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Abstract: Autonomous driving helps drivers avoid paying attention to keeping to a lane or keeping
a distance from the vehicle ahead. However, the autonomous driving is limited by the need to
park upon the completion of driving. In this sense, automated valet parking (AVP) system is one
of the promising technologies for enabling drivers to free themselves from the burden of parking.
Nevertheless, the driver must continuously monitor the automated system in the current automation
level. The main reason for monitoring the automation system is due to the limited sensor range and
occlusions. For safety reasons, the current field of view must be taken into account, as well as to
ensure comfort and to avoid unexpected and harsh reactions. Unfortunately, due to parked vehicles
and structures, the field of view in a parking lot is not sufficient for considering new obstacles coming
out of occluded areas. To solve this problem, we propose a method that estimates the risks for
unobservable obstacles by considering worst-case assumptions. With this method, we can ensure
to not act overcautiously while moving safe. As a result, the proposed method can be a proactive
approach to consider the limited visibility encountered in a parking lot. In the proposed method,
occlusion can be efficiently reflected in the planning process. The potential of the proposed method
is evaluated in a variety of simulations.

Keywords: automated valet parking; planning under uncertainty; replanning; utility theory

1. Introduction

Autonomous driving technology is being used to support the automotive industry in
several ways, ranging from safety concerns to driving comfort. Advances in technology
have eliminated drivers’ need to pay attention to keeping to driving lanes or maintaining
the distance between cars while driving. However, the convenience of automation is
limited by the need to park upon the completion of driving, which distresses drivers both
mentally and physically [1]. Unfortunately, 23% of all traffic accidents occur in parking lots
(car to car collision and car to pedestrian collision), of which 30% are due to parking in an
occluded area, where serious injury and damage can occur [2]. If parking can be conducted
automatically without human intervention, such a system has the potential to make the
driver more comfortable and safer [3].

In this sense, automated valet parking (AVP) systems are one of the most promising
technologies for enabling drivers to free themselves from the burden of parking. In 2003,
the first automated parking system was introduced into the automotive market [4], which
could steer itself into a parking spot. Currently, this initial system has been extended to
automated valet parking (AVP), which allows a driver to call a car by pressing a button or
instructs the car to park on its own. In the level of automation currently available; however,
the driver must continuously monitor the system due to safety concerns.

The main reason for monitoring the automation system is due to the limited sensor
range based on the measurement principle, adverse environmental conditions, or occlu-
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sions. In addition, for safety reasons, the current field of view must be taken into account, as
well as to ensure comfort and to avoid unexpected and harsh reactions. Unfortunately, due
to parked vehicles and other structures, the current field of view for sensors in a parking lot
is not sufficient for considering new obstacles (pedestrians) coming out of occluded areas.
In many approaches of dealing with limited sensor range, new obstacles are treated by
reactive planning [5–11], which only deals with visible obstacles. However, if the visibility
is limited, proactive planning is required, to detect risks inside an otherwise invisible area.

To reflect the invisible area, we propose a proactive approach to overcome the limited
visibility encountered in a parking lot. We divided the proposed approach into three
steps: Potential Collision Boundary Estimation, Reachable Set Estimation, and Planning
in Limited Visibility. From the first to second step, we estimate the probable maneuver
alternatives of other participants by modeling reachable states limited by physics. Then,
we introduce a methodology to stay collision-free while considering an environment that
includes both limited visibility and possible unexpected behaviors in the last step.

The main contributions are:

1. a deterministic method to represent the risks for unobservable obstacles
2. a framework for generating a safe speed profile in conditions of limited visibility

Previous approaches for the probabilistic modeling of occlusions could not guarantee
safe driving; however, we had the planner use the collision risk in an optimized manner by
modeling deterministic collision risks in a parking lot. In addition, the problem of occlusion
in a parking lot has not yet been covered in other papers. Here, we guarantee the safety
issues in conditions of limited visibility by using a deterministic risk estimation process.

The remainder of this paper is structured as follows: In the next section, we shortly
review the related work. In Section 3, we start with an overview of the proposed method,
before presenting our new approach in Sections 4 and 5. In Section 6, we evaluate the
approach in a simulation. Finally, we conclude our work in Section 7.

