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Abstract: The Internet of Things (IoT) ecosystem comprises billions of heterogeneous Internet-
connected devices which are revolutionizing many domains, such as healthcare, transportation,
smart cities, to mention only a few. Along with the unprecedented new opportunities, the IoT
revolution is creating an enormous attack surface for potential sophisticated cyber attacks. In this
context, Remote Attestation (RA) has gained wide interest as an important security technique to
remotely detect adversarial presence and assure the legitimate state of an IoT device. While many
RA approaches proposed in the literature make different assumptions regarding the architecture
of IoT devices and adversary capabilities, most typical RA schemes rely on minimal Root of Trust
by leveraging hardware that guarantees code and memory isolation. However, the presence of a
specialized hardware is not always a realistic assumption, for instance, in the context of legacy IoT
devices and resource-constrained IoT devices. In this paper, we survey and analyze existing software-
based RA schemes (i.e., RA schemes not relying on specialized hardware components) through
the lens of IoT. In particular, we provide a comprehensive overview of their design characteristics
and security capabilities, analyzing their advantages and disadvantages. Finally, we discuss the
opportunities that these RA schemes bring in attesting legacy and resource-constrained IoT devices,
along with open research issues.

Keywords: remote attestation; software-based attestation; timing-based attestation; software integrity
verification; legacy Internet of Things

1. Introduction

With the Internet of Things (IoT) revolution, IoT devices are experiencing an ex-
ponential growth, becoming pervasive in infrastructure and industrial systems (e.g.,
digital transportation, smart cities, automated factories), and emerging as an integral
part of our everyday life (e.g., smart home, wearable devices). According to Statista
(https://www.statista.com/statistics/976313/global-iot-market-size/ (accessed on
31 December 2020)), the global IoT market is expected to reach around 1.6 trillion dol-
lars in market revenue by 2025. However, the enormous expansion of interconnected IoT
devices that perform safety-critical operations and contain sensitive information, combined
with their limited capabilities to implement advanced security techniques, makes IoT
devices a prominent target of a broad range of malicious exploitations [1–3].

Aimed at securing IoT devices, Remote Attestation (RA) has been proposed as a
valuable security technique that allows a trusted party (i.e., verifier) to assure the integrity
of the untrusted IoT device (i.e., prover). During the attestation, the prover sends proofs
about its current state of the memory (typically a hash of the memory) to the verifier,
whereas the verifier matches the received evidence with the expected legitimate state
(known in advance) of the prover, and according to that it validates whether the prover is
trustworthy or not.

Based on their architectural design, RA schemes can broadly be classified into three
main categories: (1) Software-based RA (e.g., Seshadri et al. [4,5]) which provides se-
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curity guarantees based on strict running time constraints of the verification procedure;
(2) Hardware-based RA (e.g., Sailer et al. [6], Tan et al. [7]) which uses a tamper-resistant
hardware module as a secure execution environment; and (3) Hybrid RA (e.g., Elde-
frawy et al. [8], Brasser et al. [9]) which rely on a minimal read-only hardware-protected
memory. Due to the lack of requirements for a specialized tampered-resistance hard-
ware, software-based RA schemes are low-cost solutions in comparison with hardware-
based RA. However, using a secure execution environment such as Trusted Platform
Module (TPM) [10], ARM TrustZone [11], and Intel Software Guard Extensions (SGX)
(https://software.intel.com/en-us/sgx (accessed on 31 December 2020)), hardware-based
RA provides high-security guarantees, that protects RA protocol execution from compro-
mised software. Nevertheless, classic low-cost IoT devices do not support the requirements
of hardware-based schemes for costly specialized hardware-protected modules. To ensure
uninterrupted, safe and secure code execution of the RA protocol, hybrid RA schemes
depend on the existence of a minimal read-only hardware-protected memory. However, the
assumption made by hardware-based RA and hybrid RA of a specialized hardware is not a
trivial requirement for many IoT devices with limited computational power which do not
support any specialized hardware, such as battery-free, energy harvesting IoT devices [12].

Considering that there is a great number of legacy IoT devices already deployed
without a specialized hardware support, it is difficult (if not impractical) to customize
the hardware and redeploy these devices. Due to the cost, it is also not a viable option
to replace them all with new devices relying on specialized hardware. In addition, many
IoT devices are designed to be small, cheap, and battery-free, thus, introducing new and
specialized hardware could potentially not only increase the cost and size of the devices but
also deviate from the energy harvesting feature of their design. Nevertheless, it is crucial to
provide security protections on such low-cost devices. In this context, software-based RA
can be considered a very promising approach. However, to the best of our knowledge, a
comprehensive analysis of existing software-based RA schemes in order to investigate their
advantages and disadvantages along with the opportunities that they offer for attesting
legacy and/or resource-constrained IoT systems is still missing in the literature.

1.1. Contributions of the Paper

This paper aims at addressing the aforementioned problem by presenting a compre-
hensive state-of-the-art of software-based RA schemes in the context of IoT. The overall goal
is to provide the reader with the current state-of-the-art of software-based RA protocols,
discussing the research opportunities that these schemes bring in attesting legacy and/or
resource-constrained IoT devices, along with the research challenges that we still need
to address in order to fully adopt these schemes for IoT security. In particular, the paper
provides the following main contributions:

• Thorough analysis of the state-of-the-art software-based RA schemes.
• Discussion on opportunities that software-based RA schemes bring in attesting legacy

IoT devices, as well as in attesting new emerging IoT devices which rely on Fog
computing paradigm and energy harvesting technology.

• Analysis of limitations and research challenges in implementing software-based RA
approach.

1.2. Paper Outline

The rest of this paper is structured as follows. In Section 2, we briefly summarize
related work. Section 3 describes the research methodology used for the literature collection.
In Section 4, we give a short background regarding the common system and adversarial
model for software-based RA protocols. In Section 5, we present state-of-the-art for RA
schemes including their design features, security capabilities, and an analysis of their
advantages and disadvantages. In Section 6, we discuss the opportunities of software-
based RA scheme and present some open research problems in Section 7. Finally, we
provide some concluding remarks in Section 8.

https://software.intel.com/en-us/sgx
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2. Related Work

This section summarizes the related works in the RA domain and compares this paper
with other RA surveys presented in the literature.

2.1. Single Device RA

During the last two decades, many RA approaches have been proposed in the liter-
ature. These RA schemes provide different perspectives in terms of architectural design,
scalability and security objectives. Based on the architectural design, RA schemes are
broadly classified into three main categories: software-based, hardware-based and hybrid-
based. Software-based RA schemes, such as Reflection [13], SWATT [4], Pioneer [5], target
low-end devices with low-cost design, small size, and low power consumption, which do
not provide any hardware support or hardware modification. To establish Root-of-Trust on
such devices, software-based approaches rely on highly optimized protocol implementa-
tion and make certain adversarial assumptions. To address limited security protections of
software-based RA schemes, hardware-based approaches rely on trusted computing archi-
tectures such as TPM [10], ARM TrustZone [11], Sancus [14]. Despite their strong security
guarantees, the requirement for costly customized hardware that cannot be accommodated
in small IoT platforms makes hardware-based protocols incompatible with many low-end
devices. To this end, hybrid-based solutions, such as SMART [8], TyTAN [9], TrustLite [15],
leverage the best properties of software-based and hardware-based RA approaches to
establish Root-of-Trust by relying on minimal hardware assumptions. In particular, hy-
brid solutions require modification of devices hardware to ensure atomic and secure code
execution of RA protocols. One recent work that aims to fill the gap between software-
based and hybrid-based RA schemes is SIMPLE [16], a hypervisor-based RA scheme for
resource-constrained IoT devices. SIMPLE relies on a software-based memory isolation
technique, called Security MicroVisor (SµV) [17]. SµV shields a software-based Trusted
Computing Module (TCM) from untrusted application software using selective software
virtualisation and assembly-level code verification. However, due to the runtime safety
checks, this approach introduces increased execution time. Moreover, SµV is considered
memory-safe and crash-free, but it has not been fully verified yet.

