
sensors

Article

Research on a Gas Concentration Prediction Algorithm Based
on Stacking

Yonghui Xu *, Ruotong Meng and Xi Zhao

����������
�������

Citation: Xu, Y.; Meng, R.; Zhao, X.

Research on a Gas Concentration

Prediction Algorithm Based on

Stacking. Sensors 2021, 21, 1597.

https://doi.org/10.3390/s21051597

Academic Editors: Santiago Marco

and Yinsheng Chen

Received: 20 January 2021

Accepted: 20 February 2021

Published: 25 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Institute of Automatic Testing and Control, Harbin Institute of Technology, Harbin 150080, China;
rtmhit@163.com (R.M.); richard214@163.com (X.Z.)
* Correspondence: xyh@hit.edu.cn

Abstract: Machine learning algorithms play an important role in the detection of toxic, flammable
and explosive gases, and they are extremely important for the study of mixed gas classification
and concentration prediction methods. To solve the problem of low prediction accuracy of gas
concentration regression prediction algorithms, a gas concentration prediction algorithm based on
a stacking model is proposed in the current research. In this paper, the stochastic forest, extreme
random regression tree and gradient boosting decision tree (GBDT) regression algorithms are selected
as the base learning devices and use the stacking algorithm to take the output of each base learning
device as input to train a new model to produce a final output. Through the stacking model, the
grid search algorithm is studied to automatically optimize the parameters so that the performance
of the entire system can reach the optimal parameters. Through experimental simulation, the gas
concentration prediction algorithm based on stacking model has better prediction effect than other
integrated frame algorithms and the accuracy of mixed gas concentration prediction is improved.

Keywords: ensemble learning; model fusion; regression algorithm; automatic grid search algorithm

1. Introduction

With the rapid development of artificial intelligence, sensor applications and machine
learning algorithms promote the continuous development of machine olfaction [1]. Ma-
chine olfaction is a new type of bionic detection technology, which is utilized to simulate
the working mechanism of biological olfactory systems [2]. Machine olfaction is widely
used in pollution control [3,4], medical technology [5,6], oil exploration [7] and other fields.
In the study of machine olfaction, researchers have achieved good results, and an important
application area is the detection and analysis of dangerous gases such as flammable and
explosive [8,9]. That is because the gas leakage problems will seriously endanger the safety
of human life all over the world [10]. If these gases can be detected and classified accurately
in time, and the leakage situation and trend can be calculated, the harm to humans can be
minimized and the occurrence of dangerous accidents can be avoided to a great extent [11].
Therefore, machine olfaction is of great significance for the detection of toxic, flammable
and explosive gases. At present, in the process of using machine olfactory technology to
detect flammable, explosive and toxic gases, machine learning algorithms play a major
role. A good algorithm is needed as the support to effectively identify or predict the gas
information collected by the machine olfactory system. Accuracy and time efficiency of
machine learning algorithms affect the performance of the entire system, therefore, it is
extremely important to study the concentration prediction method of mixed gas.

There are two main problems in the research field of mixed gas concentration prediction.
One is to construct the most effective system to collect gas information, and the other is to
build the most suitable algorithm model for concentration regression prediction of the data
set [12–14]. For the concentration regression prediction that we mentioned, it is a regression
problem in the algorithm. Researching and designing the most suitable prediction algorithm
for gas concentration represents a current research endeavor. At present, most of the main
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research directions are aimed at the field of classification of mixed gases, and they ignore
the prediction of concentration [15]. There are two main difficulties in gas concentration
prediction; one is in the process of collecting gas information—because the design of the
collection system is more complex and the experimentation is more complicated, the exper-
imental process consumes considerable time. Moreover, the gas configuration process is
rather cumbersome, it is difficult to continuously conduct the gas concentration value experi-
mentation. Therefore, discontinuous concentration data information will appear. Another
difficulty lies in the processing stage of the algorithm—because the prediction of discrete
data is already quite complicated, it is more difficult to produce a good concentration
regression prediction of the data [16]. Thus, there are few studies on the concentration
prediction of mixed gases currently. In relatively few studies, the electronic nose system
based on a wireless sensing network, built by Zhao et al., quantitatively analyzes the gas
composition information through the fuzzy neural network model based on RBF, and re-
alizes the quantitative detection of mixed gas [17]. Devit et al. used an artificial neural
network algorithm to design an intelligent electronic nose system to overcome interference
problems through a large amount of training, with local recognition and quantification
capabilities. The sensor fusion algorithm can be used to reconstruct the three-dimensional
concentration of chemicals in the data link [18]. Reference [19] compares the quantitative
detection performance of gas-based MLP with single multiple inputs multiple outputs
and multiple multiple inputs single output, which improves the concentration detection
accuracy for many kinds of single gases. Sikora M. et al. proposed a hybrid adaptive system
for gas concentration prediction. The system has the ability to automatically disconnect
power in the event of explosion hazard identification. The first part of the prediction system
uses linear and nonlinear prediction methods and it uses a solution of metalearning to
negotiate the system final forecast between linear and nonlinear methods. The second part
of the system uses a knowledge base of typical situations that lead to explosion or fire
risk increase to monitor the time series of methane and other gas concentrations from the
perspective of the similarity of the current time series [20]. Reference [21] addresses power
load, coal load level, emission gas concentration, total pressure and temperature dynamic
changes in power plants. The main purpose is to control the coal feed, water supply and
bed height through a series of gas concentration predictions. It can quickly respond and
control the dynamically changing exhaust gas.

