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Abstract: Pavement markings are used to convey positioning information to both humans and
automated driving systems. As automated driving is increasingly being adopted to support safety, it
is important to understand how successfully sensor systems can interpret these markings. In this
effort, an in-vehicle lane departure warning system was compared to data collected simultaneously
from an externally mounted mobile retroreflectometer. The test, performed over 200 km of driving
on three different routes in variable lighting conditions and road classes found that, depending on
conditions, the retroreflectometer could predict whether the car’s lane departure systems would
detect markings in 92% to 98% of cases. The test demonstrated that automated driving systems can
be used to monitor the state of pavement markings and can provide input on how to design and
maintain road infrastructure to support automated driving features. Since data about the condition of
lane marking from multiple lane departure warning systems (crowd-sourced data) can provide input
into the pavement marking management systems operated by many road owners, these findings also
indicate that these automated driving sensors have an important role in enhancing the maintenance
of pavement markings.

Keywords: lane detection; retroreflectometer; road asset management; road maintenance; ADAS;
automated driving; road infrastructure

1. Introduction

Road authorities around the world face the challenges of maintaining visible road
markings under varying conditions. There are a number of factors that affect the degra-
dation of road markings, including the material (thermoplastic, spray plastic, paint, etc.),
location/climate (coastal, inland, etc.), share of studded tires usage, annual average daily
traffic (AADT), pavement surface characteristics and conditions, heavy vehicle percent-
ages, quality control in applying the marking material and the use of salts, abrasives or
mechanical snow removal [1–3].

Gathering data to keep an updated status and inventory of road marking quality is
a time-consuming process using specialized equipment and personnel [4]. Road asset
management systems are being developed to help with these tasks. A Nordic certification
system for road marking materials was introduced in 2015 and adopted by Norway,
Sweden, and Denmark [5]. The certification system is based on the European standards
EN 1824 Road marking materials—Road trials, EN 436 Road marking materials—Road
marking performance for road users, and EN 12,802 Road marking materials—Laboratory
methods for identification. Documented performance measurements of material samples
applied on test fields on public roads are the basis for the certification system. Performance
requirements include the coefficient of retroreflected luminance (RL), under wet and dry
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conditions, luminance coefficient under diffuse illumination (Qd) as well as friction and
color coordinates. Approval is granted in relation to the number of wheel passages the
material will withstand [5].

In the United States, the Missouri Department of Transportation developed a Pave-
ment Marking Management System (PMMS) as “the only practical method to allow state
highway agencies to track the materials, age, cumulative traffic exposure, and retroreflec-
tivity level of existing pavement markings and to enable systematic decisions concerning
when, and with what materials, existing markings should be renewed or replaced.” [6].
Likewise, between June 2001 and December 2002 a maintenance management program for
the North Dakota Department of Transportation was developed. The program investigated
the use of technology such as cameras and positioning devices, along with new software,
to allow for more efficient registration of road signs in the field [4].

Advanced driver assistance systems (ADAS) have been developed to support human
drivers. Lane departure warning (LDW) systems, a form of ADAS, have the potential to
decrease the number of accidents but typically rely on road markings to do so [7,8]. The
increasing use of cameras and automation in ADAS introduces a possibility to gain access
to data for road asset management systems through crowdsourcing [9]. ADAS could thus
provide quality assurance systems such as the PMMS with the data to successfully predict
maintenance needs.

A report from the European Road Assessment Programme (EuroRAP) has suggested
that inadequate road maintenance and the lack of marking consistency across Europe nega-
tively influence the efficacy and implementation of advanced driver assistance systems [10].
ADAS functionality is a step toward increasing driving automation, introducing a new
road user: the automated driving system (ADS). However, little effort has thus far been
spent on understanding the implications of changing from a human driver to an ADS for
the physical road infrastructure and vice versa [11]. ADSs are expected to contribute to
safer roads. To ensure this outcome, the design and maintenance of road infrastructure
must be correctly interpreted by both humans and machines. To evaluate existing quality
parameters such as the visibility of road markings considering automated driving systems
can help future-proof road infrastructure.

Lane detection is considered to be important for any ADS [12–15] and is dependent
on the visibility and consistency of lane markings [16,17]. Identification of lanes via
longitudinal road markings is usually done with cameras, in either monocular or stereo
vision [13,14,18]. Lane detection systems need to overcome several challenges, including
knowing which lane a vehicle is in on a multilane road, separating road markings from
other longitudinal lines such as asphalt surface cracks and guardrails, and accurately
detecting worn markings, even in challenging light and weather conditions [12]. Worn
markings pose a similar safety concern for human drivers [19,20].