2.2. Collective RA

Collective RA protocols aim to provide scalable solutions for attesting large IoT net-
works. Overall, collective RA schemes differ on whether they consider tree-based or
distributed aggregation technique, static or dynamic network topology, one centralized
or many distributed verifiers. The collective RA schemes such as SEDA [18], SANA [19],
SHeLA [20] rely on the assumption that the network is interconnected and static during
attestation. To propagate the attestation requests and aggregate the attestation results in
an efficient manner, these schemes construct the network as a balanced binary tree, in
which devices have a parent-child relationship. To enable attestation in highly dynamic
networks, PADS [21] and SALAD [22] integrate consensus techniques in the remote attesta-
tion solutions. Other RA protocols (such as ESDRA [23], DIAT [24]) employ distributed
verifiers. Typically, in these approaches, autonomous devices act also as verifiers to attest
other devices they interact with. In addition, the RA schemes of distributed IoT services,
RADIS [25] and SARA [26], aim to attest, respectively synchronous and asynchronous
distributed services of IoT systems. All the aforementioned collective RA schemes rely on
hybrid architecture.

2.3. Analysis and Surveys on RA

The works presented by Armknecht et al. [27] and Steiner and Lupu [28] are the most
closely related to this paper to the best of our knowledge, considering the works in the lit-
erature focusing on reviewing software-based RA protocols. The former presents a security
framework that formally captures security goals, attacker models and various system and
design parameters. The latter focuses on attestation of Wireless Sensor Networks (WSNs),
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analyzing different RA approaches relevant for WSNs, including software-based attestation
schemes. However, these papers do not focus on surveying software-based RA schemes
and do not discuss the new IoT opportunities of this research subject. A recent survey
presented by Ambrosin et al. [29] provides a comprehensive comparison and analyzes the
security properties of the state-of-the-art Collective Remote Attestation protocols that are
capable of remotely performing attestation of large networks of IoT devices. Given that
this survey focuses only on network RA approaches, software-based RA schemes are only
briefly mentioned as they are considered out of scope. Maene et al. [30], and Gross and
Sfyrakis [31] survey the hardware-based RA approaches. In particular, Maene et al. [30]
present a detailed description and comparison of the security properties and the architec-
tural features of hardware-based attestation and isolation architectures from academia and
industry. In addition, the survey presented by Gross and Sfyrakis [31] focuses on reviewing
the RA schemes that use a hardware device and cryptographic primitives to assist with the
attestation of devices in a network. As such schemes focus entirely on hardware-based RA,
the software-based approaches have not been analyzed in these studies. Abera et al. [32]
discuss state-of- the-art attestation techniques from the perspective of IoT devices, giving
an overview of different types of attestation and discussing their challenges.

To the best of our knowledge, this paper is novel with respect to its focus (software-
based RA for IoT) and analysis (research opportunities and open issues). This is shown in
Table 1 where we present an overview of the different perspectives on remote attestation of
state-of-the-art works and we highlight the main differences with respect to this survey.

Table 1. Related work summary.

Work Year Focus Survey Software-Based RA

Armknecht et al. [27] 2013 Software-based framework 7 3

Steiner and Lupu [28] 2016 RA on Wireless Sensors networks 3 3

Abera et al. [32] 2016 RA overview on IoT 3 7

Maene et al. [30] 2018 Hardware-based RA 3 7

Gross and Sfyrakis [7] 2020 Hardware-based RA 3 7

Ambrosin et al. [29] 2020 Collective RA 3 7

This paper 2021 Software-based RA 3 3

3. Research Method

In this section, we present our methodology for discovering the existing scientific lit-
erature regarding software-based RA approaches. We adopt the research method proposed
by Petersen et al. [33], and in the following we elaborate on research questions, search
strategy, search process, and study selection.

3.1. Research Questions

This work aims to identify and analyze the characteristics of software-based RA
protocols proposed in the literature. Thus, we pose the following research questions:

• RQ1: What are the existing software-based RA protocols?
• RQ2: What are the design characteristics and security capabilities of these protocols?

RQ1 aims to provide an overview of relevant software-based RA techniques, while
RQ2 points out the features and fundamental differences between the relevant techniques.
These questions can then guide us in identifying software-based RA protocols’ opportuni-
ties in attesting legacy IoT devices and emerging IoT solutions.

3.2. Search Strategy

We use the following PICOC [34] criteria to identify the relevant keywords for our
search:

• Population: We consider works in RA domain which propose a software-based ap-
proach for resource-constrained devices.
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• Intervention: We are interested in works that propose a new protocol or technique on
software-based RA.

• Comparison: We compare different approaches based on design features, security
capabilities, cryptographic primitives, complexity, required verifier knowledge, etc.

• Outcomes: We present software-based RA techniques, their opportunities and limita-
tions.

• Context: We are interested in any scientific paper in academia that presents a technique
or protocol for software-based RA in the context of IoT devices.

Following the criteria mentioned above, we have identified the following keywords
for our search: remote attestation, software-based attestation, tamper-proof code, remote
software authentication, tamper resistance

3.3. Search Process

We performed our search in the DTU Find-it database service, which contains publi-
cations from sources like ACM, IEEE, Elsevier/ScienceDirect, Springer, Scopus, Cite-Seer,
arXiv and other widely used journals and databases. Since we focus on RA for legacy
devices and resource-constrained devices, we used the keyword “tamper resistance” to
exclude the wide literature in RA approaches for powerful devices that can support the
presence of a specialized hardware, TPM or SGX. Thus, we conducted our search based
on the following query: (“software” OR “software-based”) AND (“remote attestation”
OR “software-based attestation”) AND NOT “tpm” AND NOT “trusted platform module”
AND NOT "SGX". It returned 445 results, and these paper were selected for the following
final selection step.

3.4. Study Selection

Starting from 445 results, we filtered the papers with multiple phases. Firstly, we
identified 67 duplicates, so 378 papers remained for further consideration. Next, we design
and apply some exclusion criteria (EC), as proposed by Petersen et al. [33] to filter out the
articles.

• EC1: The full-text of paper is not accessible.
• EC2: Paper is not presented in English
• EC3: The proposal of the paper requires additional new or customized hardware.
• EC4: The proposal does not target IoT devices.
• EC5: The paper has been published before 2000.

By applying EC2, EC4 and EC5, the number of considered papers reached 286. After
reviewing the title and the abstract, only 41 papers were considered relevant articles in
the subset of published materials. In the full-reading phase, we discarded 30 papers, and
through reverse snowball sampling, we selected 2 relevant papers. The total number of
relevant articles for this survey is 13.

4. Background: Software-Based RA on IoT Devices

This section provides the necessary background information on the system model and
the adversary model of remote device attestation.

4.1. System Model

In general, the system model of a RA scheme consists of the following entities:

• Prover. The prover is an untrusted resource-constrained device. The prover performs
RA procedure to prove its trustworthiness.

• Verifier. The verifier is an external trusted party that validates the integrity of the
prover. It is generally assumed that the verifier has access to the prover and knows in
advance the expected the legitimate configurations of the prover. It is also assumed
that the verifier and the prover interact through a secure communication channel.
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• Network Operator. The network operator guarantees the secure bootstrap of the soft-
ware deployed on each prover and the secure key distribution among devices at the
beginning of the IoT system operation.

Typically, a RA protocol is designed as a simple challenge-response protocol, as shown
in Figure 1. The protocol involves two entities: a trusted verifier and an untrusted prover.
The attestation starts when the verifier generates a nonce and sends a challenge c to the
prover (Step 1 in Figure 1). After having received the challenge, the prover will attest its
own device’s state S, which is typically a hash or checksum of the device’s memory content.
The prover concatenates the attested memory S and the received challenge c (Step 2 )
and sends the computed result in the form of response r (Step 3 ). Given that the verifier
knows in advance the expected the legitimate states (e.g., legitimate hashes or checksums),
the verifier is able to compute the expected response locally. The verifier then compares
the prover’s response against the expected legitimate value. If the values do not match, the
verifier claims that the prover is compromised.

