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Abstract: Hyperspectral image (HSI) classification is the subject of intense research in remote sensing.
The tremendous success of deep learning in computer vision has recently sparked the interest in
applying deep learning in hyperspectral image classification. However, most deep learning methods
for hyperspectral image classification are based on convolutional neural networks (CNN). Those
methods require heavy GPU memory resources and run time. Recently, another deep learning model,
the transformer, has been applied for image recognition, and the study result demonstrates the great
potential of the transformer network for computer vision tasks. In this paper, we propose a model
for hyperspectral image classification based on the transformer, which is widely used in natural
language processing. Besides, we believe we are the first to combine the metric learning and the
transformer model in hyperspectral image classification. Moreover, to improve the model classifi-
cation performance when the available training samples are limited, we use the 1-D convolution
and Mish activation function. The experimental results on three widely used hyperspectral image
data sets demonstrate the proposed model’s advantages in accuracy, GPU memory cost, and running
time.

Keywords: deep learning; transformer; metric learning; 1-D convolution; hyperspectral image
classification; remote sensing

1. Introduction

Hyperspectral image (HSI) classification is a focus point in remote sensing because of
its many uses across fields, such as change area detection [1], land-use classification [2,3],
and environmental protection [4]. However, because of redundant spectral band informa-
tion, large data size, and a limited number of training samples, the pixel-wise classification
of the hyperspectral image remains a formidable challenge.

Deep learning (DL) has become extremely popular because of its ability to extract
features from raw data. It has been applied in computer vision tasks, such as image
classification [5–8], object detection [9], semantic segmentation [10], and facial recogni-
tion [11]. As a classical visual classification task, HSI classification has also been influenced
by DL. For example, Chen et al. [12] proposed a stacked autoencoder for feature extraction.
Ma et al. [13] introduced an updated deep auto-encoder to extract spectral–spatial features.
Zhang et al. [14], adopted a recursive autoencoder (RAE) as a high-level feature extractor
to produce feature maps from the target pixel neighborhoods. Chen et al. [15], combined
deep belief network (DBN) and restricted Boltzmann machine (RBM) for hyperspectral
image classification.

However, these methods extract the features with destroying the initial spatial struc-
ture. Because convolutional neural networks (CNNs) can extract spatial features without
destroying the original structure, new methods based on CNNs have been introduced. For
example, Chen et al. [16] designed a novel 3-D-CNN model with regularization for HSI
classification. Roy et al. [17] proposed a hybrid 3-D and 2-D model for HSI classification.
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In addition to modifying the CNN structure, deep metric learning (DML) has been
applied to improve CNN classification performance. The metric learning loss term was
introduced to the CNN objective function to enhance the model’s discriminative power.
Cheng et al. [18] designed a DML method based on existing CNN models for remote sensing
image classification. Guo et al. [19] proposed a DML framework for HSI spectral–spatial
feature extraction and classification.

Recently, another deep learning model, the transformer, has been applied for com-
puter vision tasks. In Reference [20], transformers were proposed for machine translation
and became the state-of-art model in many natural language processing (NLP) tasks. In
Reference [21], the transformer network’s direct application, Vision Transformer, to image
recognition was explored.

In this paper, inspired by the Vision Transformer, we propose a lightweight network
based on the transformer for hyperspectral image classification. The main contributions of
the paper are described below.

(1) First, the key part of our proposed model is the transformer encoder. The trans-
former encoder does not use convolution operations, requiring much less GPU memory and
fewer trainable parameters than the convolutional neural network. The 1-D convolution
layer in our model serves as the projection layer to get the embedding of each sequence.

(2) Second, to get a better classification performance, we replace the linear projec-
tion layers in the traditional vision transformer model for computer vision with the 1-D
convolution layer and adopt a new activation function, Mish [22].

(3) Third, we introduce the metric learning mechanism, which makes the transformer
model more discriminative. We believe the present study is the first to combine the metric
learning and the transformer model in hyperspectral image classification.

The rest of this article is organized as follows. Section 2 introduces the proposed
framework. The experimental results and analysis of different methods are provided in
Sections 3 and 4. Finally, Section 5 presents the conclusions.

