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Abstract: Recent years have seen the proliferation of different techniques for outdoor and, especially,
indoor positioning. Still being a field in development, localization is expected to be fully pervasive in
the next few years. Although the development of such techniques is driven by the commercialization
of location-based services (e.g., navigation), its application to support cellular management is consid-
ered to be a key approach for improving its resilience and performance. When different approaches
have been defined for integrating location information into the failure management activities, they
commonly ignore the increase in the dimensionality of the data as well as their integration into the
complete flow of networks failure management. Taking this into account, the present work proposes
a complete integrated approach for location-aware failure management, covering the gathering of
network and positioning data, the generation of metrics, the reduction in the dimensionality of
such data, and the application of inference mechanisms. The proposed scheme is then evaluated by
system-level simulation in ultra-dense scenarios, showing the capabilities of the approach to increase
the reliability of the supported diagnosis process as well as reducing its computational cost.

Keywords: cellular networks; location-awareness; positioning; failure management

1. Introduction

Until recently, mechanisms that are applied to implement performance analysis and
failure management activities in cellular networks have been typically based on the analysis
of alarms, radio measurements, and network performance indicators (e.g., throughput) [1].
However, this approach has become very limited due to the complexity of the new mobile
scenarios and, in particular, for ultra-dense cellular environments. The monitoring of
these deployments, increasingly common and one of the expected key scenarios in 5G,
implies important challenges [2] due to the high dynamic nature of their user distributions,
their fast-changing performance, coverage overlapping, and very variable traffic demand.
Therefore, the effectiveness of mechanisms that are purely based on network performance,
like the ones followed by previous approaches, is highly diminished.

Conversely, the improvement of User Equipment (UE) positioning in both outdoors
and indoors [3–6], allows for the generation and application of position information for
operations, administration and maintenance (OAM) automatic mechanisms [7,8].

Hence, different works and tools have been developed for location-aware failure man-
agement mechanisms. However, these approaches are only typically employed for very
specific applications that are not integrated into a general failure management architecture
and in macrocell scenarios. These systems typically rely on geolocated UE traces obtained
via drive tests, Global Navigation Satellite System (GNSS)-based third-party apps measure-
ments, as well as UE traces provided by the network itself (and typically positioned by

Sensors 2021, 21, 1501. https://doi.org/10.3390/s21041501 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5857-6403
https://orcid.org/0000-0002-7868-1729
https://orcid.org/0000-0002-5799-8540
https://orcid.org/0000-0002-3639-3534
https://orcid.org/0000-0001-7415-7009
https://orcid.org/0000-0002-8993-5229
https://doi.org/10.3390/s21041501
https://doi.org/10.3390/s21041501
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21041501
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/4/1501?type=check_update&version=2


Sensors 2021, 21, 1501 2 of 18

cellular signals localization techniques), typically known as Minimization of Drive Tests
(MDT) or UE network-based traces [9].

As it is going to be further described in Section 2, these geolocated traces had a very
different format to the classical network management variables, such as counters and
alarms, which are processed by well-known algorithms for events and time-series. This
makes the use of this location information to commonly rely on direct human inspection of
the generated positioned map-like information.

However, some works have approached the automated application of UE positioned
data for cellular management. A particular application of these traces is defined in [10],
where UE geolocated data are used for coverage estimation. The work in [11] proposes a
specific framework for the detection and compensation of cell outages based on positioned
traces and their processing using Support vector data description (SVDD). Alternatively,
geographical related information, such as the distance between UEs and the base sta-
tion (BS), have been considered as possible variables to be used by failure management
mechanisms. Particularly, Gómez-Andrades et al. proposes an unsupervised clustering
of network failures while considering such distance as an input for the algorithms [12].
Other works have focused on the application of MDT for the detection of specific problems,
such as “sleeping cells”, by means of different techniques, such as diffusion maps [13] or
N-gram analysis [14].

Other works revolve around the wider context-awareness concept [2]. This paradigm is
defined by the inclusion of non-network context variables into the cellular management
procedures. This is particularly relevant, as many variables that are outside of the network
itself have a huge impact in the communications performance. Indeed, examples of these
variables include the UEs’ positions, but also the applications being executed, battery
or positioning of the users, as well as social events [15,16]. In this line, the work in [17]
presents an automatic system for cellular network diagnosis using data from large-scale
monitoring. Such a method can use many categorical features (devices, services, and
user groups) and identify its relevance in the diagnosis. Nevertheless, the work does not
consider the UEs’ positions. Bejarano-Luque et al. [18] also combine both geolocated
information coming from third-party applications (e.g., Twitter) with social data for small
cell planning purposes.