Response r3

Figure 1. Challenge–response protocol.

4.2. Adversary Model

In the following, we summarize the adversary model of a classic RA protocol. Ad-
versarial actions are also in line with the threat models described by Ambrosin et al. [29],
Abera et al. [32], Steiner and Lupu [28].

• Software Adversary (AdvSW). Injects and executes malicious code on a device. In
particular, a AdvSW will try to generate valid response despite the modification by
performing the following adversarial actions.

1. Precomputation. A AdvSW can pre-compute all attestation operations, indepen-
dent from the challenge.

2. Replay. A AdvSW precomputes the attestation result and reports a previous
valid response to hide an ongoing attack. A AdvSW can also eavesdrop a valid
response from other devices.

3. Memory copy. A AdvSW saves a copy of the original memory on the device.
4. Data substitution. A AdvSW saves only the original data that have been over-

written.
5. Compression. Compresses original data to obtain space for malicious code.
6. Impersonation. A AdvSW makes a genuine device to send an invalid response

and use genuine devices to compute calculations for a compromised device.
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7. ROP. A AdvSW exploits Return Oriented Programming (ROP) technique [35] to
execute malicious operations by using legitimate existing code already loaded
on the device.

• Mobile Software Adversary (AdvMSW). A AdvMSW compromises a device’s software and
erases the malware, removing any trace of its presence at the attestation time.

• Physical Non-Intrusive Adversary (AdvPNI). A AdvPNI is nearby the device and infers
information from the devices, e.g., using side-channel attacks.

• Stealthy Physical Intrusive Adversary (AdvSPI). A AdvSPI captures a device and extracts
information from it.

• Physical Intrusive Adversary (AdvPI). A AdvPI captures a device and may introduce
external hardware on it.

All the software-based RA only attest the program memory, due to the fact that the
data memory is unpredictable. Thus, the data memory attacks are considered out of
the scope of software-based RA schemes. Due to their software-only design, software-
based RA protocols do not consider the detection of AdvMSW , AdvPNI, AdvPI. Additionally,
Distributed Denial of Sevices (DDOS) attacks are generally considered out of the scope of
any RA protocol, including software-based schemes.

5. State-of-the-Art Software-Based RA Schemes

In this section, we present an overview of the software-based RA schemes in chrono-
logical order. Their strength and weaknesses are discussed, as well as possible extensions.

5.1. Schemes Description
5.1.1. Reflection

Reflection [13] is the earliest attestation found, and it is designed as a simple challenge-
response protocol to attest a prover. At the attestation time, the verifier sends two chal-
lenges, and each challenge contains a range of memory addresses to attest. Upon receiving
a challenge, the prover computes a hash or message digest of the given memory space and
its program version. The prover then returns the hash and its version as a response to the
challenge. When the verifier has received both responses, it computes the expected hash
values and compares them with the the prover’s responses; if they do not match the prover
is considered compromised. To guarantee the security, this attestation scheme imposes
constraints on the two ranges sent in the challenge. To guarantee that the entire program
memory is attested, the ranges should be overlapping and unpredictable. For instance, the
verifier randomly chooses two integers m1 and m2 such that 0 ≤ m2 ≤ m1 ≤ L, where [0,L]
is the range of the programs memory addresses where the program is stored. When the
first challenge attests the range [0,m1], the second challenge attests the range [m2,L] and
m2 < m1, the ranges overlap and many addresses are attested by both challenges.

This protocol is vulnerable to an attacker that first compresses the unused program
memory to create space to hide itself, and then during attestation, it decompresses the
memory to compute a valid checksum. The paper recommends that the state of the
program running on the system be included in the response as a countermeasure to such
an attack. The paper also proposes to fill unused memory with random high entropy
noise, to be able to attest the memory. The attacker could also hide the original memory
values in the devices’s data memory, which is not being attested. To detect this attacker,
the paper suggests imposing a time limit within which the prover responds. Additionally,
the paper mentions that the protocol is vulnerable to man-in-the-middle attacks because
the compromised device could redirect the request to an uncompromised device, intercept
the response and use it to pass the attestation. This attack has not been addressed in the
paper because it is assumed that the cost outweigh the benefit for the attacker.

While Reflection is the first software-based attestation scheme, it also presents several
weaknesses. The paper mentions the memory entropy but it does not consider the entropy
of the randomly chosen integers used for the memory ranges. The paper does not explain
how the hash is computed and how the memory is traversed. For instance, if the hash
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is just of the memory’s value and the memory is traversed in a predictable sequential
order, it is easier for the attacker to redirect, with an offset, the attestation to where the
original memory is stored, computing a valid response. This problem was later tackled
in SWATT [4] by not attesting the memory sequentially. In addition, Reflection has a
risk of being inefficient. For example, if m1 = L and m2 = 0, then the entire memory is
attested twice, which is unnecessary, and if m1 and m2 is just close to the boundaries of the
range, it means most of the memory is attested twice. From an IoT point of view, attesting
memory twice during the same run, uses precious battery, bandwidth and prevents devices
from doing their regular operations. Depending on how often devices are attested, the
attestation could result to be a costly operation.

5.1.2. SWATT

SWATT [4] is a simple challenge-response protocol, similar to the one shown in
Figure 1. SWATT computes the response by performing a checksum of the memory. It uses
a pseudo random number generator (PRNG) to iterate over the memory in an unpredictable
order. In this way, the attacker has to check every memory access during the attestation, in
order to redirect the memory access to where the original code for that memory location
is stored. The prover receives the seed for the PRNG in the challenge from the verifier.
To ensure with high probability that the device is not compromised, SWATT traverses
O(n ln(n)) memory addresses, where n is the number of memory addresses, in which the
program running on the device is stored. This value comes from the Coupon Collectors
Problem, which states that with this number of memory accesses, it is likely that every
memory address in the device is accessed at least once. With every memory address
accessed at least once, the attacker cannot store unexpected values in the attested memory.

To prevent an attacker from computing a valid response on the fly during the attes-
tation execution, by redirecting the attestation to memory regions where the attacker has
stored the original values, SWATT requires a strict running time of the attestation proce-
dure. To meet the upper bound time limit of attestation procedure execution, the SWATT
attestation code must be fully optimized. Due to PRNG properties, the attacker needs to
insert if statements into the attestation code to redirect the check to where the original code
is stored. Thus, any injected malicious code will result in a measurable delay. Another
requirement for the timing check, is that the attestation response cannot be computed
concurrently, i.e., different parts cannot be computed at the same time. If this was possible,
a number of devices would be able to collude to compute the legitimate response within
the permitted time. To prevent the concurrent computation, each checksum and memory
address is dependent on the previous one.

The fact that SWATT relies on a strict time limit and optimized function execution
is considered a drawback. In particular, as devices become powerful and algorithms get
improved, the SWATT algorithm would need to be continuously updated, to ensure that no
faster implementation exists. Furthermore, it presents a problem when used in networks
with unpredictable delays. In this case, the allowed time might be too long, which would
allow attackers to remain undetected. In contrast, if the allowed time is not long enough,
devices might be considered compromised even if they are not.

5.1.3. Pioneer

Pioneer [5] is a RA scheme similar to SWATT [4], but it focuses on legacy devices with
more processing power and more memory. Pioneer differs from SWATT in that it includes
more information in the checksum. Unlike SWATT that includes only the values of the
memory addresses in the checksum, Pioneer also includes the program counter and the
data pointer in the checksum, in order to detect memory copy attacks. Furthermore, the
jump locations for jump instructions are also included in the checksum, to detect illegal
jumps.