2. Methods

The overall architecture of our proposed model is demonstrated in Figure 1. Firstly, we
split the input image into fixed-size patches and reshaped them into 1-D sequences. Next,
we use a 1-D convolution layer to get the embedding of each sequence. The embedding of
the central sequence will be supervised by center loss. After adding the position embedding
to the sequence, the sequences will be fed to a standard two-layer Transformer encoder.
The fully connected layers will handle the result. The fully connected layers consist of a
layernorm layer, several fully connected layers, and Mish activation function. The output
is the classification result.

Figure 1. The overall architecture of our proposed model.

2.1. Projection Layer with Metric Learning

We use the 1-D convolution layer as the projection layer. The 1-D convolution is
calculated by convolving a 1-D kernel with the 1-D-data. The computation complexity
of the 1-D convolution layer is drastically lower than the 2-D and 3-D convolution layers.
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It leads to a significant advantage of running time for 1-D convolution layers over 2-D
and 3-D convolution layers. The computational process is presented in Figure 2. In 1-D
convolution, the activation value at spatial position x in the jth feature map of the ith layer,
denoted as vx

i,j, is generated using Equation (1) [23].

vx
i,j = bx

i,j + ∑
m

Ri−1

∑
r=0

Wr
i,j,mVx+r

i−1,m, (1)

where b is the bias, m denotes the feature cube connected to the current feature cube in the
(i− 1)th layer, W is the rth value of the kernel connected to the mth feature cube in the
prior layer, and R denotes the length of the convolution kernel size.

Figure 2. The computational process of 1-D convolution.

In our model, the input image is split into 25 patches. So, we apply 25 projection
layers. In order to make the model perform better, we adopt two techniques, parameter
sharing, and metric learning. In our proposed model, the parameter sharing strategy can
accelerate the model convergence rate and promote the classification accuracy.

The metric learning can enhance the discriminative power of the model by decreasing
the intraclass distances and increasing the interclass distances. The metric learning loss
term that we use in our experiment is the center loss [24], formulated as:

LC =
1

2M

M

∑
i=1
||x∗i − cyi ||

2
2 (2)

where x∗i denotes the learned embedding of the ith input central patch in the batch, for i = 1,
. . . , M, and ck is the kth class center based on the embeddings in kth class, for k = 1, . . . , K.
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2.2. Transformer Encoder

The transformer network was proposed in Vaswani et al. [20]. It is composed of several
identical layers. Each layer was made up of two sub-layers, the multi-head self-attention
mechanism and the fully connected feed-forward network, as shown in Figure 3. A residual
connection followed by layer normalization is employed in each sub-layer. So, the output
of each sub-layer can be defined as LayerNorm(x + SubLayer(x)), where SubLayer(x) denotes
the function implemented by the sub-layer. The multi-head self-attention is defined as:

MultiHead (Q, K, V) = concat(head 1, · · · , head h)WO, (3)

where headi = Attention
(

QWQ
i , KWK

i , VWV
i

)
, WQ

i ∈ Rdmodel ×dq , WK
i ∈ Rdmodel ×dk , WV

i ∈
Rdmodel ×dv , and WO ∈ Rh×dv×dmodel are parameter matrices. The attention is formulated as:

Attention (Q, K, V) = softmax
(

QKT
√

dk

)
V, (4)

where Q, K of dimension dk, and V of dimension dv are three defined learnable weight
matrices.

Figure 3. The architecture of the transformer encoder.

2.3. Fully Connected Layers

The fully connected layers consist of a layernorm layer, two fully connected layers,
and the Mish activation function. The Mish function is defined as

Mish(x) = x× tanh(so f tplus(x)) = x× tanh(ln(1 + ex)), (5)

where x is the input of the function. The difference between Mish and Relu is shown in
Figure 4. The benefit of Mish will be proved in the next section.

Figure 4. The difference between Mish and Relu.
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3. Experiment
3.1. Data Set Description and Training Details

We evaluate the proposed model on three publicly available hyperspectral image data
sets, namely Indian Pines, University of Pavia, and Salinas, as illustrated in Figures 5–7.
The spectral radiance of these three data sets and the corresponding categories are shown
in Figures 8–11.