Given the continuing development of vehicle technology, ADAS is a promising source
of data on both the condition of road infrastructure elements and how to facilitate auto-
mated detection of such elements. This data is valuable input for road asset management
systems and can facilitate safer roads through design and management that play to the
strengths of driver support systems. The aim of this study was to determine whether con-
ventional methods of assessing road marking quality through retroreflectivity are consistent
with lane marking detection systems found in cars that typically rely on cameras. The
conventional method utilizes a retroreflectometer, and those results were then compared to
results from a lane departure warning system. A similar comparison was made by [18]. In
their study, they used two different vehicles to cover a 100 km stretch of highway outside
Prague, one with a lane departure warning system and another with a retroreflectometer
attached. In contrast, this study used a mobile retroreflectometer on the same vehicle that
had the lane departure warning system. In this way, the data collected were known to be
consistent for the two sources. Moreover, this study investigated the differences between
freeways and county roads, as well as both daytime and night-time conditions. Another
effort to relate the quality of road markings to the success of automated camera-based
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lane detection was presented in [19]. The research compared the retroreflection measured
by a roof-mounted Automatic Road Analyzer to the results of a Mobileye lane detection
system. The Mobileye system was mounted on the vehicle equipped with the Automatic
Road Analyzer and results suggest that a Qd higher than 135 mcd/m2/lux improves the
detection of lane markings using a Mobileye lane detection system. A reference test system
for camera-based lane detection was developed in [15]. In this research, it is stated that
there are no available standards or benchmarks to assess the quality of either road markings
or perception algorithms associated with these. While it could be argued that there are
benchmarks for road markings, e.g., there are both European [20] and Nordic standards
for evaluating the quality of road markings [5], it highlights the need for similar standards
for machine-vision applications. Where the work in [15] compares videos annotated with
additional data by mobile retroreflectometer, the video and reference data were not gath-
ered simultaneously. There is no information on the retroreflectometer readings in terms
of how it logged data (time-based versus distance-based) or whether the readings were
averaged over some time or distance. Due to these two reasons, there are unknown sources
of errors in the use of the mobile retroreflectometer as a reference. While the study in [15]
investigates different lane detection algorithms used on annotated videos, the research
described in this paper shows how the output from the LDW system could be used directly
by road owners and operators (ROOs). This is an important difference as the video on
which the LDW system relies is generally not available while the output of the LDW system
is a binary output that could easily be shared between vehicles and ROOs.

Two of the most commonly used properties to assess the quality of road markings are
the luminance factor under diffuse illumination, Qd, and the coefficient of retroreflected
luminance, RL. Qd is a measure for visibility under daylight conditions, during which
natural light hits the marking and is dispersed in all directions. RL is used under night-time
or otherwise dark conditions, during which an active light source is directed toward the
marking and reflection is measured. Mobile retroreflectometers have been developed
that can measure the night-time retroreflectivity of road markings using a laser beam to
simulate vehicle headlights, and these measurements are independent of ambient light
levels. Retroreflectometers are designed to match the entrance and observation angles
from a driver’s eye to the road marking [21]. The coefficient of retroreflected luminance,
RL, measured in millicandelas per lux per square meter (mcd/m2/lux), is defined by the
American Society for Testing and Materials as the ratio of the luminance of a projected
surface to the normal illuminance at the surface on a plane normal to the incident light [22].

Today, it is common for road agencies to use reflectorized pavement markings that
contain glass or ceramic beads. Nonreflectorized markings also have reflectivity based on
the type of material, but reflectorized markings are generally preferred because of their
higher reflectivity at night [23]. Experts have highlighted the need for a minimum require-
ment for retroreflectivity [24]. In Europe, a minimum retroreflectivity of 150 (mcd/lux/m2)
has been suggested for dry conditions, which is in line with the minimum requirement
already in effect in several European countries [10]. In the US, a supplemental notice of
proposed amendment (SNPA) establishes a revised set of standards to be incorporated
in the American Manual on Uniform Traffic Control Devices [25]. The SNPA suggests
a minimum retroreflectivity level of 50 mcd/lux/m2 for speed limits of greater than 35
mph. For speed limits above 70 mph, the minimum retroreflectivity level suggested is 100
mcd/lux/m2.

Contrast has been identified as important for humans to be able to detect road mark-
ings [26,27] and stay in their lanes [28]. For ADSs, the need for contrast has likewise been
identified [8,19,29,30].

Retroreflectometers, like the equipment used in this study, provide only RL and con-
trast values. These were also crucial in the study by Lundkvist and Fors [31] to determine
whether current Swedish requirements for road markings were sufficient for the LDW
system of a Volvo S80. They used a mobile retroreflectometer to obtain the retroreflective
value of the marking, RL dry, and contrast, along with an optocator to provide macrotex-
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ture readings of the road surface. Tests were performed on roads of different classes and
under varying conditions (wet, dry, day, and night). Their study showed that the LDW
system worked well on primary roads during daytime conditions (wet and dry), with a
detection rate of about 99%. While the same was true for night-time dry conditions, for
night-time wet conditions the rate dropped to 92%. For secondary roads, the detection
rate for daytime was 80%, and the lower detection rate was accredited to worn or dirty
markings. Lundkvist and Fors stated that the detection rate for secondary roads during
night-time wet conditions was very low on some roads, and no overall rate of detection for
this case was given. The reason for the lack of detection was thought to be the low contrast
between the markings and pavement as well as the fact that the secondary roads did not
have retroreflective markings. Another case that proved difficult for the LDW system was
when the sun was low on the horizon, which caused detection rates as low as 50%. The
study identified lower limits for RL, Qd, and their respective contrasts. The contrast for Qd
was calculated by using Equation (1) and equivalently calculated for CRL. The lower limits
are presented in Table 1.