Pioneer is a two-step challenge-response protocol. First, it computes a checksum of the
checksum code to verify that it works correctly. Then, it computes a hash of the executable



Sensors 2021, 21, 1598 9 of 23

that is being attested. The verifier checks both the checksum and the hash to confirm the
executable is trusted. Pioneer also differs from the other schemes presented, in what is
being attested. For devices with large amounts of memory and many different programs,
Pioneer only attests one executable, which is then used to provide a route of trust for that
executable. Pioneer requires the same strict time constraints as SWATT and uses the same
PRNG to select memory addresses.

5.1.4. PIV

The Program Integrity Verification (PIV) [36] is a RA scheme based on a randomized
hash function (RHF). The RHF used is a multivariate quadratic (MQ) polynomial. The MQ
polynomials have successfully been used as a one-way trap-door function. The special
MQ polynomial characteristic PIV uses, is that the same hash value can be computed from
both the memory content and a special digest of the memory content. That is, running the
RHF on both the program and a special digest of the program, will produce the same value.
The MQ polynomials have the following special characteristic. If a program x is split into
n blocks [x0,...,xn], where each block is a m × 1 vector xi = [xi,0,...,xi,m]

T , then the special
digest is the m × m matrix Xl = xl xT

l .
The digest is clearly related to the program x. During the verification the verifier

computes the hash Y from the digest Xl by

Y = H[
n

∑
l=1

glXl ]HT

and the prover computes the hash Y from the program x by

Y =
n

∑
l=1

gl(Hxl)(Hxl)
T

where H is the random hash function, gl is a cryptographic key and n is the number of
blocks the program consists of.

PIV is a typical challenge-response protocol, but it sends more messages to authenti-
cate the verifier. The protocol starts either when a device tries to join the network, or when
an intrusion detection mechanism flags the device as potentially compromised. When
a device tries to join the network, it first finds at least a verifier and an authentication
server (AS), and then, it asks the AS to authenticate the verifier. Once it has found an
authenticated verifier, it will ask that verifier to attest its code. The verifier sends the
randomized hash function H and the key gl to the device. The device computes the hash
from the program and sends the hash as a response to the challenge. If it does not match the
verifier’s expected checksum, the device is considered compromised and cannot join the
network. Suppose the device is already on the network and the intrusion detection system
flags it as suspicious. In that case, the verifier can initiate the protocol by sending the hash
function and the key. The device still authenticates the verifier with the authentication
server.

Unlike Reflection [13] or SWATT [4], in PIV [36], the verifier does not store the pro-
grams but only some digest of program blocks. Since programs from different sensors
might use the same blocks, this means the verifier might need to store less information.
PIV claims to be efficient as it does not attest devices often: a device is attested when it
joins and when an intrusion detection system (IDS) flags a device as possibly compromised.
Since how often PIV will attest devices depend on the IDS, it might often run if the IDS is
very sensitive or if many attacks are triggering the IDS to attest the devices.

5.1.5. Self-Modifying Code

Shaneck et al. [37] propose a RA protocol that improves the strict time constraint of
SWATT [4]. The key idea is to make it difficult for attackers to insert conditional offsets into
the read statements of the attestation code by making the code different for every attestation.
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In order to achieve this, the attestation code is required to be fresh and unpredictable. The
freshness is to avoid replay attacks, while unpredictability prevents pre-computation. In
the proposed solution, the verifier sends the attestation code over the network. For this,
the code should be small not to introduce high communications overhead during the
attestation procedure.

The scheme focuses on making static program analysis of the attestation code difficult
and time-consuming, preventing attackers from computing a valid response within the
expected time limit. Unlike SWATT that relies on a strict time constraint and optimized
attestation code, this scheme has a looser time constraint and does not rely on the optimized
code. In particular, the scheme relies on code obfuscation to prevent any attacker from
analysing the code and computing a correct response in time. The solution suggested
is intended to add more delay from an attack, to ease the strict time limit, allowing for
more delay in the network. The proposed time constraint for this attestation scheme is
(2 × r) + e + ∆, where r is the transmission time of the challenge and response, e is the
expected execution time of the attestation code, and ∆ is the variable time. ∆ is based on
the delay to an attacker, and hence is the allowed network delay.

This scheme is a challenge-response protocol, with the addition of using encryption
and message authentication codes (MAC). The challenge contains the actual attestation
code, which has been encrypted and sent along with a MAC of it. After the prover has
verified the MAC, it decrypts the code and loads it into the program memory to execute
it. When the verifier constructs the attestation code, some form of randomness is used to
provide freshness and make the code unpredictable.

This scheme is an improvement over SWATT when it comes to maintainability. Since
SWATTs attestation code has to be fully optimized, it needs to be continuously checked
and updated so that no attacker could have a faster version with conditional offsets. This is
not required by Self-Modifying Code, as the code is a fresh version provided by the verifier
at each attestation. This means that the verifier has to send more data, which could be
an issue for sensor networks, where the bandwidth is low. For example, if the sensor is
somewhere remote and running on a battery, then this communications overhead might be
too costly.

5.1.6. Proactive

Proactive Code Verification [38] is an attestation scheme trying to improve upon
SWATT [4]. Like the Self-Modifying Code [37] scheme, it aims to solve the strict time
constraint imposed by SWATT. Rather than changing the attestation code, Proactive focuses
on filling the memory with random values to prevent the attacker from hiding the original
values or the malicious code. This protocol is a classic challenge-response protocol attesting
the memory by computing a checksum over the content. It suggests adding an identifier for
the verifier to the request, allowing the prover to authenticate it. In the request, the prover
receives a seed, same as SWATT. Instead of using the seed to attest memory in random
order from the randomly generated values, Proactive uses the seed to generate random
values used to fill the empty memory. Additionally, instead of responding with only the
program memory checksum, Proactive includes the data memory in the checksum. To
verify the checksum, the verifier needs the data memory content, which the prover sends
in the response along with the checksum.

This scheme also has a time constraint, but it is not required to be as strict as SWATT.
As the entire memory is attested, an attacker cannot use unused memory to calculate a
valid response from original values. Moreover, in Proactive, the values used to fill the
memory rely on the previous values. The attacker will therefore not generate the values
easily and hash them. Since Proactive fills the memory twice, the attacker cannot simply
calculate the chains, as the results propagate through the values for all the filled memory.
Proactive includes the data memory in the checksum and sends the memory content in
the response to introduce more data to be sent over the network. Since the verifier does
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not know the legitimate state of the data memory, it accepts the response content despite
potentially malicious code that it may include.

Proactive’s improvement on the time constraint of SWATT is due to the fact that it
would take an attacker a long time to compute each block of memory to be attested, without
overwriting its own malicious code. The attacker would have to compute each block of
memory from the beginning since each block relies upon the previous blocks. Because the
memory is filled twice, it means the first block relies on all the other blocks.

5.1.7. Distributed

Yang et al. [39] propose two different distributed attestation schemes. The idea behind
both of them is to remove the need for a trusted verifier as in other attestation schemes.
In addition, an efficiency enhancement for SWATTs [4] pseudo-random memory traversal
is suggested at the cost of security. This scheme relies on SWATT but with the difference
that it works on memory blocks instead of cells. Instead of computing the checksum by
iterating over each memory address and updating the checksum, the proposed block-based
approach handles a block of cells at a time, which are Xor-ed together to compute the
checksum. Such an approach results in fewer iterations since each iteration handles more
memory. If the block size is set to one, then it is the same as SWATT. If the block size is
the memory’s size, then the checksum is computed in one iteration, where all memory is
Xor-ed together. A block size equal to the size of the attested memory is a security risk, as
it makes it easy for an attacker to store the computed checksum since there is no actual
traversal. Therefore one has to be careful when choosing the block size.

In the first scheme, one device is elected and acts as the verifier. Majority rule verifies
the attestation response in the second scheme. In both schemes, the memory is filled before
the devices are deployed. The memory is filled with pseudo-randomly generated noise.
It uses RC5 in CTR mode to fill the memory, which is a common hash algorithm running
in counter mode. Counter mode means that the values generated are not reliant on the
previously computed values. Instead, the computed values depend on a counter, which is
encrypted. That means, if the seed and the counter value are known for a specific block,
then it is possible to compute the value without having to compute any other values. This
is less secure, as the values are not mixed together the same way as in CBC mode. These
schemes do not have a powerful verifier with lots of memory to handle the CBC mode,
which is why the CTR mode was chosen, as it uses less memory.