(a) (b)

Figure 5. (a) False-color Indian Pines image. (b) Ground-truth map of the Indian Pines data set.

(a) (b)

Figure 6. (a) False-color Salinas image. (b) Ground-truth map of the Salinas data set.
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(a) (b)

Figure 7. (a) False-color University of Pavia image. (b) Ground-truth map of the University of Pavia
data set.

(a) (b)

(c)

Figure 8. The overall spectral radiance and the corresponding categories in different data sets.
(a) Indian Pines. (b) Salinas. (c) University of Pavia.
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(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j) (k)

(l) (m) (n) (o)

(p)

Figure 9. The spectral radiance of different pixels and the corresponding categories in Indian
Pines. (a) Alfalfa. (b) Corn-notill. (c) Corn-mintill. (d) Corn. (e) Grass-pasture. (f) Grass-trees.
(g) Grass-pasture-mowed. (h) Hay-windrowed. (i) Oats. (j) Soybean-notill. (k) Soybean-mintill. (l)
Soybean-clean. (m) Wheat. (n) Woods. (o) Buildings-Grass-Trees-Drives. (p) Stone-Steel-Towers.
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(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j) (k)

(l) (m) (n) (o)

(p)

Figure 10. The spectral radiance of different pixels and the corresponding categories in Sali-
nas. (a) Brocoli_green_weeds_1. (b) Brocoli_green_weeds_2. (c) Fallow. (d) Fallow_rough_plow.
(e) Fallow_smooth. (f) Stubble. (g) Celery. (h) Grapes_untrained. (i) Soil_vinyard_develop.
(j) Corn_senesced_green_weeds. (k) Lettuce_romaine_4wk. (l) Lettuce_romaine_5wk. (m) Let-
tuce_romaine_6wk. (n) Lettuce_romaine_7wk. (o) Vinyard_untrained. (p) Vinyard_vertical_trellis.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 11. The spectral radiance of different pixels and the corresponding categories in the University
of Pavia. (a) Asphalt. (b) Meadows. (c) Gravel. (d) Trees. (e) Painted metal sheets. (f) Bare Soil.
(g) Bitumen. (h) Self-Blocking Bricks. (i) Shadows.

The Indian Pines data set was collected by the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) from Northwestern Indiana. The scene contains 145 × 145 pixels
with a spatial resolution of 20 m by pixel and 224 spectral channels in the wavelength range
from 0.4 to 2.5 µm. After 24 bands corrupted by water absorption effects were removed,
200 bands were available for analysis and experiments. The 10,249 labeled pixels were
divided into 16 classes.

The University of Pavia data set was acquired by the Reflective Optics System Imaging
Spectrometer (ROSIS) over Pavia, northern Italy. The image size was 610 × 340 with a
spatial resolution of 1.3 m by pixel and 103 spectral bands in the wavelength range from
0.43 to 0.86 µm. The 42,776 labeled pixels were designed into 9 categories.

The Salinas data set was gathered by the AVIRIS sensor over Salinas Valley, California.
The image contains 512 × 217 pixels with a spatial resolution of 3.7 m by pixel and 224
spectral channels in the wavelength range from 0.4 to 2.5 µm. After 20 water-absorbing
spectral bands were discarded, 204 bands were accessible for classification. The 54,129
labeled pixels were partitioned into 16 categories.

For the Indian Pines, the proportion of samples for training and validation was set
to 3%. For the University of Pavia, we set the ratios of training samples and validation
samples to 0.5%. For the Salinas, we selected 0.4% of the samples for training and 0.4% for
validation. Tables 1–3 list the number of training, validation, and testing samples of the
three data sets.
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Table 1. Training, validation, and testing sample numbers in Indian Pines.