In this paper, based on the integrated learning method, the mixed gas concentration
prediction algorithm is studied. The integrated learning algorithm can greatly improve
the detection and analysis performance of the machine olfactory system by combining
a variety of learners and using various rules to merge them together [22]. Integrated
learning is a machine learning method in which numerous functions are trained and
combined, usually performing classification or regression tasks. Overall, the integration
process is mainly composed of integration generation and integration [23]. Simply speaking,
integrated learning is the process of integrating multiple algorithms and ultimately forming
a complete algorithm through specific rules. Integrated learning primarily involves base
learning devices. The general framework of integrated learning is mainly composed of base
learning devices. In the data set, the base learning devices are assigned training data sets
through different rules, allowing each base learning device to perform algorithm operations,
and then performing algorithm fusion integration according to the fusion integration rules;
that is, forming an integrated model to get a strong learning machine [24]. In the integrated
generation, there are different sampling rules, including uniform sampling, systematic
sampling and weighted sampling like boosting [25]. In the fusion rules, there is a method
for decision trees to vote like the random forest algorithm, and there are also serial fusion
rules like the stacking model. Different integration rules will create different integrated
learning methods [26]. The strong learning machine obtained through integrated learning
tends to have better effects and stronger capabilities. Finally, the integrated algorithm
model is tested according to the test sample data set to obtain the final prediction effect.
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In this paper, a gas concentration regression prediction algorithm based on stacking
model is proposed, which uses random forest [27], extreme random regression tree [28]
and GBDT regression algorithm [29] as the basic learning machines for the mixed gas data,
and then merges each base learner algorithm according to the stacking model. Finally,
the automatic grid search algorithm is applied to the stacking model for parameter tun-
ing [30], and a concentration prediction algorithm for stacking model based on grid search
is proposed.

The rest of this paper is organized as follows. Section 2 introduces the model construc-
tion of a mixture gas concentration prediction algorithm. Section 3 presents an automatic
grid search method based on stacking for parameter tuning. Section 4 reports the experi-
mental data and analyses the results of the proposed method. Finally, Section 5 concludes
the paper.

2. Construction of Mixed Gas Concentration Prediction Model Based on Stacking

For the concentration regression prediction of mixed gas, model fusion based on a
stacking algorithm is proposed. The base learning devices used are random forest, extreme
random regression tree and GBDT regression algorithm.

2.1. Random Forest Principle

In machine learning, random forest is a classifier that contains multiple decision trees.
Each decision tree is a classifier, and for an input sample, N trees will have N classification
results. Random forest integrates all classification voting results and assigns the category
with the most votes as the final output [31,32].

The random forest algorithm is composed of multiple decision trees, therefore, study-
ing the random forest algorithm should understand the basic knowledge of decision trees
first. The decision tree algorithm is a classic machine learning algorithm. The data structure
of the decision tree is a tree structure. The tree structure has leaf nodes, non-leaf nodes
and branches connecting child nodes. These three correspond to the classification results,
intermediate decision nodes and classification features, respectively.

The specific implementation of the decision tree algorithm is as follows.
Set the training data set to D = {(x1, y1), (x2, y2), ..., (xn, yn)}, where xi = (xi,1, xi,2, ..., xi,p)

T.
p is the total number of features, yi ∈ {1, 2, ..., K} is the class tag and i = 1, 2, ..., N, where N
is the size of the training sample. Based on all training samples (x1, y1), (x2, y2), ..., (xn, yn),
the algorithm repeats the following operations recursively for each node to be split until
the termination condition is reached:

Use specific selection metrics to select the best attribute.
The optimal attributes are used to split the node to be split, so that the node to be split

is divided into multiple child nodes, and corresponding to multiple regions. For example,
binary division divides the node to be split into left and right child nodes.

When predicting x, perform a tree traversal operation on x, and enter a leaf node
along the path from the root of the tree. Let m denote the leaf node where x falls, and the
variable ym1 , ym2 , ..., ymn represent the corresponding value of training data in leaf node k.

For the regression problem, we need to predict the value of x, use Equation (1)
for calculation, and calculate the average of the corresponding data for the regression
prediction value of x.

For the classification problem, a voting algorithm is used to select the category with
the highest number of votes in m as the category of x. If ymi = y, then I(ymi = y) = 1;
otherwise, I(ymi = y) = 0.

ĥ(x) = ym =
1
n

n

∑
i=1

ymi (1)

ĥ(x) = argmaxy

n

∑
i=1

I(ymi = y) (2)
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2.2. Extreme Random Regression Tree

Extreme random tree (referred to as ET, also known as extreme random forest) is
integrated by multiple decision trees which is an improvement of random forest. The gen-
eralization ability of extreme random trees is higher than that of random forests. In the
extreme random tree algorithm, every decision tree uses all of the raw data, and the split
node is selected randomly when the node is split, which enhances the randomness of the
base classifier node split. While the random forest algorithm uses bootstrap sampling to
generate training samples [33,34]. Extreme random tree has many excellent performances.
For example, it is effective for processing a multi-dimension data set and does not require
careful feature selection by the user; that is, the algorithm has the ability to automatically
select features. Figure 1 is a schematic diagram of the extreme random tree algorithm.