CQD =

∣∣∣∣∣Qmarking − Qroad sur f ace

Qroad sur f ace

∣∣∣∣∣ (1)

Table 1. Estimated lower limits for detection by LDW [31].

Condition Lowest Qd [mcd/m2/lux] Lowest RL [mcd/m2/lux] Lowest CQD Lowest CRL

Daytime, dry ≈65 ≈0.08
Daytime, wet ≈65 ≈0.08

Night-time, dry ≈70 ≈3.7
Night-time, wet ≈20 ≈3.0

The visibility of markings is affected by the available ambient light. Night-time light
conditions provide lower visibility for both humans and machines [8,21], although some
machine vision systems have shown better results during wet night-time conditions than
during wet daytime conditions [29]. Bright illumination in low light conditions, for instance
from street lights or headlights, can saturate the image and make the detection of lane
markers challenging, especially if the road marking is aged and worn [32].

Lin et al. [33] proposed edge smoothness as a new quality indicator specifically for
machine vision systems. Algorithms detect road markings in images by using lines, edges,
and rectangular shapes; therefore, their research has suggested that road markings with
smooth edges would be easier to identify, as they resemble the straight lines used in the
algorithms’ computations. Edge smoothness has not traditionally been measured in the
field: to do so, both the measurement device and relevant thresholds would need to be
determined. Edge smoothness was not evaluated in this study, as relevant data for this
type of analysis were not available from the equipment used.

Finally, speed impacts the ability to identify markings, as speed determines the amount
of time the driver has to detect markings. Zwahlen and Schnell [26] performed numerous
simulator studies using human drivers. Their studies showed that an increase in vehicle
speed required a considerable increase in minimum retroreflectivity levels to attain the
same preview time. For a machine vision system, higher speeds would mean fewer frames
for analysis and less time for processing.

This paper investigates if ADAS functionality, represented by the case of LDW, pro-
vides an efficient way to monitor the road infrastructure and assesses how traditional
measures of quality, for example, retroreflection, affect the outcome of lane detection by the
LDW. The following section describes the design of the experiment and the data collected.
Section 3 describes the results of the data analyses, while the implications and future
research avenues are discussed in the fourth and final section.
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2. Methods

In May 2019, a test was performed by the paper’s authors to compare the mea-
surements of a retroreflectometer with the lane detection results from a car with LDW
functionality. A car with a built-in lane detection camera was outfitted with a retroreflec-
tometer and driven on three routes between the locations of Oslo, Moss, and Drøbak in
Norway (Figure 1). Route 1 was on freeways (E-road 6), and routes 2 (daytime driving
on county roads 152, 155, 156, and 1386) and 3 (night-time driving on county roads 51, 60,
152, 316, and 1422) were on county roads. The higher maintenance level of the freeway
meant that those road markings were subject to stricter requirements, although this does
not always guarantee that freeways have higher levels of retroreflectivity and contrast [34].
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Figure 1. Routes driven: (1) freeway route for both day and night cases, (2) county roads daytime
route, (3) county road night-time route. Visualization: http://geojsonviewer.nsspot.net/ (accessed
on 20 February 2021).

The requirements for retroreflection from the Norwegian road manual are dependent
on winter maintenance classes, which are divided into five levels. Freeways require the
highest level of winter maintenance, class DkA, while county roads call for the second-
highest level, the DkB class. For both the DkA and DkB classes, the minimum required RL
is dependent on the average annual daily traffic (AADT). If AADT is below 5000, as seen
along parts of county roads, the minimum RL is 100 mcd/m2/lux. For AADTs greater than
5000, which includes the freeways and remaining sections of county roads, the requirement
is 150 mcd/m2/lux [35].

The conditions during the test were dry asphalt, and data were recorded for both
daytime and night-time. In the freeway case, the data were recorded along the same route
for both day and night (route 1 in Figure 1). For the county roads, the data captured for
day and night did not follow the same route, as a malfunction in the retroreflectometer
caused by low temperatures at night prevented the logging of data. For the county road,
daylight data were from route 2, and night-time data were from route 3 (Figure 1). A visual

http://geojsonviewer.nsspot.net/
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comparison of routes 2 and 3 indicated that there were no large differences in the standards
of the roads or road markings.

The daytime measurements were taken on a generally overcast day, with the car
reporting a lux value for ambient light of around 10,000. For reference, bright sunlight
produces lux values of between 50,000 to 100,000 [36]. The night-time measurements were
performed from approximately 9:30 pm to midnight, with most lux readings taken between
0 and 11.