2. Related Works

Safe motion planning requires the consideration of limited visibility from invisible
areas in the environment. Many works have addressed different aspects of risk assessment
and safe planning for conditions of limited visibility. Some researchers have studied the
probabilistic risk assessment of occluded areas [12–15]. One of them [12] proposed a
probabilistic risk assessment method using the volume of traffic on the road, whereas [13]
addressed a similar approach using a damage model based on the masses and velocities of
two vehicles. However, these algorithms have limitations in that they require the volume
of traffic and the mass of the vehicle, which cannot be measured from a sensor. Another
method presents the threat level as a probability distribution, using time-to-entry (TTE)
and a Bayesian network [14]. In addition, ref. [15] proposed a graphical model capable
of describing the risk of a road segment over time, and then addressed the occupancy
estimation using a dynamic Bayesian network. Even though these studies explicitly
represent the risk as a probability such that the risk can be considered in the planning
process, expressing the risk as a probability cannot ensure a provable safety.

To remove the uncertainty of probability, many works use a deterministic approach
that solves a worst-case problem [16–22]. The planner presented in [16] dealt with uncer-
tainty predictions at intersections and considers emergency braking before reaching the
intersection. The work; however, did not consider sensor range or vehicles approaching
behind the perception field. To plan for a fail-safe motion, ref [17] evaluated the occupancy
set of vehicles in the environment and considered the existence of an emergency maneuver,
e.g., a lane change. This work did not take the perceptive field of the vehicle into account.
In another study, ref. [18] presented a method to prevent potentially hazardous situations
by with the car cautiously advance into the intersection while regarding possibly occluded
traffic participants using a dynamic grid map. Ref. [19] proposed a method to analyze the
safety of a given trajectory with respect to occlusions. Ref. [20] focused on motion planning
given an uncertain environment model with occlusions. They presented a method for re-
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maining collision-free for the worst-case evolution of a given scene. Refs. [21,22] formalized
the potential risk due to occlusions and limited sensor capability by over-approximating all
possible states of unobservable obstacles using state intervals. However, these approaches
cannot be applied to valet parking scenarios. Since these algorithms assume that the
obstacles pop out according to the topology of the road map, they cannot cautiously assess
the spaces between parked vehicles.

3. Overview

The overall process is described in Figure 1a–c. We assume that a path is generated by
a priori planner. In other words, we focus on how to consider unobservable obstacles in
the speed planning process.

The first step is to estimate a potential collision boundary, which is a boundary from
which unobservable obstacles may pop out from, as shown in Figure 1a. By comparing the
range sensor and object data, we calculate the location of the potential collision boundary
described as the red lines in Figure 1a. Then, we assume that the unobservable obstacles
may pop out from these potential collision boundaries.

Unobservable obstacles can be predicted by using the reachable set over-approximations
introduced by [23]. A reachable set refers to a method for calculating the distance an obsta-
cle will reach if it is in the collision area, as shown in Figure 1b. We use a simple constant
velocity model to predict the reachable set.

The planner plans the speed profile for the unobservable obstacles by defining the
problem in the distance-time domain described in Figure 1c. To define this problem, we
calculate the start and end times of intersecting unobservable obstacles while following
a predefined path. Then, the planner generates a speed profile by solving the A* search
algorithm [24]. The details will be explained in the following sections.

(a) Potential collision boundary (b) Reachable set estimation (c) Planning in limited visibility

Figure 1. An overall architecture of limited visibility aware motion planning.

4. Risk in Limited Visibility

When the surrounding environment is detected by a sensor mounted on an au-
tonomous vehicle, the field of view might be partially occluded by obstacles such as
parked vehicles or constructions. In addition, there may be unobservable pedestrians in the
parking lot, which have the potential to collide with the ego vehicle. Therefore, a method
for considering occluded areas must be formulated for safe driving. The surrounding
environment of the ego vehicle is divided to areas according to whether the vehicle can
detect when an obstacle exists. The area surrounded by observable obstacles is known as a
“free space”. Conversely, areas with obstacles that interfere with detection of obstacles are
called “unknown areas”. A collision boundary is the border between the free space and
the unknown area. Among the collision boundaries, the boundary where unobservable
obstacles may pop out is called the “potential collision boundary (PCB)”. We assume here
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that the unobservable risk from limited visibility originates from the potential collision
boundary. The details for calculating PCB will be explained in the following section.