Beyond these approaches, and in order to combine both context (specially localization)
and network data in a compatible way with general OAM approaches, the work in [19]
defined the concept of contextualized indicators. Such indicators are generated by statistically
weighting the measurements coming from different UEs, depending on their position in
the Area of Interests (AoIs) where they are located. These have the advantage of being
easy to integrate into general metrics-based inference mechanisms (e.g., for detection
and diagnosis).

Although this and the posterior work in [20] have shown the capabilities of such
indicators for the detection and diagnosis of cellular failures, they did not address some of
the main challenges introduced by the contextualized indicators and that are common to
most other approaches for context and location awareness. Firstly, the use of context and,
particularly, location, creates new metrics/features (e.g., contextualized indicators) that are
unknown by current cellular engineers and staff, which makes them extremely difficult to
be “manually” defined and for their calculation and properly chosen for their application
as inputs of inference rules. Secondly, context variables extremely increase the number of
possible indicators that can be used for inference processes.

In order to overcome these challenges, the present work develops a novel framework
that goes beyond the existing literature via the definition of a novel integrated approach for
combining location and network data, with a special focus on ultra-dense indoor scenarios.
In this way, a new method is proposed for the automatic generation of different areas of
interest and the calculations of its associated metrics. To manage the possibly vast number
of generated indicators, feature engineering (FE) techniques are integrated in the system.
From this and when considering the problems that FE and inference mechanisms can
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have when applied to changing environments and systems, a complete approach for their
selection and continuous re-training is also defined.

In this way, where previous works ignored or just summarily outlined the above-
mentioned challenges of context-awareness, the present article thoroughly defines a com-
plete framework to address them, including the automatic integration of location and
network data, the necessary FE steps to cope with the resulting increase in dimensionality,
and the re-training and selection of the algorithms to maintain their performance. Thus,
the paper is organized, as follows. Section 2 analyzes the impact of context-awareness
in the management of cellular networks. Section 3 presents the proposed system for its
application in cellular network failure management. Section 4 assesses the performance of
the framework when applied to cellular failure diagnosis in system level simulations of
ultra-dense networks. Finally, Section 5 presents the conclusions and outlook of this work.

2. Context-Awareness and Its Impact in the Management of Cellular Systems

Cellular management schemes have classically relied on network-related metrics, such
as alarms, counters, key performance indicators (KPI)s [1] and sometimes, UE traces, as
represented in Figure 1. These are used as the inputs for the classification and controller
systems that are dedicated to establishing/classifying the status of the network (e.g., its
performance or whether it is under a specific failure) as well as to define the actions to
be taken in order to compensate network service degradation/problems (e.g., excessive
dropped calls), recover from specific failures, and/or optimize the network behavior [1].
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Figure 1. Classic approach for cellular network management.

The generation of these metrics relies on network-related measurements and events
coming from UEs, BSs/cells, or other network elements. These measurements/events
are aggregated into the different metrics, for example, by their count for a specific period
(e.g., dropped calls each hour). Other metrics are based on the combination of multiple
counters and/or statistics at cell-level, e.g., mean Reference Signal Received Power (RSRP)),
mean Reference Signal Received Quality (RSRQ), number of handovers per period of one
hour, etc.

This leads to a huge number of metrics: only taking into account metrics based on
network measurements and events that are related to the UEs served by a cell, the total
number of indicators for a specific scenario is a function of the number of measurable values
(e.g., RSRP, RSRQ, drops, throughput...), multiplied by the number of calculated statistics
(mean, Xth percentile) and by the number of cells. This number is then incremented by the
KPIs generated from the counters as well as the version of the same counters and KPIs but
with different periodicities and for different radio access technologies. Such metrics are
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then used as inputs for inference/classification of the status of the network performance
and the most likely failure behind it, as shown in Figure 1. Such identification of the
network status serves to define specific actions to compensate the issue and/or recover
or optimize the network. The metrics that are used to feed the inference mechanisms are
typically decided by human experts based on their experience. Only recently the use of
automatic FE techniques has been envisaged to cover this [21].

This classic model highly changes with the use of context information and, specifically,
localization data. UE based traces imply the use of positioned data that are related to the
performance and events happening to specific terminals in the network, where such data
are very useful to the analysis of the network issues and behavior. It is typically in a format
that does not allow either a clear automation of its process or its integration into the general
network management systems.