Number Name Training Validation Testing Total

1 Alfalfa 1 1 44 46
2 Corn-notill 42 42 1344 1428
3 Corn-mintill 24 24 782 830
4 Corn 7 7 223 237
5 Grass-pasture 14 14 455 483
6 Grass-trees 21 21 688 730
7 Grass-pasture-mowed 1 1 26 28
8 Hay-windrowed 14 14 450 478
9 Oats 1 1 18 20
10 Soybean-notill 29 29 914 972
11 Soybean-mintill 73 72 2310 2455
12 Soybean-clean 17 17 559 593
13 Wheat 6 6 193 205
14 Woods 37 37 1191 1265
15 Buildings-Grass-Trees-Drives 11 11 364 386
16 Stone-Steel-Towers 2 3 88 93

Total 300 300 9649 10,249

Table 2. Training, validation, and testing sample numbers in Salinas.

Number Name Training Validation Testing Total

1 Brocoli-green-weeds-1 8 8 1993 2009
2 Brocoli-green-weeds-2 14 14 3698 3726
3 Fallow 7 8 1961 1976
4 Fallow-rough-plow 5 5 1384 1394
5 Fallow-smooth 10 10 2658 2678
6 Stubble 15 15 3929 3959
7 Celery 14 14 3551 3579
8 Grapes-untrained 45 44 11,182 11,271
9 Soil-vinyard-develop 24 24 6155 6203
10 Corn-senesced-green-weeds 13 13 3252 3278
11 Lettuce-romaine-4wk 4 4 1060 1068
12 Lettuce-romaine-5wk 7 7 1913 1927
13 Lettuce-romaine-6wk 3 4 909 916
14 Lettuce-romaine-7wk 4 4 1062 1070
15 Vinyard-untrained 29 28 7211 7268
16 Vinyard-vertical-trellis 7 7 1793 1807

Total 209 209 53,711 54,129

Table 3. Training, validation, and testing sample numbers in the University of Pavia.

Number Name Training Validation Testing Total

1 Asphalt 33 33 6565 6631
2 Meadows 93 91 18,465 18,649
3 Gravel 10 10 2079 2099
4 Trees 15 15 3034 3064
5 Painted metal sheets 6 7 1332 1345
6 Bare Soil 25 25 4979 5029
7 Bitumen 6 6 1318 1330
8 Self-Blocking Bricks 18 18 3646 3682
9 Shadows 4 5 938 947

Total 210 210 42,356 42,776
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All experiments were conducted using the same device with the RTX Titan GPU
and 16 GB RAM. The learning rate was set to 0.0005, and the number of epochs was 200.
The model with the least cross-entropy loss in the validation samples was selected for
testing. We used mini-batches with a size of 256 for all experiments. The weight of the
metric learning loss term was set to 10−6. We apply the traditional principal component
analysis (PCA) over the original HSI data to remove the spectral redundancy. To compare
the performances of experimental models fairly, we use the same input size over each
data set, such as 25 × 25 × 30 for the Indian Pines and 25 × 25 × 15 for the University of
Pavia and the Salinas, respectively. In order to ensure the accuracy and stability of the
experimental results, we conducted the experiments 10 times consecutively. The parameter
summary of the proposed transformer model architecture over the three data sets is shown
in Tables 4–7.

Table 4. Configuration of our proposed model variants.

Data set Layers Hidden Size MLP size Heads

Indian Pines 2 120 32 15
Salinas 2 75 32 15

University of Pavia 2 75 32 15

Table 5. Parameter summary of the proposed transformer model architecture over the Indian Pines
data set.

Layer (Type) Output Shape Parameter

inputLayer (30, 25, 25) 0
conv1d×25 (1, 120) × 25 632 × 25

2-layer transformer encoder (1, 120) 132,064
layernorm (120) 240

linear (32) 3872
Mish (32) 0
linear (16) 528

Total Trainable Parameters: 152,504

Table 6. Parameter summary of the proposed transformer model architecture over the Salinas data set.