In the first scheme, the idea is for the provers neighbours to have the seed for the
memory filling as a shared secret. This means the neighbours can recreate the values used
to fill the memory to compute a checksum to attest against. Once the device is deployed, it
finds its neighbours and then sends a part of the seed together with a hash of the seed to
each neighbour. The secret sharing relies on a (n,k) threshold, where n is the number of
neighbours and k is a value representing a trade-off between security and performance.
This has to do with defining how many neighbours the secret has to be shared between to
be secure. The threshold k is defining how many shares are needed to restore the secret.
The higher k is, the more shares are needed, making it more difficult to obtain the secret
and requiring more communication when a device actually needs to get the secret.

The second scheme does not rely on a cluster head but a democratic process. Instead of
sharing the seed amongst the neighbours, each device is loaded with n challenge-response
pairs before it is deployed, where n is the number of expected neighbours. The number
of memory traversal iterations is configurable and is a trade-off between security and
performance. When the device is deployed, it finds its neighbours and sends a challenge-
response pair to each of them. Upon a device is chosen for attestation, each neighbour sends
its challenge sequentially. The prover computes the responses with the PRNG block-based
memory traversal. The neighbours then vote on the result and the majority rules.

In the first scheme, the protection of the seed is critical. If the seed is compromised,
then the attacker can pass any attestation for the device to which the seed belongs. That
means the attacker needs to obtain k or more secret shares, e.g., by compromising the
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neighbours. Another possibility the attacker has is to be cluster head during attestations,
then compromise those devices it attested. This way, it will have the secret seed for them,
letting them pass attestation and do the same when they are cluster head.

The second scheme does not have the weakness mentioned above. Instead, it is a
democratic scheme, so if the attacker has compromised enough devices, the attack will
not be detected. This means this scheme relies on the probability of each device being
compromised and detection mechanism to detect the attack before too many devices are
compromised. Furthermore, the second scheme could end up being extremely inefficient if
focused too much on security. If a prover has many neighbours and it has to traverse the
entire memory for each neighbour, it would prove extremely inefficient. The first scheme
has the advantage here since only one attestation execution is performed.

Furthermore, the schemes presented here have a high communications overhead,
which can be costly on devices’ power consumption, especially when considering IoT
battery-powered and resource-constrained devices. The second scheme introduces com-
munications overhead and computational overhead, as the prover might have to attest its
whole memory several times.

5.1.8. Memory Filling

AbuHmed et al. [40] present another attempt at using memory filling to overcome
the time constraints imposed by SWATT. Filling the memory is proposed to be done in
two different ways, together with two attestation protocols. Furthermore, an alteration is
suggested to the block-based pseudo-random memory traversal used in the Distributed [39]
schemes. The pre-deployment memory filling scheme of Memory Filling [40] is very similar
to that of [39]. Both schemes use RC5 in CTR mode to fill the memory of the devices before
they are deployed. The difference is that in [40] a trusted verifier does the attestation. The
change suggested to the PRNG is to make the block size dynamic in the algorithm. This
involves calculating a new block size in each iteration. The paper suggests having the
block size be a function of the output from the RC5 hash function but does not suggest any
requirements.

The paper suggests two attestation protocols. The first one is the same basic protocol as
any other attestation scheme, but with ids and encryption for authentication and protection
of the messages during communication. It also sends a nonce from the verifier to the prover
and another nonce from the prover to the verifier. This is a basic and common way to
provide freshness proof for both sides. The second attestation scheme adds a timestamp to
the attestation request, in order to prevent replay attacks.

The post-deploy memory filling could be useful if some data is collected and stored
in the program memory, to be used for the devices normal operation. It would notify
the verifier about the seed and memory. The block-based pseudo memory traversal
algorithm is an interesting suggestion to make it less predictable, but it is not justified from
a performance or security perspective. It would randomly increase performance or security,
depending on whether the block gets bigger or smaller. In the end, it will depend on the
number of iterations done. The dynamic block size O( n ln(n)

b ) is not a good measure for
number of iterations, as b is not fixed. The likely scenario is to run O(n ln(n)) iterations to
be on the safe side.

The memory filling of these schemes is using RC5 in CTR mode. The reason Dis-
tributed [39] used CTR mode was because of the better performance on memory usage.
This choice was made because the code was running on other resource-constrained devices,
where memory usage performance matter. In Memory Filling [40], a verifier, which is likely
a more powerful machine, does the attestation. The prover does not need to fill the memory
again, it just needs to compute the checksum, so it is unaffected by CTR vs. CBC mode.
The verifier is likely to have the memory to generate the expected memory with RC5 in
CBC mode rather than in CTR mode, thus being more secure at the cost of some temporary
memory usage. After the attestation, the memory with the expected memory content can
be overwritten and used for the next attestation.
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5.1.9. USAS

USAS [41] is a RA scheme that aims to improve the time and power performance of
Distributed [39] and SWATT [4]. Thus, it relies on two layers of attestation, where only
one layer is dependent on a PRNG, improving the performance of the second layer. Even
though the scheme is mostly based on Distributed [39], it uses a trusted verifier, rather
than the distributed model of [39]. The focus is on the time and power performance of the
attestation.

In the scheme presented, I- and F-devices distinguish the two layers. The I-device
is the initiator, which means that it is where the attestation starts. The F-devices are the
followers, which are in the second layer of attestation. The devices to attest, both the
I-device and the F-devices, are picked randomly by the verifier to ensure unpredictability.
The basic idea is that the verifier sends a random challenge to the I-device. The device
computes a checksum from the challenge. The I-device then sends the checksum to the
F-devices, instead of to the verifier. The F-devices use the checksum to compute their
checksum. The F-devices send their checksum to the verifier, and the verifier compares
them with a locally computed expected checksum.

The memory of the devices is filled before they are deployed, similar to previously
described schemes. The challenge message contains the seed for the PRNG and the seed
used for the random noise generation used to fill the memory. The devices have a hash of
the seed stored, which they use to authenticate the challenge. The I-device receiving the
first challenge uses RC4 to generate random memory addresses for the attestation. This
is the attestation algorithm used in SWATT [4]. The resulting checksum is sent to all the
selected F-devices. This is where the the most significant difference comes. Instead of using
RC4 to generate a random address for attestation, the F-devices use the I-device checksum
for generating addresses. The noticeable part of the algorithm is that the memory address
to be attested is computed from the I-device checksum combined with its checksum, which
it is currently computing. It still iterates over the memory O(n ln(n)) times, but it does not
run RC4 on every iteration to generate a new random address. The RC4 value is, therefore,
also not used to update the checksum. When the verifier compares the checksums from the
F-devices with its own locally computed checksums, it also verifies the checksum of the
I-device each time. This is because the checksum from the I-device is used to compute all
the other checksums. If the checksum of the I-device would not pass, then none of the other
checksums would pass. That means if at least one F-device passes the attestation, then
the I-device also passes. However, it does also mean that if the I-device is compromised
and cannot pass, then all the F-devices will also fail even if they are not compromised.
This means one attestation round is not enough to say that a F-device has failed if all the
F-devices failed. If just one F-device passes, then the I-device can be trusted, and any
F-device that fails can be considered compromised. If all checksums’ validation fails, there
will be another round necessary to check if it was because of the I-device. Thus, the devices
will be re-attested until at least one device passes.

Even if the performance might be better for each attestation, it depends on how likely
it is that the I-device is compromised. Each time the I-device is the compromised device,
all the F-device attestations are useless, and SWATT would have been more efficient. There
is also always the possibility that the I-device is not compromised, but all the F-devices are,
depending on how many F-devices there are in each attestation.