The test was performed by using a single 2018-model car with an LDW system. The
data from the car were made available from the manufacturer. The LDW system produced
data in four discrete values, indicating whether the system registered no detection, left-
hand detection, right-hand detection, or detection on both sides. The LDW system used a
mono camera mounted behind the rear-view mirror, a height similar to the eye height of
humans. It also used data from an odometer and an inertial measurement unit; the latter
indicated the forces acting on the car and its heading.

A Laserlux G7 retroreflectometer from RoadVista was used to register the retroreflec-
tion and contrast of the longitudinal road marking. It was attached to the car with the LDW
system as shown in Figure 2. The retroreflectometer measured the quality of road markings
while driving at highway speeds, registering data averaged over 30 m. The distance was
set to 30 m as this setting gave a consistent flow of registered data; smaller values often
resulted in improperly recorded data. A secondary reference camera was installed within
the vehicle to capture video logs of the test conditions.
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Figure 2. Illustration of the test set-up.

The Laserlux retroreflectometer can only measure road markings on one side of the
car at a time. Zwahlen and Schnell [37] found in their research that the distance at which
humans can see road markings is mainly governed by the visibility of the right edge line in
the case of a fully marked road. The retroreflectometer was therefore attached to the right
side of the car with respect to the driving direction, and the car was driven in the rightmost
lane throughout the test, thus detecting the fog line. The retroreflectometer’s laser beams
hit the road at approximately 1.5 m in front of the car on the fog line (Figure 2).

The laser beams had an impact width of about three times the width of the freeway
markings and about five times the width of the county road markings (because of the
difference in road marking widths). The data were collected by driving so that the retrore-
flectometer’s lasers hit the fog line; given the impact width, the laser was therefore thought
to have hit the markings throughout most of the experiment. Some discrepancies were
expected, as the car was driven manually.

The differences in lane marking detection by a camera and a retroreflectometer are
worth noting. In comparison to retroreflectometers, a car’s camera has a relatively high
position, which provides a much greater vision angle and viewing distance (Figure 2). In
addition to the different positions of the sensing media, the camera is more dependent
on ambient light than the retroreflectometer. This is because the latter has active lighting
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in the form of laser beams, which hit the markings so their reflection can be measured,
making the system insensitive to ambient light. Because of these differences, it was of
interest to determine whether detection by the retroreflectometer, an established quality
assessment tool for road markings, would be comparable to detection by a typical lane
departure warning system. Table 2 shows the data collected.

Table 2. Data used for analysis.

Retroreflectometer Laserlux G7 Car with Lane Departure Warning

Data Sample rate Unit Data Sample rate Unit
Latitude, longitude 30 m WGS84 Latitude, longitude 12.5Hz WGS84

Vehicle speed 30 m km/h Vehicle speed 200 Hz m/s
Retroreflection average 30 m mcd/lux/m2 Ambient light 100 Hz lux

Contrast 30 m Contrast (Equation (1)) Lane detection 50 Hz Yes/No

The mobile retroreflectometer reported contrast values based on Equation (2):

C = 1 − return signal (pavement)
return signal (marking)

(2)

This value can be converted to a contrast ratio by Equation (3):

CR =
−1

C − 1
(3)

The retroreflectometer collects data based on distance, whereas the car’s data capture
is based on time. These differences resulted in different data densities for different speeds.
The car had a high data sample rate, 12.5200 Hz (Table 2). The retroreflectometer collected
data and averaged them over 30 m. This provided low data densities at low speed and
denser data at higher speeds.

The four previously described categories of lane detection were converted to a binary
set in which values for None and Left-hand detection were set at 0, and values for Both and
Right-hand detection were set at 1 to identify when the right-side marking was detected.
The other data were resampled with interpolation to match the sample rate of the Lane
detection values by using the Python data analysis library Pandas. The reason for choosing
Lane detection values as the sampling reference was their binary nature. Resampling the
lane detection values would change them from discrete to an artificial continuous set of
values and make the analyses less meaningful. The data were time-series data which are
classified as ordered data. They could therefore be merged on the time variables using
Pandas function pdmerge_ordered with forward fill. Forward fill propagates the last valid
observation forward in the case of missing values.

Binary logistic regressions were performed in SPSS to investigate whether the data
from the retroreflectometer could predict the outcome of the lane detection. Binary re-
gression was used since the predicted outcome, whether the LDW function detected the
road marking, was a binary outcome. The binary logistic regression is expressed as the
estimated probability that Y equals 1 given input X, where Y ε {0,1}:

Prob{Y = 1|X} = [1 + exp(−Xβ)]−1 (4)

The regression parameters β are estimated by the method of maximum likelihood [38].
Four cases were considered: two sets of data from the freeway between Oslo and Moss
(route 1), one for daytime, and another for night-time. Another two sets were from the
county roads. The day case covered roads between Drøbak and Oslo (route 2, Figure 1),
and the night case involved roads between Moss and Oslo (route 3, Figure 1). Regarding
the binary logistic regression, the predictors were Retroreflection, Contrast, Vehicle speed, and
Ambient light, and the dependent variable was Lane detection. Retroreflection was chosen
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as a predictor since it is the most common measure of road marking quality and Contrast
was chosen due to the body of research indicating its importance for both human and
machine perception of lanes. The Vehicle speed was selected as a predictor because the
retroreflectometer logged data based on distance while the vehicle logged based on time,
and Ambient light was chosen as visibility is related to available light.

