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Abstract: A combined transrectal ultrasound and photoacoustic (TRUS–PA) imaging probe was de-
veloped for the clear visualization of morphological changes and microvasculature distribution in the
prostate, as this is required for accurate diagnosis and biopsy. The probe consisted of a miniaturized
128-element 7 MHz convex array transducer with 134.5◦ field-of-view (FOV), a bifurcated optical
fiber bundle, and two optical lenses. The design goal was to make the size of the TRUS–PA probe
similar to that of general TRUS probes (i.e., about 20 mm), for the convenience of the patients. New
flexible printed circuit board (FPCB), acoustic structure, and optical lens were developed to meet the
requirement of the probe size, as well as to realize a high-performance TRUS–PA probe. In visual
assessment, the PA signals obtained with the optical lens were 2.98 times higher than those without
the lens. Moreover, the in vivo experiment with the xenograft BALB/c (Albino, Immunodeficient
Inbred Strain) mouse model showed that TRUS–PA probe was able to acquire the entire PA image
of the mouse tight behind the porcine intestine about 25 mm depth. From the ex vivo and in vivo
experimental results, it can be concluded that the developed TRUS–PA probe is capable of improving
PA image quality, even though the TRUS–PA probe has a cross-section size and an FOV comparable
to those of general TRUS probes.

Keywords: transrectal probe; optical lens; ultrasound imaging; photoacoustic imaging; prostate cancer

1. Introduction

Transrectal ultrasound (TRUS) has been used for the screening and diagnosis of
prostate cancer, which is one of the most common cancers occurring in adult men [1]. For
imaging, a TRUS probe is inserted into the rectum. Therefore, it is desirable that the size of
TRUS probes should be as small as possible, to relieve of the patient’s pain during imaging.
In order to image the entire prostate, the field-of-view (FOV) of conventional TRUS probes
should be as large as possible. These two restrictions limit the spatial and contrast resolu-
tions of TRUS images, because aperture size is one factor determining the spatial resolution
and signal-to-noise ratio of ultrasound (US) images, and physical conformation for wide
FOV possibly degrades the sensitivity of US probes. For these reasons, TRUS imaging does
not provide enough resolution and sensitivity to clearly identify and locate prostate cancers
(especially early stage prostate cancers) and to accurately distinguish prostate cancers from
benign prostatic hyperplasia [2]. In addition, the accuracy of TRUS-image-guided biopsy
is only 20 to 30% [3], because optimal biopsy sites are not clearly shown on TRUS images,
thus requiring repeated biopsies at the expense of the cost of diagnosis and the risk of
complications.

Contrast-enhanced ultrasound (CEUS), in combination with TRUS imaging, has been
used successfully to improve diagnostic accuracy of prostate cancer [4–6]. Since CEUS
facilitates clear visualization of micro- and neo-vascularization, the success rate of TRUS
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image-guided biopsy is increased. This is because hyper-vascularity is typically observed in
the periphery of prostate cancer [5,7]. However, CEUS is less sensitive to small blood vessels
and slow blood flow, even if US contrast agents are used [6]. Note that it is considered that
those are the indicators associated with early stage cancers [8].

On the other hand, photoacoustic (PA) imaging is highly sensitive to blood vessels [9]
and biopsy needles [10]. Therefore, combined TRUS and PA (TRUS–PA) imaging can be
a solution to the problems of CEUS and TRUS imaging if high performance TRUS–PA
probes are available. The first feasible study was conducted to demonstrate that TRUS–PA
imaging can be used for accurate diagnosis of prostate cancer due to the clear visualization
of microvasculature distribution in the prostate [11,12]. For the pilot study, a TRUS–PA
probe with a wide FOV of 160◦ was developed; it consisted of a 128-element, 6.5 MHz
TRUS array transducer and two convex-shaped optical modules for irradiated light to cover
the wide FOV [11]. Note that no detailed technical information about the specifications of
the TRUS transducer, the design of the optical modules, the integration of the TRUS, and
optical modules could be found. As another approach, it has recently been reported that a
64-element, 5 MHz linear capacitive micromachined ultrasonic transducer (CMUT) could
be used for TRUS–PA imaging [13]. The CMUT array was a side-looking transducer with a
FOV of 40◦, and three optical fiber bundles were placed on three sides of the CMUT array,
to create dark field light illumination. However, the CMUT-based TRUS–PA probe should
be further improved, because general TRUS probes are forward-looking transducers and
have a wide FOV larger than 130◦, to ensure diagnostic efficiency. In addition, both types
of the TRUS–PA probes have a maximum cross-sectional size of 25 mm or more, and that is
larger than general TRUS probes.