A security risk with this scheme is that the challenge includes the seed used to fill the
memory. This means an attacker can obtain the seed and generate the expected memory
content on the fly. Since there is no time constraint imposed, the attacker has plenty of time
to generate a valid response. This seed is only used to authenticate the verifier and thereby
the challenge. Instead of sending the seed, the hash value should be sent not to disclose
the actual seed. However, if an attacker eavesdrops and learns the message, be it the seed
or a hash of it, then the attacker can authenticate as the verifier. This means that it is crucial
having a secure authentication protocol with messages encrypted with a strong enough
encryption.
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5.1.10. DataGuard

DataGuard [42] focuses on preventing overflow attacks in the data memory. Unlike
the other schemes, it provides security assurances for the data memory’s integrity, without
overwriting the memory content. As long as the dataguards cannot be reconstructed, the
scheme will detect any overflow attack, which has happened since the last attestation.

The way the scheme prevents these kinds of attacks is by introducing new variables
called dataguards. The dataguards are appended to the end of the variables used by the
program. The point is, that memory is always filled in one direction, so if more memory is
filled than is allocated to the variable, it will fill the dataguard. Since the dataguard has
been changed, the device will not be able to pass attestation. To prevent an attacker from
passing attestation, the dataguards are not allowed to be able to be recreated, without some
secret information, which is not stored in the device.

The dataguards are initialized from a secret e and a nonce provided by the trusted
verifier. The first dataguard is a hash of the two values from the verifier and the initial
value of a counter c, that is the initial dataguard is H(e,nonce,1) = dg0, where dg0 is the
dataguard and 1 = c is the initial value of the counter c. Both e and nonce are fresh and
randomly chosen, thus providing entropy and making if difficult to guess them. The
security of the dataguards, relies on the attacker not knowing e and nonce, since knowing
them would allow the attacker to compute all valid dataguards for passing attestation.
When a new dataguard is computed the previous dataguard dgi−i is updated as well.
The previous dataguard becomes dgi−1 = H(dgi−1,c + 1) and the new dataguard is set
to dgi = H(dgi−1, − (c + 1)). Note that the new dataguard is computed from the old
value of the previous dataguard, not from its new value. The dataguards computed are
never deleted or removed. If they are not used anymore, because they belonged to a
temporary variable, then they are stored in a list of dataguards as they are still needed
during attestation.

The attestation protocol of this scheme is again a challenge-response scheme. The
verifier sends a challenge to the prover. The prover computes a checksum of the dataguards
which it sends, together with the number of dataguards m computed, as a response to the
challenge. The verifier then computes the expected value locally, as it knows both e and
nonce. If any of the dataguards do not have the expected value, then the checksums will
not match, the attestation fails, and the device is considered compromised.

It can be prevented by attesting that the program memory has not been altered or by
using hardware such as a TPM for the dataguard generating program. Furthermore, it is
interesting that the verifier sends both e and nonce during the initialization, but it has no
freshness in the actual attestation challenge. If e is a freshly generated secret, it provides the
freshness, making nonce redundant. On the other hand, it increases the entropy, making it
more difficult to guess the initial dataguard.

Since there is no freshness in the attestation challenge, an old computed response can
be used. That is the attacker can compute a checksum of the current dataguards and save
the counter value. Then, the attacker can overwrite all the current and new dataguards.
When attestation time comes, the attacker sends the computed checksum with the counter
as a response and passes attestation.

If this is done as part of the update operation, the attacker will also gain the new secret
and nonce, thus being able to compute valid dataguards.

This attestation scheme relies a lot on the dataguard generating program not being
compromised but does not attempt ensuring it, either by attesting it or using hardware.
It might also run into some performance issues. According to [42], 150 dataguards can be
stored in the list if it has 1 K memory. Furthermore, it says it can compute a dataguard
in 0.01 s. It does not mention the communications overhead from update operations.
The communications overhead depends on the program, as it depends on how often a
dataguard is generated. If the program uses many local variables, it will generate many
dataguards. Let us say the program generates 150 dataguards every hour and stores
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150 dataguards in the list, then it will run the update operation with the attestation run
every hour. This could be costly for battery-powered and resource-constrained IoT devices.

5.1.11. Lightweight

The attestation scheme presented in Lightweight [43] is very similar to the second
scheme of Distributed [39]. They are both distributed schemes, in that they do not use
a trusted verifier. They also both distribute the responses for an attestation challenge.
Lightweight [43] uses an initialize phase, where the responses are distributed amongst
devices. It works by each device filling some attestation memory with checksums of values
from other devices registers. For all registers of a device to be checked and to avoid one
register to be checked by multiple devices, each register is only distributed to one other
device. For this, this work assumes the memory is divided into program memory and
attestation memory, both still being static memory. The two memories should be equal in
size, and if the program part of the memory is not filled by whatever program is on the
device, it should be filled with random noise. The initialization phase is complete when all
devices have filled their attestation memory with checksums of register values from other
devices.

The attestation protocol involves only two devices. Let us say device a initiates the
attestation. It then picks one register from program memory and one from the attestation
memory, both to be attested. It then collects the equivalent values from the devices that
store them. The register from the program memory stores an actual value, so the device
collects the corresponding checksum form the device that stores it, computes the checksum
for its register and compares the two. The register in the attestation memory contains a
checksum, so it collects the original value from the device it got the value to compute the
checksum from, computes the checksum of the value it just collected and compares the
two. If either of these two checks fails, both devices are terminated.

In Distributed [39], the responses to challenges are also distributed amongst devices.
Each response does, however, consider more than one register. Furthermore, it does not
terminate two devices on one failed attestation, as only one device is being attested by many,
done through a democratic process. Lightweight assumes the program and attestation code
are stored in read-only memory to prevent it from being modified. The reason it terminates
both devices, is because it is attesting both devices together on the same checksum one to
one and carried out by one device. This also makes it susceptible to DoS attacks, which is
considered out of scope in [43]. One issue here is the assumption that a bad device will
terminate when failing. This is assumed to happen because the code is stored in a read-only
memory and cannot be changed. Furthermore, this termination procedure means that an
uncompromised device is terminated for each device which fails attestation. This could
mean that many uncompromised devices are terminated, which is undesirable since it
could interrupt operations relying on them.

Another consideration of this is how the whole scheme is affected when many devices
are terminated. If a register checksum is stored on another device, then that register
cannot be attested if the device is terminated. If enough devices have been terminated, the
attacker may have enough unattested memory to avoid detection. However, it requires
the attacker to know which registers were in the terminated devices, which could prove
difficult. Furthermore, Ref. [43] does not explain how it deals with a device picking a
register, which is stored in a terminated device, to attest.

Another interesting question for this protocol is how it would work in a more hetero-
geneous network. The current design focuses ona homogeneous network, where every
device has the same memory size, in order for all registers to be stored on another device.
Nevertheless, in a heterogeneous IoT network, this might not be possible. As an example
lets consider a network with 2 devices a and b. Device a has a memory size n and device b
a memory size m, where n < m. If the memories n and m are both equally split in program
memory and attestation memory, then device b could store all checksum values of device
a registers, but device a would only be able to store n

2 of device b registers. Thus, not all
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registers of device b would be able to be attested. Even though this small example only has
two devices, the problem gets more prominent in larger networks with even more different
devices. It also gets more complicated if the device’s memory is not split evenly or not split
equally across the same type/model of the device.

5.1.12. LRMA

Low-cost Remote Memory Attestation [44] is building on top of SWATT [4]. The
scheme addresses the strict timing constraints imposed by SWATT. It modifies the time han-
dling to allow for attestation of devices, not in direct contact with the verifier. Furthermore,
it adds a probabilistic risk level, which is used to determine the sequence and frequency of
attestation. These two parts are disjoint, so the time handling will be described first and
then the risk level.