To solve this, and, following the concept of contextualized indicators presented in [20],
positioning and network measurements data can be aggregated into time-series metrics
that are richer than the purely network-based ones. This is done by means of making
weighted statistics of the network measurements, where the weight of each sample is
associated to the context (e.g., the position) from where it was gathered. In this way, any
probabilistic statistic (mean, median, percentile) can be generated, giving a higher or lower
statistical weight (relevance) to each of the measurements. New contextualized metrics can
be generated based on different geographic areas, e.g., the mean RSRP experimented in
the center of one cell, or in any area of the scenario. Additionally, they can be defined for
specific sets of UEs based on their model, applications, services, etc. The possibilities of
generating diverse metrics by means of different statistics, context variables, and context-
based weights are nearly infinite, extremely increasing the issue of deciding which inputs
are used for the inference methods, as it is going to be evaluated for a key scenario example
in Section 5. In this way, the explosion in the number of indicators has a huge impact in
the applicability of the approach. Firstly, it implies an increase in the number of indicators
used as inputs to the inference mechanisms. This is not inconsequential, as inference
mechanisms typically have a computational complexity that is at least linearly dependent
with the number of metrics used as inputs.

Secondly, this increase in the number of metrics also translates to memory costs in
the operations support system (OSS) as well as in the computation and signaling costs
that are dedicated to the gathering and the generation of the metrics themselves. The
huge amount of information generated by the OSS is, in fact, one of the key restrictions to
the application of fine-grained network monitoring, such as detailed user traces, in real
world deployments.

3. Proposed System

The Context-aware Automated FAIlure Management (CAFAIM) framework is pro-
posed to overcome the described challenges caused by the huge increase in the number
of indicators in context-aware scenarios. CAFAIM provides an automatic integrated ap-
proach aiming to, firstly, integrate network and positioning data; secondly, to copy with
the increased number of indicators generated by the contextualized approach by applying
dimensionality reduction; and, thirdly, to implement the necessary diagnosis mechanisms.

As shown in Figure 2, CAFAIM is in this way structured into five main blocks:
data acquisition, indicators generation, feature engineering, inference, and Machine/Learning
Monitoring and Maintenance (MLMM); all of which are described in the next subsections.
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Figure 2. Proposed system scheme.

3.1. Data Acquisition

This stage is dedicated to gathering the data coming from both network and location-
sources. Network information encompasses the measurements and events generated in
the communication between the UEs and the cells and it is classically obtained from the
signaling of control and management planes. Furthermore, new dataflows of information
are required to gather UE context information, particularly the UE position. This might
be acquired from the UEs, the cellular network, or 3rd party localization services [7,21].
Additionally, the data regarding the position of the BSs and details of the scenario can be
obtained from the operator’s OSS or other network sources.

3.2. Indicators Generation

In this stage, the indicators (counters, statistics...) are calculated based on the pre-
viously acquired data. Here, it is where the use of location implies an explosion in the
number of available features in comparison with classical approaches.

Contextualized indicators are based in the integration of both context and network
data keeping the time-series nature of the resulting feature. To do so, firstly, any terminal,
ui of the network is considered to be a source of both network-related measurements and
context data [19], in particular, its position. In this way, for a specific UE ui, its location
ιui (τ) at an instant τ, can be represented as a multidimensional vector:
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ιui (τ) = {xui (τ), yui (τ), zui (τ)}. (1)

Additionally, each UE generates different measurements of different radio or service
provision parameters, where we can express any of them as κui (τ).

In order to keep the time-series format, common for counters and KPIs, any new
contextualized feature/metric f [t] should be established as a function of both the positions
and the network measurements that were gathered during a certain measurement period Tt:

f [t] = Φ({κui (τ), ιui (τ)|∀κui ∈ Kt, ∀ui ∈ Ut, τ ∈ Tt}), (2)

where Kt is the set of samples gathered during the period for any reporting UE in Ut, which
represents the set of reporting UEs during the period Tt, and the scenario of analysis. In
classical metrics, Ut is equivalent to the total of users being served by one cell and metrics
are separately generated per cell. For example, the average RSRP power in cell A is the
average calculated from all of the served UEs in such a cell.

To have f [t] as a time series, function Φ combining network and location measure-
ments shall be variadic: Φ : R|Kt | × R|Kt | → R, where |Kt| is the number of samples
gathered during the period Tt. |Kt| typically changes for each period due to the variable
number of UEs and their generated reports. The time variable t is discrete, as f [t] would
provide one value per each observation period Tt (e.g., one hour).

Statistical functions, such as averages, percentiles, etc., are compliant with the variadic
requirement for Φ and are the most used in the generation of network metrics. Weighted
statistics can then be applied order to enrich these statistics with the location information.
In this way, the weight of each sample into the statistic can be established based on the
location where it has been gathered. This is applicable to any statistic, i.e. mean, median,
percentile, etc.