Figure 1. Schematic diagram of extreme random tree algorithm.

The extreme random tree algorithm is represented by {E(K, X, D)}, where E repre-
sents the classifier model, D represents the original data sample and K represents the
number of decision trees. For the samples to be classified, each decision tree in the extreme
random tree outputs a prediction result. The extreme random tree uses voting to synthesize
many results, and ultimately outputs the category of the sample.

The operation flow of the extreme random tree algorithm is given below:
(1) For each decision tree model in an extreme random tree, we use all training data

for independent training.
(2) Generate a decision tree according to the CART algorithm [35]. Select m features

from M features randomly in each splitting node during node splitting. At the same time,
it is necessary to select appropriate attributes for node splitting referring to the feature
selection metrics. Repeat this process until the decision tree growth stops.

(3) Repeat steps (1) and (2) for K iterations, and finally generate an extreme random
tree model composed of K decision trees.

(4) Test the trained extreme random tree model through the test data, and finally
generate the final classification result by voting.

2.3. Gradient Boosting Decision Tree Regression Algorithm

Each decision tree in the GBDT algorithm does not produce independent prediction
results for observations. Each decision tree only learns a portion of the observation data,
and the output of each decision tree needs to be accumulated as the final prediction of the
observed value [36,37]. The GBDT regression algorithm includes three aspects: regression
tree algorithm, gradient lifting and shrinkage.
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2.3.1. Regression Tree

The regression tree belongs to the field of decision tree and it is used for regression
prediction. The classification decision tree is used for the classification problem. The deci-
sion tree uses a selection metric such as the Gini coefficient to split the node when the node
is split. In addition, when a category of certain data is predicted, find the category with
the highest number of votes where the data falls, and this category is used as the category
of the test data. In contrast, in the regression problem, the problem of node splitting and
regression prediction is also involved.

Since the regression problem is a continuous numerical prediction problem, for each
node to be split, a method of minimizing the mean square error is used to find the split
attribute. The regression tree algorithm needs to traverse each attribute, set various
thresholds and calculate the value of the mean square error for each attribute, and then
select the attribute with the smallest average error as the split attribute of the node.

When predicting the data, the data are traversed from the root of the tree. The average
value of all data of the leaf node where the data fall is calculated as the predicted value.

2.3.2. Gradient Lifting

The GBDT algorithm requires several iterations during training. In each iteration,
a decision tree is trained, and the final prediction result is the sum of the predicted values
of all decision trees. Specifically, in each iteration, the sum of the outputs of all previously
trained decision trees is calculated. The residual between the cumulative sum and the real
value is then obtained as the learning objective of the current decision tree.

Setting T(x; θm) as the mth regression tree in the GBDT algorithm, the corresponding
parameter is θm, and there are M regression trees in the GBDT algorithm. The prediction
function fM(x) is then the cumulative sum of the predicted values of M regression trees,
which is:

fM(x) =
M

∑
m=1

T(x; θm) (3)

Using boosting’s forward step-by-step algorithm, each round trains a new regression
tree based on the results of the previous steps. At the mth iteration, there is:

fm(x) = fm−1(x) + T(x; θm) (4)

After the end of the mth round, the prediction function is the cumulative sum of
the predictions of the preceding m regression trees. By comparison with the true value y,
the loss function can be obtained:

L( fm(x), y) = L( fm−1(x) + T(x; θm), y) (5)

The value of the loss function is the parameter. In each iteration, the goal is to build a
regression tree T(x; θm) to minimize L( fm(x), y).

An optimization algorithm is utilized in order to minimize L( fm(x), y). The following
uses the gradient descent method as an example to demonstrate the use of gradient boosting.
The gradient descent method is a common and concise solution method which is briefly
introduced below.

The goal of the gradient lifting algorithm is to minimize the objective function value
f (ω) by changing the parameter ω, which is:

min f (ω) (6)

First, initialize the algorithm, randomly select the initial parameter ω0 and then
perform multiple iterations. In each iteration, first calculate the gradient (corresponding
to the downward direction of the function curve) di = − ∂

∂ω
f (ω)|ωi, and then update the
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parameter ω according to the set step size ρ, that is: ωi+1 = ωi + ρ ∗ di. After M iterations,
the algorithm returns the optimal solution ω∗; letting ω0 = d0, ω∗ is:

ω∗ =
M

∑
i=0

ρi ∗ di (7)

Using the lifting tree and the gradient descent method, the GBDT algorithm based on
the gradient descent optimization algorithm can be produced. The process is as follows:

Fk0(x) = 0, k = 1, 2, ..., K (8)

Traverse m = 1, 2, ..., M, then:

pk(x) =
exp(Fk(x))

∑K
l=1 exp(Fl(x))

, k = 1, 2, ..., K (9)

Traverse k = 1, 2, ..., K, then:

→
yik= yik − pk(xi), i = 1, 2, ..., N (10)

{Rklm}L
l=1 = L− {→yik, xi}N

1 (11)

γklm =
K− 1

K
∗

∑xi∈Rklm

→
yik

∑xi∈Rklm
| →yik |(1− |

→
yik |)

(12)

Fkm(x) = Fk,m−1(x) + γ
l(x∈Rklm)
klm

(13)

2.3.3. Shrinkage

The idea of shrinkage is reflected in the fact that the algorithm takes a small step at a
time and gradually approximates the result, rather than approaching the real result at the
beginning, which is beneficial to avoid overfitting. In the GBDT regression algorithm, it is
not necessary for the first regression tree to offer a very good prediction effect, but through
continuous iteration, the prediction results of multiple decision trees are accumulated step
by step to approximate the true value.

