JADE is a cumulant-
based batch algorithm for source separation, and we use the N2 version in the comparisons.
FastICA is based on entropy approximation, and we use the symmetric decorrelation
approach. CuBICA is an improved cumulant-based batch-algorithm that is able to handle
linear mixtures of symmetrically and skew-symmetrically distributed source signal compo-
nents. TDSEP is an online algorithm based on only time lagged second order correlations,
i.e., it is suited to be trained on huge data sets, provided that the training is done sending
small chunks of data each time. The key parameters of the above algorithm are configured
as shown in Table 7.
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Table 7. Parameter setting of contrast algorithm.

Algorithm Parameter

FastICA approach = ‘defl’, g = ‘pow3’, mu = 1, max_it = 5000, limit = 0.001
JADE limit = 0.001, max_it = 1000

CuBICA limit = 0.001
TDSEP lags = 1, limit = 1 × 10−5, max_iter = 10,000

The results are shown in Figure 16. From the perspective of PI, the performance of
the algorithms is similar except for TDSEP, where CuBICA and the proposed algorithm
perform the best (PI < 0.02). However, when Corr is considered, the average correlation
coefficient between the separation results of the proposed algorithm and the source signal is
closer to 1 than that of CubICA, which indicates that the separation signal of the proposed
algorithm is closer to the source signal. In summary, both performance metrics of the
proposed algorithm are the best (PI = 0.007, Corr = 0.999), which fully demonstrates the
better steady-state separation performance of the proposed algorithm compared with the
competing algorithms.
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Figure 16. Comparison of steady-state performance between proposed algorithm and conventional al-
gorithms.

3.6. Separation Performance of the Proposed Algorithm for Sparse Data

The ability of the proposed algorithm to separate common source signals has been
verified above, and the performance of the proposed algorithm to separate sparse source
signals is further verified in this study. In this paper, three sparse sources, s1, s2, and s3,
composed of smooth bell-shaped signals (Equation (12)), are selected, and the sources
are approximately independent. The composition of each sparse source signal is shown
in Table 8. The mixing matrix A of the source signals is consistent with the previous A
(Equation (8)).

s(t) = A0ea(t−τ), a > 0, (12)

where t is the time series, A0 controls the signal amplitude, a = 10 controls the width of the
bell signal, and τ is the signal offset. The source signal obtained from the above-mentioned
parameters is shown in Figure 17. Next, the source signal is superimposed with Gaussian
noise (µ = 0, σ = 0.01), and the observed signal matrix X is obtained by mixing the
matrix A.
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Table 8. Parameter configuration of sparse source signals.

Source Signal Parameter Combination

s1 A0 = [1,−1, 1,−1], α = [3, 4, 5, 7]
s2 A0 = [−1, 1, 1,−1], α = [1, 4, 5, 6]
s3 A0 = [−1, 1,−1, 1], α = [1, 3, 4, 6]
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Figure 17. Time-domain waveform of source signal.

For the sparse simulation data, three methods (MLE-based ICA, L1 regularization
algorithm, and the proposed algorithm) are used to process the sparse simulation data.
The optimal optimization parameters of the proposed algorithm are listed in Table 9. Finally,
the learning curve of the performance index PI with the training process epoch is shown in
Figure 18, where both the MLE-based ICA and L1 regularization algorithm move towards
the decreasing direction of the cost function; however, they fluctuate significantly, and are
finally limited to the local minimum value. On the contrary, because of the existence
of a penalty term, the proposed algorithm can select a more suitable gradient at the
beginning of training, and with the appropriate optimization algorithm, it can converge to
the ideal position (PI < 0.1) quickly and accurately, which can meet the needs of engineering
applications. From the above-mentioned analysis, we conclude that the proposed algorithm
is more suitable for sparse data processing than the conventional algorithms.

Table 9. Optimal parameters for algorithm debugging determined by GridSearchCV.

Adjustable Term Optimal Parameters

the cost function `(W, b) W0 = t f .keras.initializers.RandomNormal(seed = 1)
b0 = t f .keras.initializers.RandomNormal(seed = 1)

λ = 0.01

Optimization algorithm
epoch = 5000

batch_size = 150
η = 0.01, ρ = 0.9, β = 0.9, ε = 1 × 10−7
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Figure 18. Performance comparison of different algorithms for sparse data separation.

4. Verification of Algorithm Performance for Actual Data

To verify the separation effect of the proposed algorithm in practical engineering
applications, we applied the proposed algorithm to the source signal separation task in the
field environment of the generator set in a real ship’s engine room. The test equipment and
the field test environment are shown in Figure 19. The log-periodic antenna is distributed
along the generator set. The mixed signal spectrum collected by the sensor is shown
in Figure 20a. The frequency information of the source signal is difficult to distinguish.
A correlation analysis was first conducted to evaluate the correlations among all the
channels, as shown in Figure 20b. The three component frequencies with the highest
correlations were f = [91.8 MHz, 435 MHz, 623 MHz], with their corresponding correlations
being cxy = [0.625, 0.709, 0.394]. Then, the measured signal was processed by applying the
MLE algorithm [4] and the proposed algorithm.