An example of a weighted statistic is a weighted mean, which calculation is formu-
lated as:

fw[H] = Φw({κ, ικ |∀κ ∈ Kt}) =
∑κ∈Kt κ × w(ικ)

∑κ∈Kt w(ιk)
, (3)

where the notation of the set of measured samples and their associated locations has been
simplified, as follows:

{κui (τ), ιui (τ)|∀ui ∈ Ut, ∀κui ∈ Kt, τ ∈ Tt} = {κ, ικ |∀κ ∈ Kt}). (4)

In the expression shown in Figure 3, each possible weight function, w : R|Kt | → R will
lead to a different weighted mean Φw and therefore a different feature/indicator fw[H].
Here, the definition of specific weight functions to be applied for failure management is
one of the main challenges to overcome.

A straightforward approach for the definition of these weight functions is the use of
binary weights w : R|Kt | → {0, 1}, which is equivalent to filter the samples, depending on
their location.

Assuming this, the need to specify which samples must be filtered in or out for each
weight function is still to be defined. For this, the present work applies the concept of
Areas of Interest (AoIs): here, the different contextualized indicators are calculated as the
statistics associated with the measurements coming from the UEs located at different AoIs.
These AoIs define specific regions of the cell coverage from where obtaining differentiated
statistics/indicators can highly improve classification performance for both detection and
diagnosis. For example, the mean RSRP at the center of a cell can give us a better grasp of
possible degradations in its transmitted power that the mean associated with the complete
cell coverage, which makes it a better input for classification algorithms.

Previous works on the integration or merging of context and network information have
revolved around only using human defined integrating functions, specifically selected for
their expected statistical value in the identification of specific failures or problems [19,20].
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However, this selection is limited by the experience of the human personnel. Given the
novel introduction of context into the available metrics, this knowledge cannot go beyond
guessing which metrics would be the most useful for the classification of the network status
as this might lead to sub-optimal solutions.

Moreover, where previous works only considered as AoIs the center or the edge of
the cells, the present work highly extends the use of AoIs, implementing a completely
autonomous algorithm for the generation of the metrics that are associated with each of
the possible areas that can be the most affected by different failures. Here, the additional
concepts of influenced and influencing areas is introduced. The area of any cell A influenced
by another neighboring cell B is the part of cell A, where most likely cell B changes (e.g.,
an increase of transmitted power) might affect the UEs expected in a normal situation to
be served by A. Accordingly, cell A influencing area in B would be that where changes in
the A status would most likely impact cell B served users. From this, any superposition
between different AoIs is also considered, e.g., the center of A influenced by B, the edge of
B influenced by A, and so on.

For the automatic generation of the limits of all these areas multiplicatively weighted
Voronoi tessellations [10] are adopted. An example of estimated AoIs is presented in
Figure 3, for the airport scenario to be considered in the evaluation section, and for the case
where all the cells are expected to transmit with the same power, making the tessellation
equal to a non-weighted Voronoi diagram, where the “seeds” of the tessellation are located
at the BSs positions. From these, center areas are then generated as circles around the BSs
and with a radius equal to a percentage of the minimum distance between the BS and the
closest border of its estimated coverage.
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Figure 3. Area-based automatic indicators generation in CAFAIM, showing cell 11 proper, influenced, and influencing areas
for an airport scenario.

Additionally, the influenced areas of a given cell A (11 in the figure) are also estimated
by multiplicatively weighted Voronoi tessellation, but without considering the position of
the cell A as a seed of the tessellation. In this way, the areas of the neighboring cells also
encompass cell A original coverage. The intersection of these neighbor coverage areas and
the previously estimated coverage, center, and/or edge serve as the influenced areas of cell
A for each of its neighbors. In a similar way, the influencing areas of cell A in its neighbors
can be estimated by avoiding their positions as seeds of the tessellation.
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3.3. Feature Engineering

To overcome this, the FE stage is dedicated to the reduction of the dimensionality of
the available metrics/features, this means, the reduction in their number. Here, three main
subblocks are considered: indicators pre-processing, the selection of indicators of interest,
and extraction of synthetic indicators. In each of these phases, the number of indicators is
reduced, but maximizing the amount of useful information of interest remaining for the
posterior inference phase.

For the understanding of the FE block, it should be noticed that the applied mecha-
nisms should be previously trained while using sets of values of all the possible indicators
that can be generated from the previous stage. Afterwards, once trained, the "online phase"
has a very low computational cost, as it consists in picking some of the available indicators,
discarding those that do not add much information (pre-processing and selection), or build-
ing generally simple combinations of them (extraction), merging their information into
synthetics indicators [21]. In this way, this phase reduces the size of the set of indicators,
but maximizes its entropy.

3.3.1. Indicators Pre-Processing

Once the indicators are generated, they should be prepared for further stages. This
phase covers the proper parsing and time adjustment between the different metrics while
considering the accumulation of data coming from different sources and periodicities.