Layer (Type) Output Shape Parameter

inputLayer (15, 25, 25) 0
conv1d×25 (1, 75) × 25 302 × 25

2-layer transformer encoder (1, 75) 55,564
layernorm (75) 150

linear (32) 2432
Mish (32) 0
linear (16) 528

Total Trainable Parameters: 66,224

3.2. Classification Results

To evaluate the performance of the proposed method, we used three metrics: overall
accuracy (OA), average accuracy (AA), and the Kappa coefficient (Kappa). OA is the
percentage of correctly classified samples over the total test samples. AA is the average
accuracy from each class, and Kappa measures the consistency between the predicted
result and ground truth. The results of the proposed transformer model are compared
with traditional deep-learning methods, such as 2-D-CNN [25], 3-D-CNN [26], Multi-3-D
CNN [27], and hybridSN [17].
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Table 7. Parameter summary of the proposed transformer model architecture over the University of
Pavia data set.

Layer (Type) Output Shape Parameter

inputLayer (15, 25, 25) 0
conv1d×25 (1, 75) × 25 302 × 25

2-layer transformer encoder (1, 75) 55,564
layernorm (75) 150

linear (32) 2432
Mish (32) 0
linear (9) 297

Total Trainable Parameters: 65,993

Tables 8–10 show the categorized results using different methods. The numbers
after the plus-minus signs are the variances of the corresponding metrics. Figures 12–14
demonstrate classification maps for each of the methods. The preliminary analysis of the
results revealed that our proposed model could provide a more accurate classification
result than other models over each data set. Among the contrast models, the OA, AA, and
Kappa of HybridSN were higher than those of other contrast models. It indicates that the
3-D-2-D-CNN models were more suitable for the hyperspectral image classification with
limited training samples than the models that used 2-D convolution or 3-D convolution
alone. Secondly, it can be observed from these results that the performance of 2-D-CNN
was better than that of 3-D-CNN or Multi-3-D-CNN. To the best of our knowledge, it was
probably because the large parameter size can easily lead to overfitting when the training
samples were lacking.

(a) (b) (c) (d)

(e) (f)

Figure 12. The classification maps of Indian Pines. (a) Ground-truth map. (b)–(f) Classification
results of 2-D-convolutional neural network (CNN), 3-D-CNN, Multi-3-D-CNN, HybridSN, and
Transformer.
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(a) (b) (c) (d) (e) (f)

Figure 13. The classification maps of Salinas. (a) Ground-truth map. (b)–(f) Classification results of
2-D-CNN, 3-D-CNN, Multi-3-D-CNN, HybridSN, and Transformer.

(a) (b) (c) (d) (e) (f)

Figure 14. The classification maps of the University of Pavia. (a) Ground-truth map. (b)–(f) Classifi-
cation results of 2-D-CNN, 3-D-CNN, Multi-3-D-CNN, HybridSN, and Transformer.

Table 8. Classification results of different models in Indian Pines.

No. Training Samples 2-D-CNN 3-D-CNN multi-3-D-CNN HybridSN Transformer

1 1 95.21 91.16 100.00 93.20 90.92
2 42 66.10 69.60 61.43 83.53 86.70
3 24 86.24 83.31 81.52 85.33 85.09
4 7 90.38 93.39 99.40 83.77 88.03
5 14 96.09 91.34 96.82 87.87 94.55
6 21 94.44 95.77 97.46 93.12 95.67
7 1 100.00 100.00 99.41 86.43 91.76
8 14 99.29 98.42 99.43 92.48 96.42
9 1 98.75 95.66 99.23 85.84 88.33

10 29 93.18 86.59 84.59 85.34 91.12
11 73 83.94 84.19 74.61 89.53 88.85
12 17 83.52 77.94 79.98 79.45 81.18
13 6 98.55 98.35 99.81 92.59 96.23
14 37 94.89 92.65 88.89 94.18 94.55
15 11 87.33 88.18 86.17 85.99 86.54
16 2 98.91 95.75 90.00 84.16 79.63

KAPPA 0.828± 0.013 0.822± 0.017 0.761± 0.021 0.859± 0.016 0.882± 0.010
OA(%) 85.13± 1.17 84.59± 1.52 79.43± 1.77 87.69± 1.48 89.71± 0.88
AA(%) 91.68± 1.01 90.14± 1.54 89.92± 2.04 87.68± 1.92 89.72± 3.01
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Table 9. Classification results of different models in Salinas.