Since a TRUS transducer should be integrated with an optical module for TRUS–PA
imaging of the prostate, it is challenging that the TRUS–PA probe is similar in size to general
TRUS probes but has a large FOV. In this paper, we report a recently developed TRUS–PA
probe that meets both requirements of size and FOV; the objective of the development was
that the TRUS–PA had a size and FOV similar to conventional TRUS probes, with which
high-quality PA images could be obtained. To achieve the development goal, particularly,
the optical lens was designed to have a concave–convex shape in the lateral-axial plane
for divergence and a planar–oblique shape in the elevation-axial plane for refraction. The
TRUS–PA probe developed here consisted of a miniaturized 128-element 7 MHz convex
array transducer with a FOV of 134.5◦, a bifurcated optical fiber bundle, and two optical
lenses; the maximum cross-sectional size of the TRUS–PA probe was about 20.5 mm,
which is similar to that of the commercial TRUS transducers. From ex vivo and in vivo
experiments, it was ascertained that the developed optical lens facilitates efficient delivery
of light to the imaging plane (i.e., lateral-axial plane). In this study, additionally, light
penetration through the porcine intestine was measured as a function of wavelength, to
determine an optimal wavelength for PA imaging of the prostate. This was necessary
because radiated light should penetrate the wall of the rectum, to reach the prostate, and it
is known that light absorption highly occurs in the rectal wall.

2. Transrectal Ultrasound and Photoacoustic Imaging Probe

The developed TRUS–PA probe consists of an optical module, a TRUS array transducer,
and a housing. The goal in developing the TRUS–PA probe was to make its diameter similar
to that of general TRUS probes (i.e., about 20 mm), for the convenience of the patients.
Note that the patients generally complain of great pain when a TRUS probe is inserted into
the rectum for prostate imaging; the smaller the probe size, the better. Moreover, the probe
was designed to have an imaging plane covering the prostate gland volume that typically
measures 30 mm (anteroposterior) × 30 mm (width) × 50 mm (longitudinal) [7,14]. The
goal could be achieved by developing a miniaturized convex ultrasound array and an
optical lens, as shown in Figure 1; the cross-sectional size of the front part of the developed
TRUS–PA probe was 14 mm × 15 mm. To the best of our knowledge, this size is the
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smallest of the reported TRUS–PA probes. Each component of the developed TRUS–PA is
described here.
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Figure 1. (a) Schematic of the developed transrectal ultrasound–photoacoustic (TRUS–PA) probe
consisting of a TRUS array transducer, two optical fiber bundles, and two optical lenses. (b,c) Pho-
tographs of the developed TRUS–PA probe.

2.1. Optical Module

For high-quality PA images, light should be delivered to an imaging plane efficiently
(see Figure 2). A simple and general way is to place two optical fiber bundles on each side of
an US transducer and to tilt the fiber bundles at a certain angle, so that the beams overlap at
the desired depth in an imaging plane [15–17]. As another way, optical reflectors attached
to one side of an US transducer can be used to deliver light to the imaging plane [18,19].
However, these methods inevitably result in increasing the size of a US–PA probe, thus
being not suitable for a TRUS–PA probe. For the sake of small size, optical fiber bundles can
be simply attached parallel to each side of an US transducer. If the outlets of optical fiber
bundles have a large numerical aperture, emitted light can spread at a large angle, so that
the light can cover the region of interest (ROI) in the desired imaging plane. Although the
divergent beam may be a feasible solution for a TRUS–PA probe with small external size
and large FOV, the light fluence delivered in ROI is too small to be suitable for high-quality
PA imaging. This is because emitted light can suitably spread in the lateral-axial plane, but
much of the light cannot reach an imaging plane, due to no focusing on the elevation-axial
plane. Note that PA signal intensity is linearly proportional to light fluence. Additionally,
undesired PA signals are possibly generated from the off-axis of an imaging plane and
received by a US transducer, thus degrading PA image quality.