Additionally, some indicators might be directly discarded due to different reasons:
indicators that are generated from not enough samples to be considered statistically rel-
evant (e.g., metrics whose normalized variance is less than 0.3 indicates lack of relevant
information), metrics than are equal to others, or those that are constant or that do not vary
enough to be considered for classification.

3.3.2. Selection and Extraction

FE is based on selection and extraction mechanisms. Firstly, selection is the most
intuitive class of FE techniques. Selection mechanisms analyze the set of available indicators
and provide a set of weights or ranking associated with the level of relevance of each of them
in the further classifications processes. Human experts classically performed this process,
based on their knowledge on failure cases. In this way, the objective is to automatically
establish which indicator features can contribute the most to further steps.

On the other hand, extraction mechanisms are intended to generate new “synthetic”
features, which are richer in information than the original ones. These are constructed
based on the statistical analysis and subsequent combinations of the original features,
creating a new more effective set of indicators, which provides better information to the
posterior inference process and the distinction between different cases [21].

Selection and extraction can both be applied separately or sequentially. In the latest,
selection is used to obtain a subset of all the generated indicators. Based on this, a new set
of synthetic metrics are generated and fed to the inference stage.

The added value of applying FE covers not only the computational costs of posterior
stages. Firstly, the fact of having selected specific metrics can allow avoiding the gathering
of certain variables in the acquisition stages as well as their computation in the generation
phase, also reducing its computational and memory costs. This is represented by the
adjustment flows going from the FE stages to the data acquisition and indicators generation
blocks. Secondly, as it is going to be further demonstrated in Section 4, the reduction in the
number of indicators will typically allow important improvements in the posterior inference
phase, as it avoids the inclusion of features that do not provide relevant information for the
process, but that can introduce noise in their results [21].

3.4. Inference/Classification

The objective of the inference stage is to classify the status of the network to establish
the abnormality of its behavior, as well as to define the posterior actions to be taken on it.
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In this respect, different techniques can be used based on the available indicators. For this
work, supervised mechanisms are considered. These need to be trained based on indicators
coming from the network or the FE process and the labels containing information on the
status of the network when they were obtained.

Other possibilities in the use of inference mechanisms are the analysis based purely on
individual values (where the value of each indicator that is associated with a measurement
is analyzed independently) or by means of time series of the indicators with respect to past
values of it. In our case, and, given the dynamic conditions of the Ultra-Dense Network
(UDN) environment, time-dependent characteristics of the metrics are too much affected
by the highly variable user occupancy and demand. Therefore, only mechanisms omitting
the temporal characteristics of the metrics are considered.

Once the proper indicators have been selected and/or generated, the inference block
is dedicated to its application in failure management. In this way, its first objective is to
classify the status of the network to establish the abnormality of its behavior (detection) and
identify the specific failure behind the issue (diagnosis). In this respect, different techniques
can be used based on the available indicators for both detection and diagnosis [19–21].
The output of the classifier would then be used to advise human staff or to directly guide
compensation and/or recovery actions in the network.

The CAFAIM framework focuses on the provision of the metrics combining localiza-
tion and cellular data, as well as in the feature engineering of such metrics to make the
inference/classification phases reliable and efficient. Hence, for the classification stage,
CAFAIM is algorithm-agnostic and its inference block can accommodate different multi-
class classifiers for the diagnosis process. For the present work, and in order to have a broad
view of the capabilities of the approach to improve the inference stage, the inference block
features three key ML classification algorithms: k-nearest-neighbors (kNN) [22], discrimi-
nant analysis classification (DISC) [23], and error/correcting output codes classification
(ECOC) [24]. kNN is a non-parametric classifier, which establishes a category for each class
in the feature space of the data and classifies an object in one of the categories by a plurality
vote of its “k” nearest neighbors. DISC is a classifier that assumes the different classes are
based on Gaussian distributions. During training, this classifier fits a Gaussian distribution
for each class and, afterwards, every new object is classified in the class, which minimizes
the error when being fitted in the distribution. Finally, ECOC is a multi-variate mechanism
based on binary classifiers: contrary to other similar methods, ECOC establishes a binary
classifier for each class instead of using a binary classifier to compare each class with the
rest, predicting the class from within an over-determined space of solutions.

3.5. Machine Learning Monitoring and Maintenance

A wide range of machine learning (ML) mechanisms have been defined for both
selection and extraction as well as inference. For the three, the different techniques can be
differentiated by their supervised or unsupervised nature. On the one hand, supervised
mechanisms require labeled data, this means, additionally to the values of the indica-
tors/features themselves, they require pre-existent datasets where the values of the feature
are labeled as being obtained under certain performance status or class (e.g., if the values
were gathered during a specific network failure or configuration).