3. Results

The binary logistic regression model determined to what extent the Retroreflection,
Contrast, Vehicle speed, and Ambient light could be used to predict whether the LDW system
in the vehicle detected the fog line.

Examples of daytime situations are shown in Figure 3. Please note that these are from
the reference camera and not from the car’s camera.
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Figure 3. Light conditions for daytime driving for freeway (left) and county road (right).

Figure 4 shows images from the freeway (left) and county road (right), both with
and without street lighting, also taken from the reference camera. The retroreflectometer’s
lasers is visible in the images in Figure 4 and, as previously stated, was not dependent
on ambient light (unlike the camera). In the lower right image, the headlights saturate
the image to the extent that the road marking is difficult to discern from the pavement,
highlighting the challenges of camera detection with low ambient light.
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3.1. Binary Regression for Freeway and County Road in Daytime and Night-Time Conditions

The results of the binary regression analysis are presented in Table 3. The cut value
was set to 0.5 for the analysis in Table 3, meaning that if the probability of lane marking
being detected was greater than 50%, it would be classified as a positive detection (=1).

Table 3. Classification of all cases: freeway and county roads in daytime and nighttime.

Freeway Daytime (Lux Values: Mean = 9663, Median = 10,000), (Cut Value is 0.5) Freeway Night-Time (Lux Values: Mean = 10, Median = 7), (Cut Value is 0.5)

Observed
Predicted

Observed
Predicted

Lane detection Correct (%) Lane detection Correct (%)0 1 0 1

Lane detection by car 0 959,887 55,543 94.5 Lane detection by car 0 369,022 28,771 92.8
1 60,635 401,120 86.9 1 35,314 461,956 92.9

Overall (%) 92.1 Overall (%) 92.8

County road daytime (lux values: mean = 9,726, median = 10,000), (cut value is 0.5) County road night-time (lux values: mean = 6, median = 3), (cut value is 0.5)

Observed
Predicted

Observed
Predicted

Lane detection Correct (%) Lane detection Correct (%)0 1 0 1

Lane detection by car 0 1,256,579 55,058 95.8 Lane detection by car 0 1,064,740 17,027 98.4
1 67,802 401,812 85.6 1 7,020 202,021 96.6

Overall (%) 93.1 Overall (%) 98.1

In the table, 0 indicates that no lane marking was detected, while 1 indicates that
the road marking was found. Table 3 shows that the outcome of the lane detection’s
functionality was correctly predicted by the model in 92.1% of cases for the freeway and
92.8% of cases for county roads in the daytime. Regarding night-time, the results were
93.1% for the freeway and 98.1% for county roads. There was a higher accuracy level for no
detection of lane markings on the freeway in both daytime and night-time. The same was
true for the county roads at night-time, although the difference was not as distinct. With
respect to the county road daytime case, the accuracy was similar between no marking
detected and a marking found. There was a considerable difference between the freeway
and county roads in the share of cases concerning where markings were detected versus
where they were not. The county roads had higher rates of unmarked roads than the
freeway. This was expected because of the county roads’ lower maintenance level.

3.2. Significance of the Predictor Variables

In the case of binary logistic regression, it is assumed that observations are indepen-
dent and that the explanatory variables are not linear combinations of each other. This
ensures that multicollinearity is not introduced into the analysis. In this model, the two
predictor variables Retroreflection and Contrast were related by Equation (2). According to
Midi et al. [39], “Multicollinearity does not reduce the predictive power or reliability of the
model as a whole; it only affects calculations regarding individual predictors.” To inves-
tigate the impacts of the four individual predictors without multicollinearity issues, the
binary regression analyses were performed using the Retroreflection and Contrast predictors
separately, keeping the other two predictor variables. As the values for Vehicle speed and
Ambient light remained almost identical in the analyses with Retroreflection and Contrast,
respectively, their values were averaged, as shown in Table 4. In Table 4, B represents the
regression weights, that is, the βs from Equation (4), S.E. is an abbreviation for Standard
Error, Sig. is an abbreviation for statistical significance, and the Exp(B) is the exponential
of B also known as the odds ratio which signifies how the odds change with respect to
changes in the associated predictor variable.
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Table 4. Significance of predictor variables.