For large FOV and light focus on ROI, while minimizing the size of the TRUS–PA
probe, we designed an optical lens, as shown in Figure 2; the desired optical lens should
produce a divergent beam in the lateral-axial plane that is equal to the imaging plane
(Figure 2b) and a refracted beam in the elevation-axial plane (Figure 2c). To obtain the
properties, the optical lens should have a concave–convex shape in the lateral-axial plane
for divergence and a planar–oblique shape in the elevation-axial plane for refraction.
The optical lens was designed, using the ray-tracing technique [20,21], to determine key
parameters for fabrication of the lens: radius of curvature of the concave and convex
boundaries for the concave–convex lens, and inclination angle of the oblique boundary
for the planar–oblique lens. For the sake of simplifying the design, we assumed that a ray
was a collimated beam (i.e., light diffraction was not considered) and ignored the law of
reflection. Since the output aperture of the optical fiber bundle used for this study was
configured as a 13 mm × 2 mm rectangle, the width of the collimated beam was set to
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be 13 mm in the lateral-axial plane and 2 mm in the elevation-axial plane. Therefore, the
lens thickness in the elevation direction was selected to be 2 mm. Note that the custom-
made optical fiber bundle had a numerical aperture (NA) of 0.22, so that the emitted light
could be approximately considered as a collimated beam. The focal length of the lens was
determined to be 25 mm, considering the longitudinal size of the prostate. Note that most
prostate cancers occur at a depth of less than 30 mm from the rectal wall [22]. As a lens
material, we selected Epotek-301 (Epoxy Technologies, Billerica, MA, USA), because the
optical transparency of the material is 0.95 in the 382–1640 nm range [23]; its refractive
index is 1.519. The equations derived for the optical lens design based on the ray-tracing
method and numerical-simulation results can be found in Appendix A.
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Figure 2. Conceptual illustration of (a) the developed TRUS–PA probe with two optical lenses placed
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As a result, the concave–convex radii were selected to be 8 and 11.5 mm (see Figure 3a).
In this case, an FOV of 105◦ in the lateral-axial plane was expected. Moreover, the incli-
nation angle of the oblique boundary for the planar–oblique lens was determined to be
80◦. With these parameters, a positive mold for the optical lens was designed by using a
3D CAD (Computer Aided Design) program and created by using a 3D printer (Form 2,
Formlabs, MA, USA), as shown in Figure 3a,b. Glass plates surrounded the positive mold,
to construct dams, and Room-Temperature-Vulcanizing (RTV) silicone rubber (RTV664,
Momentive Performance Material Inc., Waterford, NY, USA) was poured into the positive
mold and cured at room temperature, for 24 h. The negative RTV mold was prepared after
removing the positive mold (Figure 3c). Epotek-301 resin and hardener were mixed at
a ratio of 4:1, and the epoxy mixture was degassed for 10 min. The epoxy mixture was
poured into the negative RTV mold and cured at room temperature, overnight, in a dry
box. Finally, the completed optical lens was separated from the RTV mold, as shown in
Figure 3d.
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2.2. Transrectal Ultrasound Array

We designed and fabricated a miniaturized 7 MHz TRUS array transducer, of which the
footprint was 11.4 mm (lateral) × 5 mm (elevation): 128 elements, 30 mm elevational focal
length, and 134.5◦ FOV. Geometric focus in the elevation direction, instead of lens focus,
was employed to avoid ultrasound attenuation in an acoustic lens material. Therefore, the
array transducer had a saddle-shaped aperture (Figure 4a). The first and second acoustic
matching layers were 2–3.5 µm silver-loaded epoxy and mixture of Insulcast 502 and
Insulcure 9. The backing block was constructed by using Epotek-301. To obtain high
transmission and reception efficiency, additionally, a PZT-5H-based 1–3 piezocomposite
was designed and fabricated (Figure 4b). For a small-sized TRUS probe, FPCB (flexible
printed circuit board) should be completely bent perpendicular to the convex surface.
For this, a new structure of FPCB, with several strain relief slits between the signal trace
groups, was developed (Figure 4c). The center frequency and −6 dB fractional bandwidth
of the fabricated TRUS array were measured at 6.75 MHz and 66%, respectively. The
detailed fabrication process and imaging performance of the TRUS array developed for the
TRUS–PA probe can be found in Reference [24].
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2.3. Housing