4.1. Estimating the Potential Collision Boundary

To estimate the risk in the occluded boundary, it is first necessary to define a mathe-
matical model for the potential collision boundary (PCB). This model can be derived in
three steps. First, candidate points are extracted from the range sensor. Then, based on the
extracted candidate points, the free space boundary is formulated as a polygon set. Finally,
by subtracting points from observable obstacles at the free space boundary, the PCB can
be defined.

In this paper, we use LiDAR sensor to detect the surrounding environment of the
ego vehicle. LiDAR provides a point cloud as raw data. Since the point cloud follows
the ego vehicle’s field of view (FoV), there is no obstacle between the ego vehicle and the
point cloud. Therefore, an area consisting of lines that connect each point cloud can be
considered a free space, as shown by the gray area in Figure 2.

Figure 2. Area classified by the occlusion boundary.

The set of free space polygon is approximated using a line segmentation method.
First, the cloud points are arranged in the order of vehicle center and angle, as shown
in Figure 3a. Then, we generate a straight line that passes through the two points with
the biggest difference in angle, as shown in Figure 3b. Next, we calculate the distances
between the straight line and the point from the point cloud to find the farthest point. If
the farthest distance is larger than a threshold, the method divides the line at that point.
This finding and dividing process is repeated until the farthest distance is less than the
threshold. Finally, the free space boundary can be formulated as a set of line segments by
adding lines connecting the divided points (Figure 3c). A potential collision may occur
between the obstacles (points 3 to 4) and between the obstacle and the maximum range of
the sensor (points 6 to 7). For this reason, the cloud points for obstacles (points 1 to 6) are
subtracted from the free space boundary, except for the first and the last cloud points of the
obstacles. Through the above process, the PCB can be obtained as a set of line segments, as
shown by the red lines in Figure 3d.
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(a) Arrangement of point cloud (b) Point split using the farthest point

(c) Free space boundary formulation (d) Potential collision boundary estimation

Figure 3. Steps for estimating the potential collision boundary based on candidate points.

4.2. Motion Prediction with Reachable Set Estimation

To estimate the collision risk, we characterize the potential risks from the potential
collision boundary. In addition, the ego vehicle and other obstacles is modeled as rectan-
gular shapes, and over-approximations of the unobservable obstacles are modeled using
polygons. Here, we define one unobservable obstacle for each potential collision boundary
e with the following state, referred as intervals in orientation ψe(0), velocity ve(0), and
initial position se(0) formulated by the two vertices s1 and s2 (see Figure 4). This can be
formulated as

se(0) ∈
[(

s1,x
s1,y

)
,
(

s2,x
s2,y

)]
(1)

ψe(0) ∈
[
ψmin, ψmax

]
(2)

ve(0) ∈
[
vmin, vmax

]
(3)
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Figure 4. Notations for identifying the potential collision boundary.

The reachable set approximations from [23] for such initial state sets of PCB is derived
using the initial state intervals of PCB in Equations (1)–(3). Based on Kamm’s circle [25],
these intervals describe the physically reachable area, limited by the absolute possible
acceleration. For simplicity, we assume that the state set of PCB can be represented in local
coordinates as follows,

se(0) ∈
[(

0
0

)
,
(

s̄x
s̄y

)]
(4)

ψe(0) ∈
[
−ψmax, ψmax

]
(5)

ve(0) ∈
[
v
¯
, v̄.
]

(6)

Here, we combine a formulation of Kamm’s circle with center c(t) and radius r(t) and
the boundary of the circle over time b(t).

c(t) =
(

sx(0)
sy(0)

)
+

(
vx(0)
vy(0)

)
t (7)

r(t) =
1
2

amaxt2 (8)

bx(t) = v0t− a2
maxt3

2v0
(9)

by(t) =

√
1
4

a2
maxt4 − (

a2
maxt3

2v0
)2 (10)

Figure 5a–c describes a representation of this estimation.