County Road Daytime County Road Nighttime
B S.E Sig. Exp(B) B S.E. Sig. Exp(B)

Retroreflection 0.003 0.000 0.000 1.003 Retroreflection −0.010 0.012 0.000 0.990
Contrast 0.538 0.000 0.000 1.712 Contrast 0.514 0.067 0.000 1.672

Vehicle Speed 1.127 0.002 0.000 3.087 Vehicle Speed 3.097 0.012 0.000 22.127
Ambient Light 0.000 0.000 0.000 1.000 Ambient Light 0.003 0.001 0.000 1.003

Constant −19.30 0.043 0.000 0.000 Constant −50.89 0.207 0.000 0.000

Freeway daytime Freeway nighttime
B S.E. Sig. Exp(B) B S.E. Sig. Exp(B)

Retroreflection 0.003 0.000 0.000 1.003 Retroreflection 0.004 0.000 0.000 1.004
Contrast 0.538 0.008 0.000 1.713 Contrast 0.495 0.017 0.000 1.640

Vehicle Speed 1.076 0.002 0.000 2.932 Vehicle Speed 0.429 0.001 0.000 1.536
Ambient Light 0.000 0.000 0.000 1.000 Ambient Light −0.011 0.000 0.000 0.989

Constant −18.39 0.043 0.000 0.000 Constant −8.100 0.023 0.000 0.000

In all cases, Ambient light had no impact on a successful prediction, as indicated by
the exponential(B) or odds ratio ≈ 1 in Table 4. It is possible that the scenarios used in this
study did not provide a wide enough range of ambient light values to correctly identify
its significance in camera-based lane detection. However, the results were in line with
Table 2, which showed that the best prediction of road marking detection occurred at
night, suggesting that the LDW system was not dependent on ambient light. These results
indicate that the combination of low ambient light and headlights, as shown in Figure 4,
does not pose a problem for machine vision lane detection. In fact, the model performed
overall better at night, which was contrary to findings by Lundkvist and Fors [31] and
Borkar et al. [32].

Similarly, regarding Retroreflection, the odds ratio was close to 1.0 in all four cases,
meaning it had very little effect on predicting a correct outcome. As retroreflection is the
most common indicator of quality in traditional road marking evaluation, this is of interest
and suggests that other parameters (e.g., contrast and edge smoothness) might be needed
to evaluate the quality of road markings for machine vision-based systems.

Vehicle speed proved to be the most influential predictor of the analysis. That was not
surprising, as the data collection used as input was directly dependent on speed. When
a vehicle travels faster, more distance is covered, providing more data points from the
input data generated by the retroreflectometer. This means that the faster the vehicle with
the retroreflectometer travels, the more data points the retroreflectometer has on which to
base its prediction of the LDW system’s outcome, relative to the time constant machine
vision. In both daytime conditions, the analyses yielded an odds ratio of approximately
3, meaning that a one-point increase in speed would produce a threefold increase in
successful predictions. Under night-time conditions, the results showed a clear difference
between road types. On the freeway, the effect of speed was lower, at an odds ratio of
about 1.5, whereas on the county road, the odds ratio for speed was about seven times
higher than for day, at 22.1. To interpret these results, the difference between road types
must be considered. For instance, vehicle speeds on the freeway had a smaller range
and higher mean, as driving at the speed limit on the freeway resulted in a consistent
speed of about 80 km/h. On the county roads, speeds varied more, from low speeds in
corners and roundabouts to about 60 km/h in straight sections. The freeway case, therefore,
produced a higher and more consistent rate of data from the retroreflectometer, the input
data. Regarding the county roads, the range in speed meant that at low speeds the input
data were very scarce in comparison to the output they were meant to predict, while at
higher speeds the input data were denser than the time constant LDW data.

To further understand the great difference in odds ratios for the Vehicle speed on county
roads given the time of day, an overlapping section on route 2 (daytime) and route 3
(night-time) was isolated. The overlapping segment is shown in Figure 5.



Sensors 2021, 21, 1737 11 of 17

Sensors 2021, 21, x FOR PEER REVIEW  11 of 18 
 

 

Vehicle speed proved to be the most influential predictor of the analysis. That was not 

surprising, as the data collection used as input was directly dependent on speed. When a 

vehicle travels faster, more distance is covered, providing more data points from the input 

data generated by the retroreflectometer. This means that the faster the vehicle with the 

retroreflectometer  travels,  the more data points  the  retroreflectometer has on which  to 

base its prediction of the LDW system’s outcome, relative to the time constant machine 

vision. In both daytime conditions, the analyses yielded an odds ratio of approximately 3, 

meaning that a one‐point increase in speed would produce a threefold increase in success‐

ful predictions. Under night‐time conditions,  the  results  showed a clear difference be‐

tween road types. On the freeway, the effect of speed was lower, at an odds ratio of about 

1.5, whereas on the county road, the odds ratio for speed was about seven times higher 

than for day, at 22.1. To interpret these results, the difference between road types must be 

considered. For instance, vehicle speeds on the freeway had a smaller range and higher 

mean, as driving at the speed limit on the freeway resulted in a consistent speed of about 

80 km/h. On the county roads, speeds varied more, from low speeds in corners and round‐

abouts  to about 60 km/h  in  straight  sections. The  freeway  case,  therefore, produced a 

higher and more consistent rate of data from the retroreflectometer, the input data. Re‐

garding the county roads, the range in speed meant that at low speeds the input data were 

very scarce in comparison to the output they were meant to predict, while at higher speeds 

the input data were denser than the time constant LDW data.   