2.4. Stacking Model Construction

The main idea of the stacking algorithm is to combine multiple weak learning devices
into a strong learning machine, and then add another learning device layer on the basis
of the strong learning machine. This model is composed of a layer of learners in addition
to another layer of learners, which can achieve more accurate prediction of the data set.
Generally, we call the weak learning device the primary learner, and the strong learning
machine composed of the weak learning devices at the first layer is called the secondary
learner; both learners are integrated into a new learner through certain rules to form a
more powerful final learner to predict and analyze results.

In the case of practical application, different basic learning devices can be used to
form the stacking model. The implementation process of the stacking model is shown
in Figure 2.
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Figure 2. Stacking algorithm implementation process.

The entire implementation process involves taking the verification results of all basic
learner models that have passed the training as the new training set, and the results of
the test set as the new test set. This is the case for one cycle, the stacking model lets all
data sets be learned by the base learning devices, and uses cross-validation to form a new
training set, and uses the average method to form a new test set. The new training set are
the verification results obtained from the original training set. The new test set is formed
by averaging the prediction results of the original test set.

The stacking model uses a layered structure. We only analyze the second-level stacking.
Suppose that we have three base models, M1, M2 and M3. For the basic model M1,
the training set is trained, and then used to predict and test the label, and the results of the
predicted training set and test set are used as P1 and T1.

...
P1
...
...




...

T1
...
...

 (14)

For the base models M2 and M3, such steps are also performed to obtain P2, T2, P3
and T3. We combine P1, P2, P3 and T1, T2, T3 to produce a new training set train2 and test
set test2.


...

T1
...
...




...

T2
...
...




...

T3
...
...

⇒
New test set︷ ︸︸ ︷
...

...
...

T1 T2 T3
...

...
...

...
...

...

 (15)

We then use the second layer learner M4 to train train2 and predict test2 to obtain
the final regression prediction result. One notable aspect is that the features in train2 and
test2 are the results predicted by y in the first layer. The implementation flowchart of the
stacking algorithm is shown in Figure 3.
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Figure 3. Stacking algorithm implementation form.

The stacking model combines different models to realize the fusion of models. First,
a new model is trained to obtain a final output by taking the output results of different
models trained in the previous round as a new input. In this paper, the random forest
algorithm, the GBDT regression algorithm and the extreme random tree algorithm are
used as the base regression algorithms for combining the algorithms. In theory, stacking
can represent the integration method of the three basic algorithms mentioned above.
The following Figure 4 is the construction of the stacking algorithm involved in this paper.
First, the entire data set is classified into training set and test set. Each training set is
obtained by bootstrapped sampling on the whole training data set, and a series of basic
learning models are obtained, which are called T1 learners. The output of T1 learner is
then used to train T2 learner. In T1 learner, the method of 10-fold cross-validation is used
to train the learner. Each learner in T1 is trained according to the remaining 9 pieces and
it is tested on the test set. The output of these learners is then used as input to train T2
learners on the entire training set.

Figure 4. Model construction of stacking algorithm.
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3. Automatic Grid Search Parameter Tuning of Stacking

The essence of the grid search method is to divide all of the parameters that need to be
searched into a grid with the same length according to the established spatial search range
and the proposed coordinate system. Each point in the coordinate system represents a set
of parameters that must be verified, and its performance can be verified and analyzed by
bringing all of the points in this given interval into the tuning system. We refer to the best
performance of the entire system as the optimal parameter [38]. The main parameters to be
adjusted of random forest, extreme random tree and GBDT regression algorithm which are
selected as the base learning devices are tested below.

The data used for parameter tuning is the feature data vector composed of the gas
concentration and the feature values of each sensor response in the sensor array. Please refer
to Table 4 of “Experimental data” in Section 4. First, the random forest algorithm applies
the bagging model. The main sensitivity parameters to be adjusted by their own framework
are the number of decision trees “n_estimators”, the maximum characteristic number of
decision trees “max_features”, the minimum number of samples needed for node partition
“min_samples_split”, the number of minimum sample leaf nodes “min_samples_leaf”,
the maximum number of leaf nodes “max_leaf_nodes” and the maximum depth of decision
tree “max_depth”, as shown in Table 1. If these parameters are not optimized, there will
be personal subjective interference and the highest performance of the algorithm will not
be achieved.

Table 1. Common parameter settings for random forests.