(a) interval of initial velocities (b) interval of initial orientations (c) interval of initial positions

Figure 5. Occupancy over-approximations for initial intervals.
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4.2.1. Interval of Initial Velocities

Through the interval of the initial velocity v0 ∈ [v
¯
, v̄] with known orientation ψ(0) = 0,

and the initial position s(0) = (0, 0)T , we can formulate

c
¯
(t) = c(t, v

¯
), c̄(t) = c(t, v̄) (11)

and likewise, bx and by. Here, ·̄ is the minimum value of the notation, and ·̄ refers to the

maximum value of the notation. The reachable set of the obstacle for a time period of
τk = [tk, tk+1] can be approximated by the polygon with the points from q1 to q6.

q1 = (cx
¯
(tk)− r(tk), r(tk))

T (12)

q2 = (bx
¯
(tk+1), r(tk+1))

T (13)

q3 = (c̄x(tk+1) + r(tk+1), r(tk+1))
T (14)

q4 = (c̄x(tk+1)− r(tk+1),−r(tk+1))
T (15)

q5 = (bx
¯
(tk+1),−r(tk+1))

T (16)

q6 = (cx
¯
(tk)− r(tk),−r(tk))

T (17)

as shown in Figure 5a.
The left side of the equation is coincidence with O1, which is the red polygon in

Figure 5a, but q3 and q4 are estimated by using v̄. This boundary includes all vi ∈ [v
¯
, v̄],

and each circle Ck+1(vi) has the same radius r(tk+1). Circle center is bounded as cx(tk+1 ∈
[c

¯ x
(tk+1), c̄x(tk+1)], cy = 0. Therefore, the polygon P(q1, q2, q3, q4, q5, q6) spanned by

Ck
¯

, Ck+1
¯

, and ¯Ck+1 is equivalent to O1. This polygon contains all Ct(vi) with t ∈ [tk, tk+1],

proving that this polygon is an over-approximation of all sets that can be reached for
unobservable obstacles with initial velocities

4.2.2. Interval of Initial Orientations

Initial orientation interval ψ(0) ∈ [−ψmax, ψmax] rotates the entire reachable set
P(q1, q2, q3, q4, q5, q6). We can over-approximate this rotated set. The boundaries of
the set is formulated by rotating q1, q2, q3 counterclockwise to q̄1, q̄2, q̄3 and q4, q5, q6
clockwise to q4

¯
, q5

¯
, q6

¯
using ψmax. Furthermore, the furthest longitudinal point plong =

(c̄x(k + 1) + r(tk+1), 0)T of each circle can be over-approximated by

w0 = (
c̄x + r(tk+1)

cos θ
2

)T , θ =
ψmax

n
(18)

W̄j = Rθj w0 (19)

Wj
¯
= −Rθj w0 (20)

with j ∈ [1, n]. An example approximation of the circle with ψmax of around 45 deg is
achieved with n = 3. Figure 5b describes this formula, proving that each rotated polygon
over [−ψmax, ψmax] is included by the following polygon.

P(q̄1, q̄2, q̄3, w̄n, · · · , w̄1, w0, wn
¯

, q4
¯

, q5
¯

, q6
¯
) (21)
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4.2.3. Interval of Initial Positions

The transform due to intervals of initial position is defined by using linear interpo-
lation of the polygon P̄ for s(0)

¯
= (0, 0)T as described in the previous subsection. First,

we create a duplicate P̄ that is translated by s̄(0) = (sx, sy)T and then compute the total
polygon of both polygons O1(τk) = Conv(P̄, P̄). The occupancy of each possible position

on the line segment is easily calculated by the linearity of translations and the line segments.
Thus, O1(τk) is an over-approximation of the possible reachable set of an unobservable
obstacle with a bounded initial state. The resulting over-approximation is described with
example parameters in Figure 5c.

The total occupancy O1 refers to the reachable area if the unobservable obstacle
originates from the potential collision boundary e. By applying the reachable set estimation,
we can calculate the intersection area between the reachable set and the predefined path.
In the planning phase, we generate an optimal speed profile to consider for the intersection
area. Further details will be explained in the following chapter.

5. Planning in Limited Visibility

Prior to planning the speed profile for conditions of limited visibility, the path should
be defined. Since most situations can be formulated as driving along a predefined lane
with arbitrary geometry, we assume that the problem of roaming in a parking lot is similar
to the problem of driving along a lane. For this reason, we use the trajectory planner
defined in [10] to generate a path in a parking lot. In the speed planner, we only calculate
in the longitudinal direction, i.e., we set the problem in a one-dimensional direction. This
approach is known as a path-velocity decomposition [26].

We first construct the planning environments for the problem as written in [27]. This
approach provides a general solution for a longitudinal direction in on-road driving if the
planning environments can be described. The planning environments include how to obtain
the desired speed, how to represent obstacles, and how to set a goal. Then, the planner
solves the optimization problem using A*, which is a well-known planning algorithm.