No. Training Samples 2-D-CNN 3-D-CNN multi-3-D-CNN HybridSN Transformer

1 8 97.73 99.85 98.17 96.95 98.47
2 14 99.55 98.99 98.90 97.24 98.54
3 7 95.64 94.40 93.01 98.82 98.02
4 5 95.82 95.96 90.97 96.57 95.59
5 10 95.36 96.48 95.46 96.25 96.04
6 15 99.69 99.06 98.32 97.24 97.98
7 14 99.43 98.09 99.12 99.21 99.03
8 45 88.46 87.04 90.37 95.05 94.27
9 24 99.71 99.29 99.00 98.78 98.97

10 13 98.93 96.13 95.44 95.69 95.90
11 4 98.52 88.73 94.46 97.62 98.30
12 7 93.75 92.55 93.44 97.96 94.58
13 3 91.00 86.05 87.08 90.45 89.99
14 4 93.01 93.60 90.15 94.14 98.20
15 29 85.40 86.27 84.28 87.09 92.75
16 7 99.49 96.38 94.34 96.27 99.89

KAPPA 0.934± 0.013 0.924± 0.017 0.925± 0.022 0.947± 0.013 0.957± 0.009
OA(%) 94.08± 1.25 93.20± 1.54 93.30± 2.03 95.26± 1.22 96.15± 0.86
AA(%) 95.72± 1.23 94.30± 1.65 93.91± 1.32 95.96± 0.69 96.66± 0.79

Table 10. Classification results of different models in the University of Pavia.

No. Training Samples 2-D-CNN 3-D-CNN multi-3-D-CNN HybridSN Transformer

1 33 72.50 70.35 71.81 83.17 89.98
2 93 94.77 95.83 96.62 96.64 96.89
3 10 85.90 62.36 73.75 70.79 88.56
4 15 95.62 77.50 84.48 84.67 94.82
5 6 97.54 98.49 96.05 94.76 92.43
6 25 97.06 96.47 94.88 94.94 98.06
7 6 97.78 80.24 83.94 80.61 88.01
8 18 77.08 64.31 69.62 71.55 84.98
9 4 87.23 69.38 71.26 85.06 93.89

KAPPA 0.848± 0.010 0.795± 0.029 0.825± 0.028 0.851± 0.049 0.916± 0.014
OA(%) 88.75± 0.77 84.72± 2.21 86.92± 2.10 88.90± 3.63 93.77± 1.06
AA(%) 89.50± 1.75 79.44± 3.61 82.49± 3.44 84.69± 3.09 91.96± 1.86

Considering the spectral information, we can conclude that the spectral information
can influence the classification accuracy greatly. For example, in Indian Pines, the spectral
feature of Grass-pasture-mowed is significantly different from the features of the other
classes over the first 75 spectral bands. Besides, the pixels of Grass-pasture-mowed have
similar spectral features. Although we only used one sample of Grass-pasture-mowed for
training. All the models can reach the accuracy of at least 85%.

Table 11 summarizes the parameter size of the five models. The two rows of each
model are the number of parameters and the memory space occupied by the parameters. It
is apparent from this table that the transformer model was of the smallest parameter size,
indicating the efficiency of the transformer model.

Table 12 shows the floating-point operations (flops) of the five models. Table 13–15
compare the training time and testing time of the five models over each data set. The com-
putational costs of our proposed model were the least. Because of the GPU acceleration
for convolutions, the 2-D-CNN was quicker than our proposed model. Considering that
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the accuracy of the 2-D-CNN was lower than that of our proposed model, we think our
method has a better balance of accuracy and efficiency.

Table 11. Parameter size of the five methods on the three hyperspectral data sets.

Network Indian Pines Salinas PaviaU

2-D-CNN 176,736 165,936 98,169
0.67 MB 0.63 MB 0.72 MB

3-D-CNN 1,018,476 771,516 447,374
3.89 MB 2.94 MB 1.71 MB

multi-3-D-CNN 634,592 138,976 84,761
2.42 MB 0.53 MB 0.32 MB

HybridSN 5,122,176 4,845,696 4,844,793
19.54 MB 18.48 MB 18.48 MB

Transformer 152,504 66,224 65,993
0.58 MB 0.25 MB 0.25 MB

Table 12. Flops of the five methods on the three hyperspectral data sets.