The separation performance indices for the existing algorithms [32], such as the PI
and ξij, are only suitable for evaluating the BSS performance of the systems with known
source signals or mixing matrices. However, the above conditions are unknown in actual
tests. To evaluate the separation performance, we designed a performance index ζ for
actual tests.

ζ =
∥∥ξ(Y, X)− Î

∥∥
2. (13)

Here, ξ(Y, X) represents the matrix of similarity coefficients between the separated
signal Y and the observed signal X, Î represents the identity matrix of ξ(Y, X), and ‖•‖2
represents the second norm of the matrix. Because the separated signal is a component of
the observed signal, there is a correlation between them. Larger separation corresponds to
greater similarity between the signals, i.e., a smaller ζ corresponds to a better separation
effect. The value of ζ cannot be 0; ζ = 0 indicates that the separated signal is identical to
the observed signal.

Similarly, taking ζ as the performance index, we employed the MLE-based ICA
algorithm, L1 regularization algorithm, and proposed algorithm for the BSS of real signals.
The changes in the performance index ζ during the training for all the algorithms are
presented in Figure 21. As shown, the performance index of the standard MLE-based
ICA algorithm remained relatively unchanged, indicating that this algorithm was poor
for separating real signals. The L1 regularization algorithm and the proposed algorithm
both exhibited a decline in ζ, indicating that the algorithm played a role in improving the
separation effect. Overall, the proposed algorithm had the best separation effect but also
converged rapidly. The final values of ζ are presented in Table 10. According to the results,
we conclude that the proposed algorithm is more suitable than the other algorithms for
engineering applications.
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(a) test equipment (b) the field test environment

Figure 19. Field environmental test of generator set in ship engine room.
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(a) Mixed signal spectrum collected by the sensors
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Figure 20. Mixed signal spectrum collected by the sensor and correlation analysis.

Table 10. Performance indices for each algorithm at the end of the training.

MLE-Based ICA L1 Regularization Proposed Algorithm

ζ 0.548 0.497 0.483

Figure 22 shows the correlation coefficients between the separation results and the
observed signals for each algorithm. IC2 exhibited a larger correlation coefficient with OB0
and a smaller correlation coefficient with OB1 for the proposed algorithm than for the other
algorithms, indicating that the proposed algorithm contains fewer components related
to OB2. This also suggests that the proposed algorithm had a more thorough separation
result. In summary, the proposed algorithm has a more thorough separation result and
better BSS performance than the other algorithms in practical engineering applications.

The separation result of the proposed algorithm is shown in Figure 23. Comparing
Figure 23a,b reveals that the separation of the MLE algorithm is not thorough and that the
components of the source signal are difficult to distinguish, whereas the proposed algorithm
can clearly find the components of the observed signal f = [91.8 MHz, 435 MHz, 623 MHz].
This observation is consistent with the results of the previous correlation analysis, which
proves the effectiveness of the proposed algorithm in practical engineering applications.
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Figure 21. Changes in during the training process for each algorithm.
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Figure 22. Correlation coefficients between the separation results and the observed signals for each algorithm.
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(a) Separation result of MLE-ICA algorithm
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(b) Separation result of the proposed algorithm

Figure 23. Separation results of real-ship tests.

5. Conclusions

A BSS method combining an NN with a bias term and the MLE criterion is pro-
posed in this paper. The introduction of the L2 regularization of the bias term in the
NN avoids overfitting during the training of the NN and improves the convergence rate
and steady-state performance of the algorithm. Additionally, an optimization algorithm
with a dual-acceleration strategy for neural-network learning is presented. This strategy
employs the momentum term and the modified exponentially weighted root mean square
to accelerate the gradient. It has stronger adjustment inertia compared with conventional
optimization algorithms and can make the originally steep gradient direction in the param-
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eter space smooth and fast. A simulation analysis of the proposed algorithm confirmed
its anti-interference ability and its advantages over the MLE-based ICA with regard to the
convergence rate and steady-state performance. Furthermore, the proposed algorithm has
a simple structure, without the whitening (pre-processing) of conventional BSS algorithms.
The algorithm is highly scalable and, thus, can be continuously improved to enhance its
performance. However, there are limitations related to the implementation of the algorithm.
Because the learning rate in the optimization of the NN is still relatively fixed, a learning-
rate regulator should be introduced in the future to dynamically adjust the learning rate of
the optimization algorithm for improving its performance. Additionally, in future research,
we expect that NNs will be used to estimate the number of signal sources.
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