The TRUS–PA probe housing was designed using a 3D CAD software to integrate the
miniaturized TRUS array, optical lens, and bifurcated optical fiber bundles (Figure 5). The
cross-section size of the front part of the housing, that is inserted into the patient’s rectum for
imaging, was determined to be 14 mm × 15 mm, considering the usefulness in the diagnosis
and the alleviation of the patient’s pain during imaging (Figure 5b). The housing had two
grooves for mounting the fabricated optical lenses. Moreover, the outlets of the optical fiber
bundles were fixed on the aligners in the housing (Figure 5c). A prototype of the TRUS–PA
probe housing was constructed using the 3D printer, and the material of the housing was
biocompatible photopolymer resin. Figure 1 shows the photographs of the completed
TRUS–PA probe. The remarkable fact is that the maximum cross-sectional size of the
developed TRUS–PA probe was about 20.5 mm, which was comparable to the commercial
TRUS transducers although the probe contained both acoustic and optical modules.
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view and (b) front view of the housing, and (c) cross-section view of the housing tip.

3. Performance Evaluation and Discussion
3.1. Light-Intensity Distribution

The performance of the developed optical lens was evaluated by measuring the light-
intensity distribution as a function of depth. A continuous wave (CW) laser system (Nova
Pro., RGB Photonics GmbH, Kelheim, Germany) was used to deliver a CW laser with a
wavelength of 520 nm to a custom-made bifurcated optical fiber bundle with an NA of
0.66 (see Figure 6). Since irradiated light is scattered in biological media, we selected the
fiber bundle with a relatively large NA; otherwise, the light hardly reached an imaging
plane without the developed optical lens when the outlets of the fiber bundle were parallel
to light propagation direction. For evaluating the performance of the optical lenses, we
placed the optical lenses as close as possible to the bundle outlets, because it was assumed
that a collimated beam entered the optical lens. Light intensity was measured after an
optical screen was placed at a desired distance from the outlets of the fiber bundle, i.e., 10
to 60 in 10 mm increments. The light-intensity distribution on the screen was detected and
recorded, using a charge-coupled device (CCD) camera (CoolSNAP MYO, Photometrics,
Tucson, AZ, USA) equipped with an optical lens (Micro-Nikkor 105 f/2.8, Inc., Rochester,
NY, USA).
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As shown in Figure 7a,c, the light-intensity distribution without the optical lens was
naturally diffused, because an uncollimated beam (i.e., an NA of 0.66) was irradiated. The
diffusion in biological media may be beneficial to a small-sized TRUS–PA probe in which
optical fiber bundles are simply attached parallel to each side of an US transducer. In this
particular experiment, the light beams irradiated from two optical fiber bundle outlets were
separated from one another at depths of 10 and 20 mm, and these began to overlap after a
depth of 30 mm (see Figure 7a). Since the irradiated light beams did not overlap completely
in the imaging plane, the light intensity was weak in the imaging plane (i.e., lateral-axial
plane), and the FOV of PA images was predicted to be narrow, as shown in the top panel
of Figure 8. In this depth, additionally, the light intensity was strong in the off-axis of an
imaging plane, thus resulting in reducing spatial and contrast resolutions of PA images;
the adverse effect occurs for a similar reason that the spatial and contrast resolutions of US
images are reduced due to large slice thickness (i.e., elevation resolution) [25]. In contrast,
the light beams passing through the optical lenses overlapped from a depth of 10 mm
(Figure 7b), and the light intensity at depths of 10 and 20 mm was about 5.3 and 4.6 times
higher than that of the light delivered without the optical lens (the top panel of Figure 8).
Additionally, the light-intensity distribution was wider in the imaging plane when the
optical lens was used. This is because the lens had the ability to spread the irradiated light
in the lateral-axial plane and refract it in the elevation-axial plane. The full-width at half
maximum (FWHM) of the irradiated light through the lens was 20.2, 25.5, and 28.9 mm at
depths of 10, 20, and 30 mm, whereas that of the light without the lens was 17.4, 12.3, and
15.8 mm. The maximum intensity of the light through the lens was similar to that without
the lens at a depth of 30 mm as shown in Figure 8. After this depth, the maximum intensity
of the light through the lens decreased slightly with depth, because the focal length of
the planar–oblique lens in the elevation-axial plane was 25 mm and the light continued
to spread in the lateral-axial plane; however, the FWHM also continued to broaden, i.e.,
31.1, 32.1, and 32.5 mm at depths of 40, 50, and 60 mm, whereas the FWHM of the light
irradiated without the lens was 21.8, 25.0, and 27.8 mm at depths of 40, 50, and 60 mm (the
bottom panel of Figure 8). Note that moving averaging filtering with a length of 30 was
performed for smoothing the pixel data indicated by the black lines.
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The experimental results implied that the developed optical lens was predicted to be
beneficial for PA image quality improvement and wide FOV. However, the performance
may be different in biological media in which irradiated light spreads rapidly due to optical
scattering, depending on the type of biological media [26]. In the results of Monte Carlo
simulation (see Appendix C Figure A3), it was observed that the direction of the light
scattering is dominated by the energy distribution of the initially irradiated light. Therefore,
the developed optical lens was also expected to play an important role in increasing FOV
and improving PA image quality in biological media. This was confirmed through the
following experiments conducted to evaluate imaging performance.
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3.2. Imaging Performance