To  further understand  the great difference  in odds  ratios  for  the Vehicle  speed on 

county roads given the time of day, an overlapping section on route 2 (daytime) and route 

3 (night‐time) was isolated. The overlapping segment is shown in Figure 5. 

 

Figure 5. Overlapping road sections on county roads for daytime (2) and night‐time (3) driving. 

In this section, no positive identifications of lane marking could be found in the night‐

time case, yet there are numerous positive identifications for the daytime case (Figure 6).   

Figure 5. Overlapping road sections on county roads for daytime (2) and night-time (3) driving.

In this section, no positive identifications of lane marking could be found in the night-
time case, yet there are numerous positive identifications for the daytime case (Figure 6).
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The data were collected on consecutive days and under the same weather conditions,
which means that the main difference was the amount of ambient light available. The
videos from the stretch of road were reviewed to find causes for the lack of detections. Some
on-coming traffic was noted, which can be problematic for the LDW [31], but this would
not have accounted for the complete lack of detections at night. The type of marking used,
that is, paint or thermoplastic, was rudimentarily checked by manually comparing the
stretches of road for the day and night scenario, respectively, where information on what
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material was used was available. The night route had more spray thermoplastics (1–1.5
mm thickness) than the day route, which had almost entirely preformed thermoplastics
(3 mm). This could explain the overall trend of much fewer successful lane detection for
night versus day. For the overlapping segment, however, the marking was thermoplastic
marking in both cases. The marking used on county road was 2 mm thick thermoplastic
compared to the 3mm thick thermoplastic used on the freeway. In addition to thickness,
application and wear can factor into the marking’s visibility. As ambient light was shown
not to be a predictor for the outcome of the LDW, the material and thickness used for road
marking could be investigated as a predictor for automated lane detection in future studies.

Contrast was the second most influential predictor, contributing in the range of 1.64 to
1.71 for the different scenarios, with slightly higher values for daytime conditions. This
means a unit change in contrast would result in 1.64–1.71 times the odds of getting a correct
prediction. Lundkvist and Fors [31] found that the successful detection of road markings
by an LDW system in daytime did not require high contrast, and the results of binary
logistic regression indicated that contrast was a better indicator of whether the LDW system
detected markings than the more widely used Qd or RL. Contrast has been identified as an
important parameter for both human and machine detection [8,34], a finding supported
by these results. The level to which it contributed was modest but consistent across all
scenarios.

3.3. Evaluation of Possible Threshold Values

Receiver operating characteristic (ROC) curves can be used to look for threshold
values for successful detection. The ROC curve summarizes the trade-off between the
true positive rate and false-positive rate for a predictive model and is used as a diagnostic
tool for the model. The four predictor parameters were used as test variables, and the
positive lane detection was set as the state variable. Figure 6 shows the ROC curves for
the four cases, with sensitivity plotted on the y-axis and 1-specificity on the x-axis, as per
convention. The sensitivity and specificity are defined by Equations (5) and (6) [40]:

Sensitivity =
True positives

True positives + False negatives
(5)

Speci f icity =
True negatives

True negatives + False positives
(6)

In the figure, the larger the area under the curve (AUC) for a given line, the more
accurate the variable is at predicting the outcome. Threshold values for the variables are
located at points as far upward and to the left on the curve being analyzed as possible. The
higher up on the y-axis, the more true positives are included. However, as the x values
increases, so does the rate of false positives.

A curve close to the diagonal reference line indicates that the test variable is not useful
for distinguishing between a positive or negative outcome. In Figure 7, ambient light lies
close to the diagonal in all cases except for the freeway night-time case, which has a slight
distinction. The ROC curves indicate that ambient light is not a good indicator of whether
the lane is detected, as was seen in the regression analyses.
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Figure 7. Receiver operating characteristics curves and suggested threshold values for the predictor variables.

Figure 6 shows that with respect to daytime driving, Retroreflection and Contrast also
seemed to have little predictive quality. Under night-time conditions, the AUC is larger
for these two variables, and within these two cases, the curves for the county road are the
best in terms of establishing a threshold cut-off. Resulting in a high level of sensitivity and
relatively low value for 1-specificity.

In the tables that accompanied the ROC curves, the value of the test variable that
corresponded to an identified threshold point on the curve (high y-coordinate, low x-
coordinate) could be extracted. These threshold values are indicated in Figure 7.

The ROC curves for Vehicle speed have large AUCs, indicating that a high level of
sensitivity and specificity can be obtained without introducing too many false positives
or negatives. As with the binary logistic regression analysis, they have the largest impact
on predicting the outcome. Additionally, Figure 7 shows the chosen threshold points and
values for the test variables. With respect to Vehicle speed, the threshold values lie between
56.14 and 57.02 km/h.