Random Forest Parameters Parameter Value

n_estimators 100, 200, 300, 500, 700, 1000, 1200
max_features 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

min_samples_split 2, 3, 4, 5, 6, 7, 8, 9, 10
min_samples_leaf 2, 3, 4, 5, 6, 10
max_leaf_nodes 100, 150, 200, 300, 400, 500, 700, 1000, 1200

max_depth 2, 4, 6, 8, 10, 20, 60

Here, taking the mean of 10 times 10-fold cross-validation error rate as the evaluation
standard, the smaller the value, the higher the accuracy of the algorithm. With the premise
of ensuring that the other parameters are default parameters, we select different single
parameter values to draw an image. The mean value of 10 times 10-fold cross-validation
error rate (cv-error) is displayed in the vertical coordinate, and different values of param-
eters are displayed in the horizontal coordinate in this image. Observing the trend of
the image, if the trend of error rate is obvious or follows a certain value, the error rate
is essentially unchanged. The parameters are then considered to be insensitive. If the
error rate is unstable with the change of parameters and the minimum value appears in
many places, the parameters are considered to be sensitive. The sensitivity results of each
parameter for the algorithm are shown in Figure 5.

As can be observed from Figure 5, the results of sensitivity testing show that when
the parameter min_samples_split is 4, the error rate is the lowest. When the parameter
min_samples_leaf is 5, the error rate is the lowest. When the parameter max_depth is 10, it
no longer greatly influences the error rate. The experimental results show that these three
parameters min_samples_split, min_samples_leaf and max_depth are insensitive and do
not need to tune. The values can be min_samples_split = 4, min_samples_leaf = 5 and
max_depth = 10.
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Figure 5. Random forest parameter sensitivity test results. (a) n_estimators parameter sensitivity test results.
(b) max_features parameter sensitivity test results. (c) min_samples_split parameter sensitivity test results. (d)
min_samples_leaf parameter sensitivity test results. (e) max_leaf_nodes parameter sensitivity test. (f) max_depth parameter
sensitivity test.
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It can be observed from Figure 5 that the influence of n_estimators, max_features
and max_leaf_nodes on the error rate is uncertain, and it is determined that these three
parameters are sensitive to the algorithm. It is necessary to perform parameter tuning.
The parameters are optimized by automatic grid search algorithm, and the final results are
as follows: n_estimators = 700, max_features = 0.4 and max_leaf_nodes = 300. After the
parameter optimization of the automatic grid search, the 10-fold cross-validation error rate
of the random forest algorithm changed from 3.56% to 1.45%, a reduction of 2.11%.

According to the classical top-down approach, the extreme random tree algorithm
model constructs a series of sets of extreme random decision tree models. Each tree obtains
the bifurcation value completely randomly, to realize the bifurcation of the decision tree.
The extreme random tree algorithm is an integration of multiple decision trees, which is
similar to the random forest algorithm. The difference is the source of model training data;
the former uses all of the data, while the latter is sampled by bootstrap method. The main
sensitivity parameters of the extreme random tree algorithm model are the same as those
of the random forest, as shown in Table 1. Moreover, after 10 iterations of parameter
sensitivity tests of 10-fold cross-validation, the sensitive parameters of the extreme random
tree algorithm are the same as those of the random forest algorithm. By the same token,
we can obtain that the tuning parameters are n_estimators = 300, max_features = 0.3 and
max_leaf_nodes = 500. After the parameter optimization of the automatic grid search,
the 10-fold cross-validation error rate was changed from 3.07% to 1.28%, a reduction
of 1.79%.

The following are the main parameters in the GBDT regression algorithm. As a result
that the GBDT regression algorithm adopts the Boosting model, its main parameters are
divided into two parts: the framework parameters of the GBDT regression algorithm
and the parameters of the decision tree itself. The frame parameters of GBDT mainly
include sampling proportion “subsample” and learning weight “learning_rate”. The GBDT
regression algorithm uses a sample that is not replaced, and when the sampling proportion
is 1, it means that all of the samples are sampled, which is equivalent to the non-sampling.
Thus, the parameter “subsample” is generally less than 1, and typically between 0.5 and
0.8. The parameter “earning_rate” represents the reduced-weight parameter of the learner,
also known as the step size. The parameters of the decision tree are similar to those of the
random forest, and the detailed parameters are shown in Table 2 below.

Table 2. Common parameter settings for gradient boosting decision tree (GBDT).

GBDT Parameters Parameter Value

subsample 0.5, 0.6, 0.7, 0.8
learning_rate 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0
n_estimators 100, 200, 300, 500, 700, 1000, 1200
max_features 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

min_samples_split 2, 3, 4, 5, 6, 7, 8, 9, 10
min_samples_leaf 2, 3, 4, 5, 6, 10
max_leaf_nodes 100, 150, 200, 300, 400, 500, 700, 1000, 1200