The effect of the developed optical lens on FOV and PA signal intensity was ascertained
through PA imaging of tungsten wires that were placed radially; each wire with a diameter
of 100 µm was positioned at -75◦ to 75◦ at 15◦ angular intervals, and 5 to 55 mm at 10 mm
radius intervals. The wire phantom was immersed into a container filled with 3% milk
solution that served as optical scatterers. For imaging, laser pulses with a length of 7 ns
and a wavement of 720 nm were generated by a Nd:YAG laser excitation system (Surelite
III-10, Continuum Inc., Santa Clara, CA, USA), followed by an optical parametric oscillator
(Surelite OPO Plus, Continuum Inc.). The developed TRUS–PA probe was connected to
a commercial US imaging system (Vantage Research Ultrasound System, Verasonics Inc.,
Kirkland, WA, USA), to acquire PA image data. PA images were reconstructed, using an
adaptive beamforming algorithm on MATLAB (MathWorks Inc., Natick, MA, USA) [27],
and these were logarithmically compressed with a dynamic range of 35 dB. Note that a
laser induced the noise signals that appeared on the PA images (Figure 9) in the dynamic
range. The noise can be considerably reduced when electromagnetic interference shielding
methods are applied to the housing and connector of the TRUS–PA probe for the purpose
of commercialization.
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In visual assessment, it was seen that the TRUS–PA probe with the developed opti-
cal lens provided a higher-quality PA image than without the optical lens (Figure 9a,b).
Without the developed optical lens (Figure 9a), the wires located at 38 and 48 mm barely
appeared on the image because PA signal intensity was similar to the noise. Note that the
distance between the probe and the front wires was about 5 mm. In addition, there were
some invisible wire images even at 25 mm, which were indicated by the white arrows.
When the optical lens was used, in contrast, the wire images positioned up to 35 mm were
clearly observed and some wires located at 45 mm also appeared; however, the wire images
on the edge were not visible. This is possible because the outer scanlines of both US and PA
images were generally formed by using fewer channel datasets than the middle scanlines.
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For example, only 32 channel datasets are available for the outermost scanline, whereas the
center scanline is formed by using 64 channel datasets. Based on the position of the wire
images, it was found that the FOV of the developed TRUS–PA probe was about 120◦ at a
depth of 25 mm, and it was 90◦ at 35 mm. Note that the optical lens was designed to have
an FOV of 105◦ in the lateral-axial plane and a focal length of 25 mm for the planar–oblique
lens in the elevation-axial plane. To assess the effect of the lens on PA signal intensity, the
envelope signals generated from the center wires (Figure 9c) and the wires along the arc
of the circle with a radius of 25 mm (Figure 9d) were obtained. The PA signals acquired
with the optical lens were much higher than those without the lens (i.e., 2.98 times higher
on average). From the experimental results, it could be concluded that the developed
optical lens was effective in focusing irradiated laser onto the imaging plane, even in the
scattering medium.

3.3. Combined US and PA Imaging of Targets Behind the Procine Intestine

The prostate is positioned behind the wall of the rectum. Therefore, we measured
light penetration through the porcine intestine, to predict the effect of the rectal wall on
the PA imaging of the prostate and to determine an optimal wavelength for PA imaging
of the prostate. This experiment was necessary because some researchers have reported
Monte Carlo simulation results that light intensity passing through the rectal wall is limited
for transrectal PA imaging due to the high light absorption in the rectal wall. Based on
the simulation results, they asserted that the transrectal approach for PA imaging of the
prostate might not be suitable, and it would be difficult to achieve sufficient imaging depth,
spatial resolution, and FOV for the prostate PA imaging [28,29].