The two main differences with the previous approach are:

1. the proposed approach considers not only observable obstacles but also unobserv-
able obstacles

2. the proposed approach does not require a topology map

We predict the motion of unobservable obstacles using the over-approximation of
PCBs in the previous section. The PCBs are over-approximated by estimating all possible
motions when unobservable obstacles suddenly come out from the PCBs, as shown in
Figure 5. This over-approximated area covers the position where unobservable obsta-
cles pop out. Therefore, through the over-approximation, unobservable obstacles can be
represented as with observability.

In addition, the previous approach can only represent obstacles on the road topology
as the planning environments. This is appropriate to on-road planning, but not in parking
lots since unobservable obstacles can be a pedestrian and a cyclist who does not follow
the road topology. However, the proposed approach can deal with these obstacles. The
PCBs are calculated from LiDAR sensor field of view, which is not associated with the road
topology, then, the over-approximation of PCBs can cover the unpredictable motion of
unobservable obstacles such as a pedestrian or a cyclist.

5.1. Problem Statement

Assume that pi = (px, py)T ∈ R2 is a point on the center line of a predefined path c,
then s(pi) ∈ R denotes the traveled distance along the path in the interval [p0, pi]. The
velocity is bounded as [0, vmax], and then, vmax(s) is a function of the path’s curvature
κ at distance s, i.e., vmax(s) = f (κ(s)). u, the acceleration of the vehicle, is the system
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input within [amin, amax]. The longitudinal movement of the vehicle is formulated by the
differential equations as follows,[

ṡ
s̈

]
=

[
0 1
0 0

][
s
ṡ

]
+

[
0
1

]
u (22)

Along the path c, there is a finite set E of obstacles Ei that intersects with the path for
a time period τEi = [tEi

start, tEi
end] at a specific position sEi (t) and time τEi . These obstacles

should not occupy the position of the ego vehicle sego at any time. The goal of the planner
is to find a valid speed profile. This plan can be derived as an optimization problem over f ,
such that

min
u(t)

( f ) = min
u(t)

f (sego, ṡego, s̈ego, κ(s), E) (23)

This problem must have only one global minimum for various constraints. The
optimization problem can be converted to a discrete problem in the state spaceX ⊆ R3 with
states x = [s.v.t]T ∈ X . Then, this problem can be solved using an A* graph search [24].
The state xi denotes the state at the planning step i. We construct the searching graph for
A* online by sampling a set of actions A during a time step ∆t. At each iteration of its main
loop, A* needs to determine which of its paths to extend. It does so based on the cost of the
path, using an estimate of the cost required to extend the path to the goal. Specifically, A*
selects the path that minimizes

f (xi) = g(xi) + h(xi) (24)

where g(·) is the cost of the path from the initial state, and h(·) is a heuristic function that
estimates the cost for the cheapest path from the current state to the goal. A* terminates
when the path it chooses to extend is a path from start to goal, or if there are no paths
eligible to be extended. The heuristic function is problem-specific. If the heuristic function
is admissible, meaning that it never overestimates the actual cost to get to the goal, A* is
guaranteed to return the least-cost path from the start to the goal. The following sections
describe how the A* graph is constructed, its cost function, and heuristics.

5.2. Transition Model

The discretized transition model can be written as

xi+1 =

si+1
vi+1
ti+1

 =

1 ∆t 0 0
0 1 0 0

0 0 1 ∆t




si
vi
ti
1

+

 1
2 (∆t)2

∆t
0

ai (25)

where ai refers the action that is selected in the step i and expanded for ∆t. (25) represents
the longitudinal motion of the ego vehicle. The objective of planning is to find a set of xi
in an acyclic searching graph. To reduce the computational time, we discretize the action
space. By using a discretized action space, the state xi is expanded to reach a goal state xG.
At that time, the searching graph is generated, then, we select the minimum cost state from
among the next states. This process repeats until the state xi reaches xG.

5.3. Cost Function

g(xi, a, xi+1, E) is the step cost in state xi to traverse to state xi+1 for taking action a.
The total cost is the cumulative cost of all steps along the path, ∑

xgoal
xi=xstart g(xi, a, xi+1, E).