max_depth 2, 4, 6, 8, 10, 20, 60

The basic learner of GBDT is also a decision tree; thus, its parameters related to
decision trees are no longer subject to sensitivity testing. Referring to the random forest
algorithm, continuously select n_estimators, max_features and max_leaf_nodes as sensitive
parameters to participate in the optimization of the automatic grid search algorithm.
In this paper, only two parameters of the framework parameter in the GBDT regression
algorithm are discussed, they are “subsample” and “learning_rate”. The two parameters
are directly used as the tuning parameters for the grid search. The parameters that need to
be adjusted are n_estimators, max_feature, max_leaf_nodes, subsample and learning_rate,
and the values after final determination are 300, 0.3, 500, 0.8, 0.5, respectively. After the
parameter optimization of the automatic grid search, the 10-fold cross-validation error
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rate was changed from 3.12% to 1.63%, a reduction of 1.49%. It can be determined that
these three algorithms after the parameter optimization exert a positive effect on the
regression prediction of the mixed gas. The random forest algorithm, the extreme random
tree algorithm and the GBDT regression algorithm, which have been optimized by the
parameters, will be used as the base learning devices for the model fusion based on the
stacking algorithm, and this model is used to predict the concentration of mixed gas in the
final stacking model.

4. Prediction Results and Analysis of Mixed Gas Concentration
4.1. Evaluating Indicator

Two kinds of algorithm consideration index are selected to consider in the paper.
In the first category, the mean squared error MSE, goodness of fit R2, the median absolute
error MedAE and the average absolute error MAE are used to evaluate the common
evaluation indexes of the regression algorithm. The mean square error of MSE represents
the expected value of the error square between the predicted value and the real value.
The smaller the MSE, the better the accuracy of the algorithm. R2 is the goodness of fit
in regression prediction, which reflects the interpretability of independent variables to
dependent variables. The value is less than or equal to 1, and the larger R2 is, the better.
If the value is less than 0, the prediction algorithm is not as good as the benchmark
algorithm. If the sum of squares of residual errors is simply used, it will be affected by
the absolute value of the dependent variable and the independent variable, which is not
conducive to the relative comparison between different models. This problem can be
solved by evaluating the goodness of fit. The median absolute error MedAE represents the
intermediate value of each absolute error, which is very suitable for the data set of outliers.
The average absolute error MAE represents the average value of the absolute error, which
can better reflect the actual situation of the predicted value error. In the second category of
consideration index, algorithm fitting situation is displayed in the form of a scatter plot.
The true value of the scatter graph is the transverse coordinate, and the predicted value is
the longitudinal coordinate. On the line y = x, the predicted value is the same as the real
value, and the more points which gather on the y = x line, the better the fitting degree of
the algorithm and the higher the prediction accuracy.

The four evaluation indicators are defined as follows:

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (16)

R2 = 1− ∑n
i=1(ŷi − yi)

2

∑n
i=1(yi − yi)

2 (17)

MedAE(y, ŷ) = median(|y1 − ŷ1|, ..., |yn − ŷn|) (18)

MAE(y, ŷ) =
1
n

n

∑
i=1
|yi − ŷi| (19)

In the equations above, n denotes the number of data sets, ŷi denotes the evaluation
prediction results, yi denotes the average value of the prediction results and yi is the
true value.

4.2. Experimental Data

The aim of this paper was a classification and concentration detection algorithm
for mixed gas. The data set used is obtained from the acquisition of measurements of a
metal oxide semiconductor sensor (MOS) array composed of TGS sensors from FIGARO
Company. The TGS sensor has high sensitivity to flammable and explosive gases. It is a
thick film MOS sensor with short response time, low power consumption, low cost, small
size and good long-term stability. A simple circuit can be used to have good sensitivity to
the gas to be measured, which is very suitable for use in toxic and explosive leak detectors.
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By establishing a machine olfactory system of multiple sensor types, the multivariate
response stimulated by methane, ethylene and carbon monoxide gas is obtained.

The experimental platform utilized a wind tunnel with two independent gas sources.
Each source was controlled independently to release the selected volatiles, which generated
different concentration levels in the sensors’ position. The wind generator created a
turbulent flow that constantly displaced the introduced volatiles towards the exhaust
outlet. The detection platform was composed of 8 MOX gas sensors that generate a time-
dependent multivariate response to the different gas stimuli. The operating temperature of
the sensors was controlled by the built-in heater, which was kept at a constant voltage of 5 V.
Figure 6 is a picture in the technical manual of TGS2600, describing the change of resistance
with gas concentration. RS is the sensor resistance value in various gas concentrations. R0
is the resistance value of the sensor in the clean air.

Figure 6. TGS2600 sensor characteristic diagram.

The data set collected by the machine olfactory data acquisition system includes 30
categories [39], and each label consists of 6 experiments with different data sets. As shown
in Table 3, “n” means the concentration is 0, “L” means low concentration, “M” means
medium concentration, “H” means high concentration. The total of 180 data sets are
mixtures of ethylene-carbon monoxide and ethylene-methane.
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Table 3. Data set category information table.