For the attenuation measurement to explore the possibility of the TRUS–PA imaging
of the prostate, the Nd:YAG laser excitation system, followed by the optical parametric
oscillator, was used to generate 7 nm laser pulses, as shown in Figure 10a. The laser
energy delivered by the bifurcated optical fiber bundle was measured by using an energy
meter (MAESTRO, Gentec-EO Inc., Quebec, QC, Canada) and recorded. The laser energy
measured without the porcine intestine served as a reference at a given laser wavelength.
After placing the porcine intestine between the optical fiber bundles and the energy meter,
the laser passing through the porcine intestine was measured. The thickness of the porcine
intestine was about 3 mm, which is similar to the median human rectal wall thickness [30].
A ratio of laser energy penetration was calculated by dividing the measured laser energy by
the reference. This process was repeated by changing the wavelength from 650 to 975 nm,
at 25 nm intervals. Note that the experiments were performed four times, with different
porcine intestines. As shown in Figure 10b, the highest mean ratio of the laser energy
penetration was 26.3% at a wavelength of 780 nm, and the average of the mean ratios at all
the wavelengths was 21.9%.

The feasibility of combined US and PA imaging through the porcine intestine was
investigated. For this, five graphite rods with a diameter of 0.5 mm were embedded
diagonally in chicken breast specimens covered by the porcine intestine, as shown in
Figure 11a. For the PA imaging, a wavelength of 780 nm was selected. Despite the
presence of the porcine intestine, the graphite targets were well distinguished from the
speckle pattern in the US image of the chicken breast tissue, which were indicated by
the white arrows in Figure 11b; the PA intensity decreased 2.4 times on average when
the porcine intestine was covered, compared to that without the porcine intestine cover
(see Appendix C Figure A4). Note that the measurement of the laser penetration shown
in Figure 10 was conducted without the developed optical lens. Due to the beam focus
on the imaging plane by the optical lens, the reduction ratio in the imaging test was
smaller than the direct measurement. Unlike the previously reported simulation results,
the experimental results showed the possibility of acquiring a combined US and PA image
of the prostate through the human rectum intestine. The similar results were also obtained
in vivo, as shown in Figure 11d.
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Figure 11. (a) Photograph of the imaging target used for the ex vivo experiments and (b) combined US and PA image
of the five graphite rods in the chicken breast tissue covered by the porcine intestine. The US and PA images were
logarithmically compressed with a dynamic range of 55 and 25 dB, respectively. (c) Photograph of the xenograft BALB/c
(Albino, Immunodeficient Inbred Strain) mouse covered by the porcine intestine for the in vivo experiments and (d)
combined US and PA images of the tumor site on the mouse. The US and PA images were logarithmically compressed with
dynamic ranges of 45 and 25 dB, respectively.

For the in vivo experiment, the xenograft BALB/c (Albino, Immunodeficient Inbred
Strain) mouse model, in which PC-3 prostate cancer cells were implanted around the thigh,
was prepared. The animal experiment was conducted in accordance with the guidelines
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and regulations approved by the Institutional Animal Care and Use Committee of Seoul
National University Bundang Hospital, South Korea. The mouse model was fixed on the
acoustic absorber, and the porcine intestine was placed on the back of the mouse, enough
to cover the tumor, as shown in Figure 11c. The laser wavelength was set to 780 nm for
the PA imaging. Figure 11d shows the combined US and PA image of the PC-3 tumor
mouse model. The white dashed line in this image represents the tumor boundary, and
the two solid lines indicate the porcine intestine boundary. Note that suspicious tumors
appear hypoechoic in US images [31]. The PA signals were observed around and inside
the tumor, which may be evidence of the neovascularization for tumor cell growth [12,32].
Additionally, it was seen that the developed TRUS–PA probe was able to acquire the entire
PA image of the mouse thigh behind the porcine intestine (i.e., about 25 mm depth from
the porcine intestine), even though no contrast agent was used.