The goal is to find the path from the initial state to a goal state that incurs minimal costs. To
represent the different parameters of the optimization problem, a weighted sum of different
costs is used as the stop cost.

g(xi, a, xi+1, E) = ωV · gV(si+1) + ωA · gA(a) + ωE · gE(xi, xi+1, E) (26)



Sensors 2021, 21, 1520 10 of 17

where gV(xi+1) refers to the cost for the desired speed, gA(a) denotes the cost of taking
action a, and gE(xi, xi+1, E) is the cost for a collision during traveling from xi to xi+1. In
addition, ωV , ωA, and ωE are the weight factors for the desired speed, acceleration, and
collision, respectively. The following sections derive the formulation for each cost function.

5.3.1. Velocity Cost

vdes(s) is a function of the desired speed at position s without obstacles. This speed
combines the speed limit vlaw(s) and vcurve(s) along the path length s. vcurve is formulated
according to a maximum allowed lateral acceleration alat,curve in the curvature radius
rcurve(s) written in [28].

vcurve(s) =
√

alat,curvercurve(s) (27)

Then, the desired speed is the minimum of vlaw and vcurve as shown in Figure 6. We
set the speed limit in a parking lot to be under 15 km/h, and the maximum allowed lateral
acceleration is 2 m/s2.

Figure 6. Along the path, the velocity is limited by the speed limit and the curvature. The curve
approach velocity is part of the desired speed.

The velocity cost gV is derived as difference to the desired speed vdes. A too high speed
is punished quadratically, while a too low speed is punished linearly to allow for a lower
speed when decelerating upon obstacles. Here, gV(xi+1) can then be written as follows:

gV(xi+1) =


(vi+1 − vdes(si+1))

2, vi+1 > vdes(si+1)
0, vi+1 = vdes(si+1)

1
2 (vdes(si+1)− vdes)

2, vi+1 < vdes(si+1)
(28)

5.3.2. Acceleration Cost

The cost of taking action depends on the acceleration value a. The objective of the
acceleration cost is to punish either a too high or too low acceleration, and to maintain the
current acceleration. Here, gA(a) is written as follows:

gA(a) =
1
2

a2 (29)

The use of an acceleration cost or a high value of acceleration weighting factor allows
for comfortable driving.

5.3.3. Collision Cost

The ego vehicle may be encounter observable and unobservable obstacles such as
vehicles and pedestrians. Therefore, the idea is to construct a simple representation for
obstacles, which includes the representation of any possible occurrence in the longitudinal
direction. An obstacle Ei intersects the path at position s(t) at time interval τ ∈ [tstart, tend],
then the obstacle Ei has a length lEi . The obstacle also has a desired following distance
dEi

des, which is defined as a temporal-spatial cost map MEi required to achieve a smooth
driving. The cost map MEi is a linear function using the obstacle representation of Ei =
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(sEi (t), dEi
des, lEi , tstart, tend). This map is illustrated in Figure 7. The collision cost can be

derived as

gE(xi, xi+1, E) =


∞, i f∃Ei ∈ E : xi+1 ∈ Ei

MEi (xi+1), i f∃Ei ∈ E : xi+1 ∈ Ei
0, otherwise

(30)

By applying the reachable set estimation, unobservable obstacles can be regarded as
observable obstacles when defined as Ei. Through the time intersecting the reachable set
and the predefined path, we can define tEi

start and tEi
end, and the intersecting distance then

describes the position of the obstacle. The desired following distance for the unobservable
obstacle can subsequently be calculated in the same manner as for the observable obstacle.

dEi
des = dthreshold + vego · tgap (31)

where dthreshold refers to the ideal distance at zero speed, vego is the current velocity of the
ego vehicle, and tgap denotes the ideal time gap for the front obstacle. The linear function
for the cost map MEi can then be written as

MEi =

{
dEi

des − dEi , i f dEi < dEi
des

0, otherwise
(32)

Figure 7. Representation of obstacles in the distance-time domain.