Gas Ethylene n L M H

n − 6 6 6
Carbon monoxide L 6 6 6 6

M 6 6 6 6
H 6 6 6 6

n − 6 6 6
Methane L 6 6 6 6

M 6 6 6 6
H 6 6 6 6

The mixed gas data set is collected by the sensor array composed of 8 sensors, and the
sampling frequency is set to 50 Hz. The duration of the data sampling phase is 300 s. There
is no ventilation for the first 60 s. From 60 s to 240 s, the mixed gas with set concentration
ratio is passed into the gas chamber. From 240 s to 300 s, no mixed gas was introduced. The
data sets are stored according to the time rule. Each data set contains 11 columns of data:
time (s), temperature, humidity (%) and TGS2600, TGS2612, TGS2611, TGS2610, TGS2602,
TGS2602, TGS2620, TGS2620 data. The data collected by the sensor are the voltage values
(VRL) of the external load resistance RL and the sensor resistance is RS. The loop voltage is
Vc and the relationship between VRL and RS is:

VRL =
RL

RS + RL
×Vc (20)

The loop voltage Vc is unchanged. After contacting the target gas, the resistance value
changes, the resistance value of the sensor RS decreases, the resistance value of the load
RL increases, thus, the voltage value VRL increases. Therefore, the data set of the voltage
value VRL can be used to detect the type of mixed gas. The sensor response diagram of the
experiment is shown in Figure 7 (in the case of Et_L_Me_H, that is under conditions of low
concentration of ethylene and high concentration of methane, there are 26,887 columns in
this data set), the abscissa is time and the ordinate is the converted sensor voltage value.

Figure 7. Sensor response graph under Et_L_Me_H tag.
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Different types of sensors respond differently to the same mixed gas. Even if it is
the same type of sensor, there will be differences due to individual differences in the
sensors and different positions. The above-mentioned sensors all respond to a variety of
reducing gases, but the main detection objects for each sensor are different. Therefore,
the use of sensor arrays is more universal. In the case of the data set for gas concentration
detection, the purpose is to detect the concentrations of ethylene and methane. Table 4
lists the gas characteristics and concentration values in parts per million by volume (ppm).
The resulting data set includes 13,910 time series collected within 36 months [40].

Table 4. Data set concentration information table.

Gas Concentration (ppm)

Ethylene
5, 10, 15, 20, 25, 30, 35, 40, 50, 60, 70, 75, 80, 90, 100, 110, 120,

125, 130, 140, 150, 160, 170, 175, 180, 190, 200, 210, 220, 225, 230,
240, 250, 260, 275, 285, 300

Methane
5, 10, 13, 20, 25, 30, 35, 40, 45, 50, 60, 70, 75, 80, 90, 100, 110,

120, 130, 140, 150, 160, 175, 180, 190, 200, 210, 220, 225, 230, 240,
250, 275, 280, 295, 300

4.3. Analysis of Results

Use the mixed gas data set to perform regression prediction of gas concentration,
and obtain the gas concentration prediction results of carbon monoxide and ethylene,
respectively. Compare the results with blending algorithm [41], bagging algorithm [42],
averaging algorithm and SVR algorithm [43].

4.3.1. Blending Algorithm Principle

The blending process is very similar to the stacking process. The main difference
lies in the different training sets. The stacking training set generation process is: use the
K-fold cross-validation method to obtain predicted values, and then generate the features
as training set needed in the second stage based on these predicted values. In contrast,
the training set of blending is derived from the holdout set. In short, blending uses disjoint
data sets for the training process of different model layers.

For the first-level model, the blending algorithm needs to divide the data into a
training set (train_set) and a validation set (val_set), and select multiple homogeneous or
heterogeneous models as the basic models. Then use the training set to train these models,
and verify the trained model on the validation set to obtain the predicted features which
will serve as the training set for the second layer.

The second-layer of the blending model is a common computational learning method,
and its training set is the predicted features obtained from the first layer. There are two
layers in the testing process of the blending model. In the first layer, the trained model
is used to predict the test data to obtain the predicted characteristics of the test set; in
the second layer, the trained single-layer perceptron is used to predict the predicted
characteristics to obtain the final prediction result.

4.3.2. Bagging Algorithm Principle

The Bootstrap method is a typical sampling method, thus, the training set is replaced
and repeatedly sampled. The bagging algorithm is an integrated learning algorithm
using the Bootstrap method. Through Bootstrap sampling on the training set, multiple
independent machine learning models can be obtained. Random forest algorithm is a
classic algorithm that applies bagging theory for integrated learning.

Taking the random forest algorithm as an example, the following shows how to use
bagging algorithm for integrated learning. Through Bootstrap sampling, independent data
are allocated to each decision tree for training, so that each decision tree is independent.
When a new sample is predicted, the new sample is input into each decision tree model,
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and their results are integrated to give the prediction result of the new sample. The specific
algorithm flow is as follows:

(1) Decision tree training data division stage: Use the Bootstrap method on the original
data set to obtain multiple independent training data for training each decision tree.

(2) Decision tree training stage: Each decision tree is trained independently, and the
information gain is used as an attribute selection metric to split the node until all the data
in the node belong to the same category, or the depth limit is reached to stop the split,
the whole process does not perform the pruning operation.

(3) Model summary stage: Summarize the results of all decision trees. For classification
problems, the voting method is used, and the category with the highest number of votes is
used as the predicted category; for regression problems, the average value of the output
results of each decision tree is used as the final predicted value.

4.3.3. Averaging Algorithm Principle

Averaging also combines multiple different learners, but the combination rules are
different from the previous algorithms. The main idea is to average the results between
different algorithms. For regression prediction, models composed of different algorithms
are used as base learners, and the prediction results of each base learner are averaged as
the prediction results of the overall model.