On the other hand, unsupervised techniques only require the values of the indicators
themselves, and they then use their statistical characteristics and the relation between
them. As an example, one of the most widely applied unsupervised ML technique for
extraction is Principal Component Analysis (PCA) [21]. This is a multivariate technique
that analyzes inter-correlated data with the goal of extracting the most relevant information
and representing it as a new data set of orthogonal variables or principal components.
Unsupervised techniques exist also for selection and classification, although for the latest
they consist in clustering the multi-variate feature values into unlabeled classes.

In both unsupervised and supervised ML, one of the main issues of fully automated
machine-learning mechanisms is their common degradation with time: once a system is
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deployed, radical or even gradual changes in the features’ values distributions lead the
defined mechanisms to degrade their performance [25]. This is especially relevant for FE,
as the selection allows to also reduce the number of variables being gathered as well as
the indicators to be generated. However, this might lead to missing metrics that become
relevant when the network changes or if new failure cases appear.

In order to avoid this issue, a machine-learning monitoring and maintenance function-
ality, MLMM, is deemed to be necessary. As represented in Figure 2, MLMM is dedicated
to periodically obtain the original complete set of indicators and check if the selection
mechanisms indicate the same relevance for the indicators or the list of the chosen metrics
needs to be updated. Equally, the MLMM oversees the training and re-training of the
extraction and inference algorithms, the statistical characteristics of the current indica-
tors being gathered and the availability of new labeled cases that can be obtained from
confirmed diagnosis.

4. Evaluation

In order to evaluate the proposed framework, its performance in classifying the
network status and the achieved execution times is assessed in comparison with classical
non-context-aware approaches as well as manual selection of the inputs to be considered
for the classification of the network status.

The system is implemented and tested via the system-level simulator that is presented
in [26] and whose main details are summarized in Table 1. Here, a key UDN scenario
modeling the departure area of Málaga city Airport is implemented. This is the one shown
in Figure 3 and further detailed in Figure 4. This includes an irregular building plan, with
walls and boarding gates. The UDN deployment is composed of 12 picocells distributed
in an area of 200 × 300 m. Three macrocells are also modeled, with the closest one being
located 500 m to the north-west of the building area. Simulated users are moving around
all available areas where realistic user pattern concentrations (hotspots) have been defined
in the security check area, boarding gates, etc.

Table 1. System level simulator parameters.

Parameter Detail Value

Propagation model Indoor-indoor Winner II A1 [27]
Indoor-outdoor Winner II A2
Outdoor-outdoor Winner II C2
Outdoor-indoor Winner II C4

Base station Directivity Omni (small)/tri-sector (macro)
Access Open (small)/open (macro)
Equivalent Isotropically Radiated
Power (EIRP)

3 dBm (small cells)/43 dBm (macro)

UE model Noise figure 9 dB
Noise density −174 dBm/Hz

Traffic model Calls Poisson (avg. 0.43 calls/user·h)
Duration Exponential (avg. 100 s)

Mobility model Outdoor 3 km/h, random direction & wrap-around
Indoor Random Waypoint based model with hotspots [28]

RRM model Cell reselection Criteria S, R
Handover Events A3, A5

Time resolution Simulation 100 ms
Classification epoch time 60 s



Sensors 2021, 21, 1501 11 of 18

DEPARTURES

Small cells

UE measurements

4

50 m

5

6

9

8

10

12
13 14 15

11
7

50 m

Cell identifier

Macrocells

1

2

3

1

8

9

Picocells

UEs

Figure 4. Evaluation scenario.

Network measurements in this scenario follow those in real deployments, while
considering cell level metrics as well as UE direct radio (RSRP and RSRQ) reports [29]. Here,
radio-based indicators are essential in order to provide a fast response to failures in UDN, as
they do not require a high number of users or long measurement periods [2]. The statistics
that are calculated for both variables are the mean of the gathered UE measurements during
each simulation loop of 60 s, where the UE reporting period is 100 ms.

The UEs pedestrian movement is implemented by a random waypoint-based model,
also incorporating the possibility to define user distribution hotspots in key areas. These
are simulated following the approach presented in [28], allowing for a pre-defined and
heterogeneous distribution of the destination points and the probability density function
of the pause time for each individual node. In this way, the mobility model generates
variable user distributions, which are key in properly evaluating the proposed system
in an environment with dynamic user densities. This is reflected in Figure 5, where the
dynamic nature of the users’ distribution is represented based on the total amount of
UE reports gathered during one minute at different stages of the simulation (starting at
t = 0, 240, 600 s, respectively). The scenario also shows an important level of heterogeneity
in the distribution of the BSs and the distances and number of neighbor cells for each one.

time

t = 0 s t = 240 s    t = 600 s 

Figure 5. Evolution in the number of received User Equipment (UE) reports (#UE reports) for
different classification epochs (60 s).