5.4. Heuristics

An appropriate and consistent heuristic cost can reduce the computation of A* algo-
rithm. Here, we use Inevitable Collision States (ICSs) [29] as a heuristic cost. An ICS is a
state that cannot avoid at least one collision in the future. When a new state is expanded,
this state is tested for whether the new state is an ICS. If this is true, i.e., the new state cannot
avoid a collision, the remaining heuristic cost hx,i is the maximum collision cost. Through
the ICS, the planner enables admissible reactions to upcoming obstacles. In the case of a
movement in a one-dimensional direction, the ICS test can be easily done analytically. The
ICS test for newly generated state xi can be derived as

∀a ∈ A∃Ei ∈ E : {si + vi · t +
1
2

a · t2|t ∈ [0 ∞]} 6= ∅ (33)

Figure 8 presents the concept of an ICS. There are two different initial states x1 and
x2, with v1 < v2. A collision cannot be avoided for v2, whereas the vehicle can avoid the
obstacle with v1. The heuristic function can be written as

h(xi) =

{
∞, i f xi ∈ ICS
0, otherwise

(34)
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Figure 8. Analytic calculation of the Inevitable Collision State.

5.5. Goals

The original A* algorithm has a specific goal in the constructed graph. Since we build
the graph online, the goal may or may not be reached. Therefore, we set a partial goal in
the time domain tG. No matter where the vehicle is or its speed, the planner stops finding
the speed profile when the time of state ti reaches tG.

6. Simulation Results

We evaluated the proposed algorithm using two scenarios, as shown in Figure 9. The
first scenario includes the ego vehicle roaming in a parking lot where parked vehicles
exist. From this scenario, the proposed method shows the ability to drive safely in limited
visibility. The second scenario includes a cyclist that pops out from the potential colli-
sion boundary. Through the second scenario, the safety of the proposed algorithm will
be proved.

(a) Roaming in a parking lot without moving obstacles (b) a cyclist pops out from the potential collision boundary

Figure 9. Scenario descriptions.

The tests are conducted using a Robot Operating System (ROS) platform [30] in a
CARLA simulator [31]. The proposed algorithm was implemented using an i5 Core PC in
C++ language. The execution periods of the overall planning process were 100 ms. The
total planning horizon was 5 s, and the time step was set to 0.5 s.

6.1. Scenario 1: Roaming in a Parking Lot without Obstacles

As first online scenario, roaming in a parking lot is presented. The ego vehicle roams
a parking lot with many parked vehicles. The ego vehicle must consider unobservable
obstacles that suddenly pops out between the parked vehicles. In other words, the ego
vehicle should consider the uncertain prediction of unobservable obstacles which is realized
by the reachable set estimation. This uncertainty is incorporated by estimating reachable
set in Section 4.

In Figure 10a, as a control with the proposed algorithm, the ego vehicle can be seen
driving in a parking lot without other parked vehicles. On the other hand, Figure 10 shows
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the process of roaming in a parking lot. At each figure of Figure 10b–d, the upper figure
shows the ego vehicle’s front camera image. The middle figure describes the algorithm
details in ROS platform. In this figure, the green points are point cloud and the red lines
refers the potential collision boundaries (PCBs). The lower figure shows the estimated
reachable set as the red polygon and the speed profile generated by the proposed algorithm.

(a) without parked vehicles (b) t = 0.0 s (c) t = 3.0 s (d) t = 7.0 s

Figure 10. Roaming in a parking lot without obstacles. The upper figure of each time step shows the situation in CARLA.
The second figure describes the algorithm in ROS platform. The last figure shows the speed profile at each time step.

The ego vehicle generates the speed profile to follow the regulation speed described as
the blue line in the lower figure in Figure 10a if the risk of limited visibility does not exist.
On the contrary, at t = 0 (see Figure 10b), the ego vehicle moves toward an empty parking
space without observable obstacles. The ego vehicle tries to generate a speed profile to
keep up the regulation speed. However, the ego vehicle cannot speed up until it reaches
the regulation speed because it collides with invisible obstacles when speeding up. At
that time, the prediction of unobservable obstacles is realized by reachable set estimation
as shown in the red polygon in the lower figure of Figure 10b–d. The reachable set is
transformed into the distance-time domain with the red polygon in the lower figure. Then,
the ego vehicle continuously decelerates until the field of view is large enough to eliminate
PCBs. Since the parking lot is not enough to secure visibility due to parked vehicles, the
ego vehicle maintains a low speed than the regulation during roaming. (see Figure 10b–d).