4. Conclusions

The primary challenge in accurate diagnosis of prostate cancer is to locate micro-
and neo-vascularization accurately, as well as to delineate the cancer boundary clearly.
Combined US and PA imaging is the most feasible way to achieve the goal because of
high-sensitivity PA imaging of blood vessels in conjunction with US anatomic imaging;
this emerging method is analogous to combined CEUS and US B-mode imaging that is less
sensitive to small blood vessels and slow blood flow even if US contrast agents are used.
Additionally, it is well-known that PA imaging is able to provide clear visualization of a
biopsy needle. As a result, the diagnosis of prostate cancer can be another candidate for
clinical application of combined US and PA imaging. This can be realized by a combined
US and PA imaging system equipped with a high-performance hybrid imaging probe.
Based on the ex vivo and in vivo experimental results, we believe that the FPCB, acoustic
structure, and optical lens developed in this study can contribute to the realization of a
high-performance TRUS–PA probe for accurate diagnosis of prostate cancer, because these
features enable the developed TRUS–PA probe to improve PA image quality, as well as to
have a cross-section size and a field of view comparable to those of general TRUS probes.
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Appendix A. Optical Lens Design

The optical lenses were designed and modeled by using the ray tracing technique [20,21].
Rays, idealized models of light, can be obtained by selecting a line that actually indicates
the direction of energy flow perpendicular to light wavefront. Rays were used to model
light propagation through optical systems, such as optical lenses. Ray tracing is achieved
by dividing a light irradiation field into discrete rays that can be used to estimate the
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path of light through an optical system. Ray tracing is described by three equations, i.e.,
refraction, reflection, and transfer equations.

Based on the ray tracing technique, a desired optical lens could be simply designed.
For the sake of simplification, we assumed that a ray was a collimated beam (i.e., light
diffraction was not considered) and ignored the law of refection. The desired optical
lens should produce a divergent beam in the lateral-axial plane (Appendix A Figure A1a)
and a refracted beam in the elevation-axial plane (Appendix A Figure A1b); the optical
lens should have a concave–convex shape in the lateral-axial plane for divergence and a
planar–oblique shape in the elevation-axial plane for refraction.

For a divergent ray in the lateral-axial plane, we considered collimated rays that pass
through a concave boundary. In this case, Snell’s law leads to the following:

sin(θ2) =
n1

n2
sin(θ1), (A1)

where θ1 and θ2 are the angles of incident and refracted rays; n1 and n2 are the refractive
indices of air and the lens material (see Figure A1c). Therefore, θ1 and θ2 can be calculated
by using the following equation:

θ1 = sin−1
(

x1

R1

)
, (A2)

θ2 = sin−1
(

n1

n2

x1

R1

)
, (A3)

where x1 is the radius of the incident beam, and R1 is the radius of curvature of the concave
boundary. The geometry yields are as follows:

φ1 = θ1 − θ2 = sin−1
(

x1

R1

)
− sin−1

(
n1

n2

x1

R1

)
(A4)

and
sin(φ2) =

x2

R2
, (A5)

where R2 is the radius of curvature of the convex boundary, and x2 is determined by
the following:

x2 = x1 + tan(φ1)[R2cos(φ2)− R1cos(θ2)], (A6)

By using Equations (A4) and (A5), at the convex boundary, θ3 can be expressed
as follows:

θ3 = φ2 − φ1 = sin−1
(

x2

R2

)
− sin−1

(
x1

R1

)
+ sin−1

(
n1

n2

x1

R1

)
, (A7)

When passing through a convex boundary, the ray also experiences Snell’s law, which
is given by the following:

sin(θ4) =
n2

n1
sin(θ3) =

n2

n1
sin

[
sin−1

(
x2

R2

)
− sin−1

(
x1

R1

)
+ sin−1

(
n1

n2

x1

R1

)]
, (A8)

Finally, the divergent angle, φ3, can be expressed as follows:

φ3 = φ2 − θ4. (A9)
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For the transrectal ultrasound–photoacoustic (TRUS–PA) imaging, the size of incident
light (i.e., x1) is determined by the height of an optical fiber bundle. After selecting the
desired divergent angle, φ3, the design parameters R1 and R2 can be determined by using
Equations (A5), (A8), and (A9). Note that if the radius of curvature of the concave boundary,
R1, is much longer than the incident beam radius, x1, Equation (A9) can be approximately
expressed as follows:

φ3 ≈
(

1 − n2

n1

)
x2

R2
+

n2

n1

(
1 − n1

n2

)
x1

R1
, (A10)

because it is valid that sin(θ) ≈ θ if θ < 14
◦
, at which an error rate is 1%.