The network status and key failures being considered are normal situation (no failure),
macrocell interference, picocell interference, and picocell power degradation [19]. The proposed
system assessment is based on the analysis of 4004 loops of one minute of network simula-
tion, corresponding to an equivalent of a little less than three days of data. 25% of the loops
are under normal network conditions and another 25% is under macrocell interference. The
rest is equally distributed between picocell interference and power degradation modeled
failures [19], where the failure is generated by the central cells of the scenario 7, 8, 9, 10,
11, 12, and 13. Inference mechanisms (classifiers) should be able to distinguish between
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the different network statuses/failures as well as identifying the particular cell where
they occur.

For the validation of the approach, the samples that are associated to the 4004 loops
are randomly divided in three groups. 40% of the loops are used by the automatic FE
techniques to compute the list of selected indicators and/or the generation of synthetic
ones. Another 40% are used in the training phase of the diagnosis functions, and the
remaining 20% are used to test the performance of the diagnosis/classifier.

Six of these diagnosis configurations are evaluatedSix of these diagnosis configurations
are evaluated. The baseline, named “Classic”, consists in performing the diagnosis based
on all available classic (non-contextualized) indicators: the mean RSRP and the mean RSRQ
per cell. This leads to a total of 24 indicators (two per each of the 12 picocells).

In the second configuration, named “Fusion NoFE”, the indicated classic metrics are
joined by additional contextualized indicators. These are defined by separately considering
the mean RSRQ and RSRP values for the samples gathered from the center, edge, influenced
edge, influenced center, influencing edge and influencing center. This leads to a total of
278 indicators.

Three configurations based on automatic FE mechanisms (applied over all the Fusion
dataset) are tested. “Fusion NCA” makes use of the Neighborhood Component Analysis
supervised technique for selection [30], whereas “Fusion NCA + PCA” adds a stage of
unsupervised PCA extraction [31] after the selection. For both, 24 indicators are finally
selected/generated to compare the results with those of Classic. Finally, “Fusion NCA
+ PPCA” performs the extraction phase by applying Probabilistic Principal Component
Analysis (PPCA) unsupervised extraction [32], which is regarded as an improvement over
PCA [32]. Having 24 indicators coming from NCA as inputs, it generates 15 synthetic ones.

Alternatively, the impact of reducing the dimensionality of the Fusion set without
using automatic techniques is assessed via the “Fusion Manual” approach. In this, a
troubleshooting expert selects a total of 24 metrics from the set of all the available indicators
(both classical and contextualized). This expert follows the criteria where the chosen
metrics are those that are considered most likely to clearly serve to identify each class.
Particularly, those selected are the mean RSRP for the centers of the cell (considered to be
useful to detect the power degradation failures) and the RSRQ of the edges (assumed to be
suitable for the detection of interference cases).

The confusion matrices for Classic and Fusion NoFE configurations are represented in
Figure 6 in order to provide an initial understanding on the diagnosis process. This shows
the set of cases identified as the correct ones or any other network status. Here, each status
is labelled as 1: normal, 3: macrocell interference, 2<cell_number>: picocell interference by
<cell_number> (e.g., 207 for interference by cell 7) and 3<cell_number>: picocell power
degradation in <cell_number> (e.g., 411 for power degradation in cell 11).

Therefore, Figure 6 shows the enhancement in the classification behaviour by using
one or another configuration. Here, it is seen how the number of samples that are not in
the main diagonal decreases with the fact of using Fusion NoFE configuration. This is
translated to a better performance by the classifier. The fact of having the contextualized
information leads to a better classification performance, as it can be seen by the reduction
in the number of misclassified sample (those not in the main diagonal), which is translated
to a better performance on the system.
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(b) Fusion NoFE
Figure 6. Confusion matrices.

Going beyond this, and in order to fully evaluate the capabilities of the approach,
the diagnosis is going to be evaluated applying three different classifiers implemented by
CAFAIM: kNN, DISC, and ECOC. The automatic FE stage and the classification process are
repeated 100 times for each of the possible configurations to obtain statistical significance.
The samples are randomly divided in each iteration, while using the same data for all
configurations. When considering the need of evaluation multiple iterations, confusion ma-
trices are not the most feasible approach to represent the performance of the classification.
Instead, the F1 score is used. This popular metric allows evaluating multi-class classifiers
in terms of true and false positives (TP and FP) as well as false negatives (FN) with values
up to 1. In the same way, this metric can also be expressed based on the precision and
recall, with its expression being as below:

F1 score = 2× precision× recall
precision + recall

(5)

Both the precision and recall metric of the models are two primordial factors to take
into account in this scope. On the one hand, precision will give the accuracy with which
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the model truly diagnoses the problem on the network. This is expressed as the proportion
of predicted positives (TP and FP) that are truly positive (TP):

Precision =
TP

TP + FP
(6)

On the other hand, recall will assess how the actual network status is correctly pre-
dicted by the model by representing the proportion of true labels (TP and FN) that have
been predicted as true (TP). This can be expressed as the equation below.