In LRMA devices any number of hops away can be attested. In most attestation
schemes, only devices in direct communication with the verifier are considered. Since [44]
uses SWATT as the base attestation scheme, they need to consider the time constraints in
a setting with several network messages which can be delayed. LRMA handles this by
having the verifier receive the network delay for each hop in the response. It then uses
these delays to compute an average and use the average to estimate to estimate the actual
attestation time.

LRMA [44] introduces the use of risk levels to determine the frequency with which a
device is attested. This means that a device with a high-risk level is attested more often than
a device with a lower risk level. The risk level is calculated as the sum of failed attestations
in some nr recent attestation runs. When determining the frequency Ti at which a device is
to be attested, it uses the calculated risk Ri, the average risk level R̃, a time unit T, a scaling
factor β and a constant ϕ.

Ti =
Ri + ϕ

R̃ + ϕ
× T × β

The verifier uses this frequency to determine the devices next attestation time. This is
done by picking a random value between zero and Ti and adding it with the sum of the
previous frequencies. If zero was picked randomly and the sum of previous frequencies
was not added, it would mean the device should be attested right away; thus, the sum
provides an offset. Interestingly it is a sum and not an average, which means the offset
increases as time passes.

On the other hand, if a device is still terminated if it fails attestation, then the risk
would reflect how often a device is compromised. Thus, saying something about that
particular device having some vulnerability that needs to be fixed if it has a high-risk level.
However, it might take a while for a compromised to be fixed and be allowed back on the
network. When the device gets back on the network, it needs to be identified as the same
device. Since it is unknown when a device will be back on the network, the next attestation
time should not be determined until it is connected again.

Another way the risk level could be used is to only use it for the timeout check. If
the attestation fails because the checksum does not match, then the device is terminated.
However, if the time used check fails, then the risk level and attestation frequency are
updated. There should then be a threshold for the risk level, so if a devices risk level
surpasses the threshold, it is terminated. This will let the average time measurement of the
network delay have a little more time to compute a more accurate average. However, it
will also give an attacker more time to remain undetected on a device, thus increasing false
negative attestations.

If the compromised device is not terminated, but just attested more often, it also
introduces much bias in the performance calculations and experiments. In [44], results of
some experiments on its performance are shown. One of the experiments shows that LRMA
has a lot more successful attestations and no undetected attacks after some time. In these
experiments, the successful attestations are attestations that correctly detects an attack.
However, if the compromised device is never terminated, and instead the compromised
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devices are attested more often, then at some point only the compromised devices are
attested and fails because of the same attack.

Since the total number of attestation is same, it would also mean that after some time,
some devices might never be attested, thus being a perfect target for an attacker in case
they would learn this. By collecting and considering the network delay, this scheme should
reduce the amount of false negative attestations. These false negatives would be attestation
that fails because they used too much time, but the time used was actually because of
network delay, not because the device was compromised.

5.2. Summary of RA Schemes

Tables 2 and 3 present the main characteristics of the RA schemes described in the
section above. While the protocol complexity is based on either the amount of n memory
addresses to be attested, some schemes, however, also depend on a block size b or the num-
ber of neighbours m. Unlike others, Dataguard [42] depends on the number of variables v
in the program.

The method in Table 2 refers to the type of attestation technique that has been adopted.
The software-based RA schemes either impose a strict time constraint like SWATT [4],
Pioneer [5], LRMA [44] or fill the memory with random incompressible noise like the works
in [39,40,43]. The strict-time approach aims at preventing the attacker from redirecting the
attestation codes read operations to the empty memory, where the attacker has stored the
original program. Due to network delays, it might be challenging to predict or assess the
time of attestation routine. Thus, these RA approaches assume that the unused memory is
left empty with some special values, e.g., 0. The memory-filling approach fills the device’s
memory with random noise. Thus, it prevents the attacker from using the memory because
the attacker will not be able to recreate the original noise value used to fill it. The method
also relates to the time column, which gives a quick overview of how accurate the time
measurement for the attestation needs to be.

It is also interesting to note the different kind of hash functions the schemes suggest
to use (as shown in Table 3). Some newer schemes still propose RC4 even though a never
version RC5 has come out. In contrast, other schemes propose heavier hash functions, like
SHA-1, to use because they do not run the hash algorithm on a low powered IoT device on
every attestation.

Table 2. Overview of software-based RA methods.

Scheme Method Loose Time

Reflection [13] Sequential memory access 7

SWATT [4] Random address access+Time constraint 7

Pioneer [5] Random address access+Time constraint 7

PIV [36] Memory filling+Fresh hash function 3

Self-Modifying Code [37] Fresh attestation program 3

Proactive [38] Memory filling+Memory mixing 3

Distributed 1 [39] Memory filling+Random address access 3

Distributed 2 [39] Memory filling+Random address access 3

Memory Filling [40] Memory filling+Random address access 3

USAS [41] Memory filling+Random address access 3

Dataguard [42] Dataguards variable boundaries 3

Lightweight [43] Memory filling+Single register attestation 3

LRMA [44] Random address access+Time constraint 7
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Table 3. Summary of software-based RA characteristics.

Scheme Complexity Challenge Hash Function

Reflection [13], O(n) (0,M1)+(M2,L) RIPEMD-160

SWATT [4] O(nln(n)) nonce RC4

Pioneer [5] O(nln(n)) nonce SHA-1

PIV [36] O(n) RHF MQ polynomial

Self-Modifying Code [37] O(nln(n)) Fresh attestation program RC4

Proactive [38] O(n) IdVeri f ier+nonce SHA-1 or MD5

Distributed 1 [39] O( n ln(n)
b ) nonce RC5 - CTR

Distributed 2 [39] O(m × n ln(n)
b ) nonce RC5 - CTR

Memory Filling [40] O( n ln(n)
b ) IdVeri f ier + IdProver + nonce RC5 - CTR

USAS [41] O(nln(n)) nonce or response RC4

Dataguard [42] O(v) nonce + e SHA-1

Lightweight [43] O(1) Register value+Hash of local register value 7

LRMA [44] O(nln(n)) nonce RC4

6. Opportunities of Software-Based RA Schemes

Software-based RA protocols have been abandoned in the most recent RA proposals as
they are considered deprived of necessary security guarantees. However, the lightweight
design of such protocols could be of great value for various already-deployed IoT solutions
or new commercial IoT products. In the following, we discuss some opportunities that
software-based RA approaches bring in enabling attestation on different categories of very
lightweight IoT devices.

6.1. Legacy Devices

With the large number of IoT devices deployed over the past years, many IoT devices
currently in use are legacy devices. Most legacy IoT devices were designed to operate
unconnected, standalone, and the adoption of novel security solutions are often impractical
for such devices. Considering the unique characteristics of legacy IoT devices that typically
lack complete and accurate documentation, it becomes crucial to bring RA’s benefits to such
legacy devices without disrupting their existing operations. In this context, the adoption of
hardware or hybrid RA schemes requiring specialized hardware support or customized
hardware configuration is impractical for legacy IoT devices. In contrast, the software-
based RA approaches are suitable for legacy devices as they rely only on software. Even
though software-based RA protocols are vulnerable to sophisticated attacks as discussed
in Section 7, software-based RA protocol could still provide some degree of integrity
guarantees in these devices. Under certain assumptions such as legacy devices deployed in
a private and relatively-small network, the software-based approaches such as SWATT [4],
Pioneer [5] and LRMA [44] are a promising solution for the missing security mechanisms
present on resource-constrained legacy IoT devices.

6.2. Battery-Free Devices

Europe has recently entered into the green transition, which aims at lowering global
energy footprint towards achieving the ultimate goal of being climate-neutral by 2050. As
a result, the deployment of battery-free IoT devices [12] is expected to be increased in the
upcoming years. In this context, the RA protocols that rely on customized hardware not
cause an increased cost and size of any resource constraint IoT devices and deviate from
the initial core objective of the original energy-harvesting design of battery-free IoT devices.