The night-time contrasts thresholds reported were converted to contrast ratios by
Equation (3), and county roads were associated with a threshold contrast ratio of 8, whereas
for the freeway the threshold equated to a contrast ratio of 2.74. The required contrast for
detection of road markings by LDW identified by Lundkvist and Fors (2010), CRL, was 3
(Table 1). Unfortunately, as the retroreflectometer used was not the same, and data were
not derived in the same manner, it is difficult to compare the results of the two studies.
Substituting Equation (2) for C in Equation (3) would give Equation (7) for determining CR
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within this study, while Lundkvist and Fors used Equation (8). The equipment used in this
work did not report R, therefore, it was not possible to calculate the contrast in the same
way as in Equation (8).

CR =
return signalmarking

return signalpavement
(7)

CRL =

∣∣∣∣∣Rmarking − Rroad sur f ace

Rroad sur f ace

∣∣∣∣∣ (8)

4. Discussion

This study compared data from a conventional performance measure for longitudinal
road marking, a retroreflectometer, to those from a modern ADAS feature, LDW, which
utilizes a camera within the vehicle. The aim was to determine to what extent the con-
ventional retroreflectometer could predict the outcome of the LDW’s ability to detect lane
markings. The results give insight into both whether the established quality parameters for
road markings are suitable for automated detection systems and whether crowdsourced
data from vehicles can be used to monitor pavement marking conditions.

The binary regression analyses showed that the model, correctly predicts the result of
the car’s lane detection in 92.1% to 98.1% of cases, depending on driving conditions.

The results indicate that the in-vehicle camera’s ability to detect lane markings could
potentially be used as a surrogate for conventional methods of assessing the status of
pavement markings. The impact of the specific input variables on the model was also
considered to better understand how traditional metrics associated with the assessment of
lane markings impact the LDW predictions.

Ambient light and Retroreflection were found to have minimal impact on the success
of predictions. The lack of impact of ambient light might be due to the limited range of
input values, as the measurements were taken in either high or very low ambient light
conditions and did not cover the middle ground. Another possibility is that the LDW
system is not dependent on ambient light and that headlights provide sufficient lighting
to detect markings. Additional investigations are likely needed, but these results indicate
that the LDW system is not dependent on street lighting which is a useful input towards
facilitation for driving automation in road design.

Retroreflection is the most common parameter for the quality assessment of road
markings today. This work indicates that the retroreflection value in itself is not important
for the successful identification of road marking by machine vision. The algorithms used
to detect markings search for lines, edges, and rectangular shapes, making the contrast
between the road surface and road marking more critical than solely the amount of light
reflected from the marking. Threshold values for Contrast could only be suggested in
nighttime driving, and for these limited tests, the contrast ratio thresholds were found to
be 2.74 for the freeway and 8 for the county roads. Contrast, as well as edge smoothness,
are suggested as quality parameters for machine vision detection of lane markings. Yet,
as contrast is calculated differently depending on the method used, it may be difficult to
specify a universal threshold value.

The analysis showed that Vehicle speed had the strongest impact on the success of
predictions. This is because of its direct relation to the amount of data captured. The speed
of the vehicle carrying the retroreflectometer should be 57 km/h or higher for best results.

The high probability of predicting the outcome of the lane detection feature, despite
relying on few input variables (Retroreflectivity and the derived Contrast) suggests that the
LDW system is more dependent on longitudinal road markings than other elements of the
road geometry such as the road’s width, edge, or centerline.

Further investigations should be performed to affirm the indication that LDW func-
tionality can be used to monitor the state of road markings. This could include using
different makes of cars and collecting data from more roads. The indication that ambient
light does not affect the success of the LDW system could be researched further by driving
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in different conditions of natural and artificial light. The effect of road marking material
and thickness on lane detection by the LDW is encouraged as it could be particularly
useful for adapting design and maintenance of roads to support automated driving fea-
tures. Harmonization of measurement techniques would be beneficial in supporting earlier
findings. For instance, the contrast measurement in [31] is not directly comparable to the
contrast measurement in this paper. Likewise, the retroreflectivity in [19] is of Qd which is
dependent on ambient light, while this paper used an active laser measuring RL.

This research has shown that ADAS functionality such as LDW provides an efficient
way to monitor the road infrastructure. The work identified that contrast between the road
marking and the adjacent road surface is of more importance than the retroreflectivity of
the road marking material, suggesting that contrast should be a metric for quality of road
marking to start including automated driving functions in the design and maintenance of
roads. Gaining knowledge about how well infrastructure designed for humans also sup-
ports automated driving systems will be useful for future-proofing roads. It will help reap
the promised safety benefits of automated driving features, from today’s ADAS to more
comprehensive future ADS. Additionally, crowdsourcing is an efficient way of monitoring
the state of road infrastructure and can provide systems for predicting road maintenance,
such as the PMMS, with highly valuable data. Understanding how infrastructure is “seen”
by both humans and ADSs will allow engineers to prepare for higher levels of automation
by taking incremental steps in which road infrastructure design and maintenance can be
developed in parallel with vehicle automation.
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