Recall =
TP

TP + FN
(7)

In this way, the arithmetic mean of all F1 score values obtained class-wise (denomi-
nated as the macro-averaged F1 score) provides a key figure of merit to compare different
indicators + FE + classifier configurations [33,34]. Therefore, Figure 7 shows the results of
the macro F1 score, where each boxplot is generated from the 100 iterations performed for
each configuration.

Classic

Fusion NoFE
Fusion Manual
Fusion NCA

Fusion NCA + PCA
Fusion NCA + PPCA

Methods

Classi�ers

Classi�ers

ECOCDISCKNN

ECOCDISCKNN

M
ac

ro
F1

M
ac

ro
F1

Figure 7. Macro-averaged F1 score of the classifiers for the different configurations of classic and
contextualized scenarios and feature engineering (FE) techniques.

Meanwhile, the execution times boxplots that are represented in Figure 8 are based
on 10,000 executions (100 for each of the 100 iterations indicated before) of the inference
block for each configuration in a “high end” personal computer (6th Gen Intel Core i7-6700
(Quad Core 3.40GHz, 4.0GHz), RAM 16GB 2400MHz DDR4).

The fact of using a joint set of Fusion NoFE improves the weighted F1 score of the
models in comparison with Classic indicators, since it can be also seen that this improve-
ment is greater with DISC classifier, as depicted in Figure 7. Nonetheless, in Figure 8, the
increase of computational cost is seen, which this enhancement can carry out. Thus, it
shows how the presence of a massive amounts of indicators can contribute to improving
the diagnosis, if it will also require more time. Moreover, for Fusion Manual it is assessed
how, contrary to the reasoning of the expert, the manual selection leads to highly degraded
F1 score.
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Classic

Fusion NoFE
Fusion Manual

Fusion NCA

Fusion NCA + PCA
Fusion NCA + PPCA

Methods

Figure 8. Execution times of the classifiers for the different combinations of classic and
contextualized indicators.

Nonetheless, the advantage of using FE techniques mostly lies in the models’ execution
time. The fact of applying them allows obtaining a huge reduction in terms of time for the
model to predict, which is even lower than that obtained with the other configurations. In
this way, taking both F1 score and time execution into account, NCA + PPCA achieves the
best trade-off, which allows for positioning it as the best technique.

Equally, the enhancement of using this configuration instead of classic one is reflected
in the recall metric for each class. The worse values, which are obtained with 209 and 413
class, are totally better than those that are achieved in the classic configuration, passing
from 55.6% to 96.3%.

In this way, it has been demonstrated the capabilities that might have context-awareness
to improve inference in cellular networks, if the fact of using FE techniques allows for
relieving the extra computational cost that they might have.

5. Conclusions & Outlook

The present work has proposed a complete framework, denominated as CAFAIM,
for the generation and cost-efficient application of location to support cellular failure
management. This is achieved by the generation of indicators combining both cellular and
localization information based on the automatic definition of different areas of interest
and the calculation of their associated statistics. The resulting contextualized indicators
are then processed through feature engineering techniques to improve the performance of
posterior inference mechanisms for cellular network management.

The resulting framework is, in this way, expected to provide support to inference
mechanisms making use of the generated indicators. The capabilities of this approach have
been evaluated in an highly-dynamic indoor ultra-dense network and with the objective of
supporting the classification of different key network failures. Here, the performance of a
set of multi-class classifiers has been assessed while considering classical approaches in
comparison to the full implementation of the proposed approach via the application of the
generated contextualized indicators and different feature-engineering techniques.

Hence, the proposed use of the automatically generated metrics (combining position-
ing and network data) as their posterior FE processing has demonstrated the capabilities of
the approach in improving the accuracy of network failure classification under variable
user densities concentrations, and cell locations. This is achieved across the different tested
classifiers, while also providing reduced computational costs.
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Future work will study the application of the presented approach with additional
context variables, and based on the definition of additional approaches for the generation
o findicators and the classification process. Moreover, while the focus of the developed
framework has been in its use to indoor ultra-dense networks, its performance in such
highly dynamic scenario opens the way for future studies on its applicability to other
environments that are characterized by a high mobility, especially those related with
vehicles and outdoor areas.
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DISC discriminant analysis classification
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FE feature engineering
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