For converging light illumination in the elevation-axial plane, collimated rays meet
the planar boundary at which normal incidence occurs (see Appendix A Figure A1d). The
rays are only refracted at the oblique boundary. The angle of refraction is as follows:

θ2 = sin−1
(

n1

n2
sin(θ1)

)
, (A11)

where n1 and n2 are the refractive indices of air and the lens material, and θ1 can be obtained
by the following:

θ1 = 90 − ϕ1. (A12)

Note that ϕ1 is the inclination angle of the oblique boundary. Moreover, the angle of
the refracted ray to the z-axis is derived as follows:

ϕ2 = ϕ1 + θ2 − 90. (A13)

Finally, the focal length from the surface of an ultrasound transducer can be derived
as follows:

F = L +
0.5H

tan(ϕ1)
+

d + 0.5H
tan(ϕ2)

, (A14)

where L is the length of the short base of the planar–oblique lens, H is the height of the
lens, and d is the gap between the focal depth and the lens in the elevation direction. Note
that d is approximately equal to half the height of an ultrasound transducer.
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Appendix B. Numerical Simulation

The equations derived for the optical lens design cannot be expressed as a closed form.
The target parameters for the concave/convex-shaped lens are the radius curvatures (i.e., R1
and R2), whereas the parameter for the planar/oblique-shaped lens is the inclination angle
of the oblique boundary, ϕ1. When other parameters were given, the target parameters
were found by numerical simulation.

As an optical lens material, we chose Epotek-301 (Epoxy Technologies, Billerica, MA,
USA) because the optical transparency of the material is 0.99. Its refractive index (i.e., n2) is
1.519. We assumed that other media was air, of which the refractive index is 1.0003 (i.e., n1).
Since the length of the optical fiber bundle used for this study was 13 mm, the radius of the
collimated beam (i.e., x1) was set to be 6.5 mm. For efficient photoacoustic (PA) imaging of
the prostate, the field of view (FOV) in the lateral-axial plane should be as wide as possible;
our target FOV was wider than 100◦, so the desired divergent angle, φ3, in Equation (A9)
should be larger than 50◦. With the given parameters, we conducted iterative numerical
simulation to find the radius curvatures (i.e., R1 and R2) of the concave/convex-shaped
lens. Finally, we selected a R1 of 8 mm and a R2 of 11.5 mm. In this case, FOV was expected
to be 105◦ (see Appendix B Figure A2a).
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red lines are the refracted rays.

For the planar/oblique-shaped lens, the height of the lens (i.e., H) was set to be 2 mm,
the height of the optical fiber bundle was 2 mm, and the focal length (i.e., F) was chosen to
be 25 mm. Since the height of the TRUS transducer in the elevation direction was 5.5 mm,
the gap between the focal depth and the lens in the elevation direction (i.e., d) was set to be
2.75 mm. Moreover, the length of the short base of the planar–oblique lens L was 3.5 mm,
which was the difference between R1 and R2. From the iterative numerical simulation,
finally, the inclination angle of the oblique boundary (i.e., ϕ1) was determined to be 80◦

(see Appendix B Figure A2b).

Appendix C. Monte Carlo Simulation

The simulation was conducted by using a Monte Carlo light-scattering program
(available from the Oregeon Medical Laser Center, https://omlc.org/software (accessed

https://omlc.org/software
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on 10 December 2020)), to ascertain the effect of optical scattering on the performance of
the developed optical lens (see Appendix C Figure A3). The results imply that the direction
of light scattering is determined by initial optical intensity distribution. In other words, it
is not significant that the optical energy is widened by the natural diffusion, because the
amount of the optical energy or energy distribution is mainly determined by the initial
direction of irradiated light.
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Figure A4. (a) Photograph of the imaging target used for the ex vivo experiments and (b) lateral beam profiles of the
five graphite rods in the chicken breast tissue, without (solid line) or with (dashed line) the porcine intestine cover. (c,d)
Combined ultrasound and photoacoustic images of the image target, (c) without and (d) with the porcine intestine cover.
The US and PA images were logarithmically compressed with a dynamic range of 55 and 25 dB, respectively.
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