Sensors 2021, 21, 1598 19 of 23

While typically the IoT networks of such tiny devices adopt correlated information to
detect compromised devices, such battery-free devices could benefit from software-based
RA schemes as an integrity check mechanism. However, the software-based RA protocols
that perform expensive computational operations and rely on strict time constraints could
be heavy for such devices. The most suitable protocols for energy harvesting devices could
be the software-based RA protocols that rely on loosely time constraints listed in Table 2
such as [40].

6.3. Fog Computing

Due to strict time constraints, software-based RA schemes have been considered
limited to a one-hop network setting and unsuitable for attestation of large networks
with multi-hop distance between the verifier and provers. However, with the emerg-
ing paradigm of Fog computing (https://www.openfogconsortium.org/ (accessed on
31 December 2020)), there comes the opportunity to introduce single-hop attestation
schemes between these devices and a connected Fog node, that can act as a verifier. The
software-based RA schemes have been considered impractical due to the strong assump-
tions of the required verifier’s knowledge to validate the legitimate state of IoT devices,
for instance knowing the exact hardware configuration. Table 4 presents an overview of
the required knowledge by the verifier. In a Fog computing infrastructure, each Fog node
serves as a distributed verifier, the assumption that each Fog node has all the required
knowledge of the devices connected to the Fog node seems realistic. Thus, each Fog node
may attest its device by performing a software-based RA scheme. However, software-based
RA schemes are challenging in mobile networks in which devices frequently join and leave
different Fog nodes.

Table 4. Overview of software-based RA schemes w.r.t. required verifier knowledge.

Scheme Mem. Cont. Exact HW Config. Network Delay Used Mem. Checksum

Reflection [13], Dataguard [42] 3 7 7 7 7

SWATT [4], Pioneer [5], LRMA [44] 3 3 3 7 7

PIV [36] 3 7 7 7 7

Self-Modifying Code [37] 7 3 7 7 7

Proactive [38], Distributed 1 [39], USAS [41] 7 7 7 3 7

Distributed 2 7 7 7 7 3

Memory Filling [40] 7 3 7 3 7

Lightweight [43] 7 3 7 3 7

6.4. IoT Applications

Software-based RA schemes serve as building blocks for other crucial software-based
security mechanisms such as key establishment [45], security software update [46], recov-
ery [47] and secure erasure [48]. With the IoT devices playing a remarkable role in many
domains such as healthcare, vehicles and transportation systems, industrial appliances,
and smart homes, the cutting edge of security is continually being pushed. Recent works in
the literature have integrated RA with Blockchain to provide stronger security guarantees
(e.g., decentralization, traceability, anonymity and non-repudiation) for critical real-time
infrastructures such as Vehicle-to-Vehicle communications [49]. Other promising appli-
cations include the trustworthy collaboration among Automated Guided Vehicles in the
mobile and collaborative Smart Factory context [50].

7. Open Issues
7.1. Key Establishment

Secure and efficient key establishment mechanisms are crucial for any RA approach in
the IoT domain, and they are especially critical for software-based approaches. Generally,
the software-based RA schemes rely on the assumption of a secure communication channel

https://www.openfogconsortium.org/
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between the verifier and prover. However, this is an unrealistic assumption considering that
the software-based RA approaches do not provide the required hardware protection for key
storage to guarantee that the received messages originate indeed from the intended prover.
Thus, a secure communication channel between prover and verifier is not guaranteed, and
key establishment in software-based RA schemes remains an open research challenge.

7.2. Undetected Attacks

Software-based RA schemes provide different security guarantees. Table 5 presents
an overview of the main attacks that the existing software-based RA schemes can detect.
All of the attestation schemes are open to attacks where the attacker hides malicious code
or original values in the data memory. In addition, software-based RA protocols are
vulnerable to attacks based on Return Oriented Programming (ROP) and data compression,
as is demonstrated in the work [51]. In the ROP attack, the attacker inserts a command
in the function receiving the attestation request from the verifier. The inserted command
redirects the control of a procedure which cleans up the memory. The malicious code
moves all its code from the program memory to the data and external memory. It then
deletes itself from the program memory, such that there is no malicious code left in the
program memory.

Table 5. Detection capabilities w.r.t. Attestation Adversaries.

Scheme Precomputation Replay Memory Copy Compression ROP

Reflection [13] 3 3 7 7 7

SWATT [4] 3 3 3 7 7

PIV [36] 3 3 3 7 7

Self-Modifying Code 3 3 3 7 7

Proactive [38] 3 3 3 7 7

Distributed 1 [39] 3 3 3 7 7

Distributed 2 [39] 3 3 3 7 7

Memory Filling [40] 3 3 3 7 7

USAS [41] 3 3 3 7 7

Dataguard [42] 3 3 3 7 7

Lightweight [43] 3 3 3 7 7

LRMA [44] 3 3 3 7 7

The other well-known attack against software-based attestation is the compression
attack. In this attack the original program is compressed, opening up space for the malicious
code. During attestation the original code is decompressed on the fly, allowing the attacker
to produce a valid attestation response and not getting discovered. Many schemes use
memory filling technique and assume that the memory is filled with incompressible random
noise. One interesting avenue to explore to defeat this attack is for the attestation routine
to compress the program, fill the memory and then attest the memory, after which the
program can be uncompressed. Thus, preventing the attacker from having empty memory
to evade detection during attestation.

The vast majority of attestation mechanisms do not pay much attention to the verifier’s
security. They are developed under the assumption that the verifier can always be trusted.
However, an adversary can take advantage of this assumption and impersonate the verifier
to perform Denial of Service attacks targeting honest devices.

7.3. Interruptability

Traditionally, all RA protocols, including software-based RA approaches, get executed
randomly at unpredictable times, and the Prover has to stop the regular operation to
perform attestation. Thus, RA requires uninterrupted power supply during attestation,
and it prevents Provers from performing their regular operations during RA execution.
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These RA characteristics might be intolerable for IoT devices that perform time-critical
operations or devices that work under intermittent connectivity. Thus, interruptability
remains an open research challenge in RA domain.

7.4. RA in Medical IoT Devices

Healthcare applications remain a challenging domain for running RA protocols. Med-
ical Internet of Things (mIoT) consists of interconnected heterogeneous medical devices
enhanced with sensing and actuation capabilities. In particular, mIoT includes: (1) im-
plantable medical devices which are medical devices surgically placed inside the human
body to monitor or treat a medical condition, and (2) Body Area Networks which are wire-
less networks of wearable computing devices that provide remote healthcare monitoring
of the patients. In general, mIoT devices are resource-constrained, with heterogeneous
hardware and software platforms, and limited processing and storage resources. Further-
more, existing medical devices pose some specific security issues such as lack of security
engineering, customized proprietary interfaces and supply chain vulnerabilities. Thus,
considering these limitations, it becomes very challenging to deploy RA protocols in such
medical devices. In this context, software-based RA schemes are promising because they
can be constructed to run on many low-end devices without extra hardware. However, due
to medical devices’ heterogeneity, it is challenging to deploy and replicate software-based
RA schemes that rely on strict hardware architecture configuration. Finally, the atomic exe-
cution of RA protocols that do not allow interruptability is a crucial challenge in healthcare
considering the vital operation of medical devices.

8. Conclusions

In this work, we have presented the state-of-the-art of software-based Remote At-
testation (RA) schemes, to analyze their applicability in the context of IoT security. We
have analyzed and compared their design features and security capabilities. Currently,
software-based RA approaches have been almost completely abandoned, mostly because
of their limitations in detecting various cyber attacks and running on multi-hop networks.
However, in this paper, we have discussed the opportunities of using these approaches
in attesting some specific classes of IoT systems, namely legacy IoT devices and resource-
constrained IoT devices (such as battery-free IoT devices and Fog based networks of IoT
devices). Along with the opportunities, we have also highlighted some open research
issues concerning software-based RA schemes. We believe that this study might help
in reconsidering applications of software-based RA protocols in those scenarios where
the hardware-based requirements of recent advanced RA schemes are not practically and
realistically feasible.
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