6.2. Scenario 2: Roaming in a Parking Lot with Obstacles

Same as the first scenario, the ego vehicle roams a parking lot with many parked
vehicles. The difference is that a cyclist suddenly pops out from behind a parked vehicle
after few second. The ego vehicle cannot detect the cyclist due to the occlusion. This
scenario evaluates the model capability when an obstacle pops out from the PCB. In this
scenario, an unobservable obstacle is detected at the PCB, at which time it is converted into
an observable obstacle. Consequently, the proposed algorithm highlights its scalability for
all types of obstacles (unobservable and observable).

Initially, the ego vehicle drives in a parking lot as shown in Figure 11a. Similar to
the above simulation, the proposed algorithm tries to decrease the speed slower than
the regulation. At the same time, a cyclist is behind the parked vehicle; however, the
ego vehicle cannot detect the occluded cyclist. Even though the ego vehicle suddenly
encounters the cyclist at t = 2 as shown in Figure 11b, the proposed algorithm can stop
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to avoid a collision with the cyclist since the speed is slow enough as it nears the PCB.
The cyclist is described as the yellow polygon in the Figure 11b. The proposed algorithm
waits for the cyclist to pass, then increases the speed to arrive at the empty parking space,
as shown in Figure 11c. This simulation results confirm that the reachable set estimation
is well defined to consider unobservable obstacles occluded by other traffic participants.
Moreover, the cost and heuristic functions of the guided A* algorithm are guaranteed to
consider both observable and unobservable obstacles.

(a) t = 0.0 s (b) t = 2.0 s (c) t = 5.0 s

Figure 11. Roaming in a parking lot with obstacles. The upper figure of each time step shows the situation in CARLA. The
second figure describes the algorithm in ROS platform. The last figure shows the speed profile at each time step.

7. Conclusions

This paper presented an algorithm for safe motion planning in condition of limited
visibility in a parking lot. The proposed algorithm consists of three steps: Potential
Collision Boundary (PCB) Estimation, Reachable Set Estimation-based Motion Prediction,
and Motion Planning with A*. To consider visibility limited by occlusions, we defined a
PCB to describe the risk of unobservable obstacles. By applying a reachable set estimation as
the motion prediction, the PCB is extended to the reachable area once it is determined that
an unobservable obstacle exists. Through over-approximations, the reachable set estimation
represents the worst-case of unobservable obstacles. We then rewrite the reachable set
to include a state for the planning space, such that a simple representation model can
convert the reachable set to obstacles in the A* algorithm. In this way, we use the A*
algorithm as a motion planner to achieve completeness, optimality, and optimal efficiency.
Using this algorithm, we can formulate the cost function to ensure the vehicle follows the
desired speed, ensure the vehicle is driving comfortably, and that it avoids collisions. In
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addition, the Inevitable Collision State (ICS) is applied to the heuristic function to reduce
the computational burden.

The simulation results show the ability of the algorithm to generate an optimal speed
profile for unobservable obstacles. Through the proposed algorithm, the vehicle could
drive in an occluded area with no collisions. Since we enhanced the reachable set by using
over-approximations, we could confirm that the planner planned safe speed profiles. The
performance is shown via roaming scenarios with occlusions from parked vehicles. All
collisions could be prevented while still moving through the parking lot at a sufficient
speed. The proposed planner could proactively adjust to unobservable obstacles using one
algorithm in an optimized manner, by solving the optimization problem.

Nevertheless, future work will be extended in two ways. On the first hand, the idea
is to apply to real driving. The most important thing to apply a planning algorithm to
real driving is to handle the uncertainty of input, in this case, the point cloud. If the point
cloud measurement is noisy, it causes both the free space and the PCB are also noisy. Then,
the planner might mispredict the reachable set of potential collision obstacles. Thus, the
speed profile can be noisy in real driving. To overcome this problem, we should develop a
PCB tracking algorithm or a fusion algorithm between free spaces from LiDAR and from
the camera. Second, we proposed a motion planner that only considers a longitudinal
direction. In other words, we solved the problem by either reducing or increasing the
speed. However, in more complex situations, such as crossing an intersection in a parking
lot, waiting for a parked vehicle, and encountering a car in a narrow alleyway, the planner
must change paths laterally. Therefore, we should consider both longitudinal and lateral
directions of the trajectory. To consider a lateral direction; however, the complex situation
will be divided into a normal state and an inevitable state. A normal state refers to the
problem described in Section 3, whereas an inevitable state indicated the complicated
situation mentioned above. The different methods should be applied to different types
of problems.
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