According to the evaluation index parameters, the specific results of each algorithm
are shown in Tables 5 and 6. Table 5 shows the regression prediction results for carbon
monoxide gas. Table 6 presents the regression prediction results for ethylene gas.

Table 5. Carbon monoxide prediction results.

Carbon Stacking Blending Bagging Averaging SVR

MedAE 1.8442 1.9699 4.4578 3.9575 4.2109
MAE 4.1162 4.8516 6.5391 5.7628 8.7930
MSE 66.5157 85.7748 113.2176 75.7827 404.2604

R2 0.9901 0.9873 0.9831 0.9887 0.9411

Table 6. Ethylene prediction results.

Ethylene Stacking Blending Bagging Averaging SVR

MedAE 1.7842 1.8457 4.8566 4.1125 4.6771
MAE 4.0459 4.6251 6.6022 5.9546 9.2911
MSE 65.2454 83.0125 114.2146 75.8315 543.3516

R2 0.9913 0.9900 0.9820 0.9846 0.8945

Through Table 5, it can be determined that for the prediction of carbon monoxide,
the highest fit value of the stacking algorithm is 0.9901, which indicates that the fitting
condition of the algorithm is very good. The fit value of the averaging algorithm is 0.9887,
the fit value of the blending algorithm is 0.9873 and the fit value of the bagging algorithm
is 0.9831, which is the lowest among the above algorithms except for SVR. The median
absolute error of stacking is 1.8442, which is 2.6136 lower than that of the bagging algorithm,
2.1133 lower than that of the averaging algorithm, 0.1257 lower than that of the blending
algorithm. The average absolute error of stacking is 4.1162, which is 2.4229 lower than that
of the bagging algorithm, 1.6466 lower than that of the averaging algorithm, 0.7354 lower
than that of the blending algorithm. The goodness of fit, median absolute error, average
absolute error and mean square error for the stacking algorithm are much higher than
those of the SVR algorithm.

Through the comparison between Tables 5 and 6, it can be determined that the pre-
diction results of ethylene concentration are not different from those of carbon monoxide
concentration prediction. The prediction results of the stacking algorithm are the best
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for the prediction of ethylene. The goodness of fit of the stacking algorithm is 0.9913,
the median absolute error is 1.7842 and the average absolute error is 4.0459. The goodness
of fit of the bagging algorithm is 0.9820, the median absolute error is 4.8566 and the average
absolute error is 6.6022. The goodness of fit of the averaging algorithm is 0.9846, the median
absolute error is 4.1125 and the average absolute error is 5.9546. The goodness of fit of the
blending algorithm is 0.9900, the median absolute error is 1.8457 and the average absolute
error is 4.6251. Among them, the averaging algorithm is better than the bagging algorithm
overall, but worse than blending as a whole. The prediction effect of SVR is much worse
than that of the stacking algorithm.

In order to further analyze the prediction of mixed gas concentration, the prediction
results are analyzed more clearly by visual presentation. Figure 8 shows the comparison of
the effects of carbon monoxide concentration prediction parameters before and after tuning.

At the same time, the prediction of carbon monoxide is shown in Figure 9, in which
the transverse coordinates are the actual test values, the longitudinal coordinates represent
the values of the predicted results, and the four regression algorithms are compared to
characterize the prediction effect.

From the analysis of Figure 9, it can be determined that the graphics are close to
the line of y = x, which is consistent with our expectation. It can be clearly observed
that the fitting effect of the stacking algorithm is the best with respect to predicting the
gas concentration value. The fitting effect is more concentrated on a straight line, while
the dispersion rate of the predicted value of the SVR algorithm is the largest, which also
explains the reason for the larger mean square error.

Figure 8. Comparison diagram of fitting algorithm. (a) Prediction result before stacking parameter optimization. (b) Predic-
tion result after stacking parameter optimization.
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Figure 9. Comparison diagram of fitting algorithms. (a) Stacking algorithm prediction result. (b) Blending algorithm
prediction result. (c) Bagging algorithm prediction result. (d) Averaging algorithm prediction result. (e) SVR algorithm
prediction result.
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5. Conclusions

In this paper, the gas concentration prediction algorithm based on the stacking model
was proposed, and the mixed gas data were modeled and analyzed with random forest,
extreme random tree and GBDT regression algorithms. Parameter tuning based on grid
search was conducted for the base learner used in the stacking model, and the optimal
parameter was selected by 10-fold cross-validation error rate. Finally, the overall error rate
was reduced by automatic grid searching of the tuned stacking model. The simulation
methods were selected to verify and calculate the regression prediction indexes of the four
models, including the median absolute error, average absolute error, mean square error
and goodness of fit. The stacking model exhibited the best prediction effect for carbon
monoxide and ethylene, with goodness of fit values of up to 0.9901 and 0.9913, respectively.
In addition, it is verified by fitting the curve. Both of the above results indicate that the
proposed stacking model based on stacking exhibits a better fitting effect and is more
suitable for gas concentration prediction than other comparison algorithms. The proposed
algorithm exerts an obvious effect on the precision of regression fitting and is suitable for
concentration prediction, which provides a reference for the machine olfactory algorithm.
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