Network Indian Pines Salinas PaviaU

2-D-CNN 11,708,240 5,995,040 5,927,280

3-D-CNN 162,511,650 83,938,540 83,614,405

multi-3-D-CNN 52,409,984 20,611,712 20,557,504

HybridSN 248,152,512 50,948,592 50,947,696

Transformer 5,294,912 1,988,762 1,988,538

Table 13. Running time of the five methods on the Indian Pines data set.

Data set Algorithm Training Time (s) Testing Time (s)

Indian Pines

2-D-CNN 11.0 0.5
3-D-CNN 54.1 4.26

multi-3-D-CNN 56.23 5.10
HybridSN 43.9 3.45

Transformer 32.24 1.31

Table 14. Running time of the five methods on the Salinas data set.

Data set Algorithm Training Time (s) Testing Time (s)

Salinas

2-D-CNN 6.0 1.9
3-D-CNN 26.1 16.1

multi-3-D-CNN 26.2 18.2
HybridSN 13.9 7.5

Transformer 13.8 4.6
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Table 15. Running time of the five methods on the University of Pavia data set.

Data set Algorithm Training Time (s) Testing Time (s)

University of Pavia

2-D-CNN 5.8 1.5
3-D-CNN 26.2 12.7

multi-3-D-CNN 26.2 14.2
HybridSN 14.06 5.78

Transformer 13.09 3.33

4. Discussion

In this part, further analysis of our proposed model is provided. Firstly, metric
learning can improve the model classification performance significantly, especially when
the training samples are extremely lacking, and the results prove it. Secondly, the results
of controlled experiments reflect the benefits of 1-D convolution layers with parameter
sharing. Thirdly, the experimental results about different activation functions confirm the
superiority of Mish.

4.1. Effectiveness of the Metric Learning

To prove the effectiveness of the metric learning, we remove the metric learning
mechanism and compare the performance between these two models.

Table 16 and Figures 15–17 reveal the benefits of the metric learning mechanism.
The numbers after the plus-minus signs are the variances of the corresponding metrics.
The model with metric learning can reach a higher accuracy. We can conclude that the
metric learning can improve the model classification results.

Table 16. Classification results of the transformer without metric learning and the transformer with
metric learning.

Indian Pines Salinas

No. without with without with
Metric Learning Metric Learning Metric Learning Metric Learning

1 99.16 90.92 98.47 98.47
2 85.41 86.70 98.69 98.54
3 84.68 85.09 96.58 98.02
4 85.99 88.03 93.18 95.59
5 92.39 94.55 96.34 96.04
6 94.99 95.67 98.25 97.98
7 72.42 91.76 99.10 99.03
8 95.71 96.42 93.83 94.27
9 79.72 88.33 99.39 98.97

10 89.07 91.12 96.13 95.90
11 89.17 88.85 98.46 98.30
12 79.96 81.18 94.71 94.58
13 96.65 96.23 91.32 89.99
14 95.47 94.55 97.16 98.21
15 89.88 86.54 92.36 92.75
16 89.52 79.63 99.93 99.89

KAPPA 0.876± 0.016 0.882± 0.010 0.955± 0.009 0.957± 0.009
OA(%) 89.26± 1.39 89.71± 0.88 96.02± 0.88 96.15± 0.86
AA(%) 88.76± 3.33 89.72± 3.01 96.49± 0.96 96.66± 0.79
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Table 16. Cont.

University of Pavia
No. without Metric Learning with Metric Learning

1 87.92 89.98
2 96.80 96.89
3 88.09 88.56
4 92.32 94.82
5 89.57 92.43
6 96.60 98.06
7 91.47 88.01
8 85.53 84.98
9 83.79 93.89

KAPPA 0.905± 0.019 0.916± 0.014
OA(%) 92.92± 1.47 93.77± 1.06
AA(%) 90.23± 2.16 91.96± 1.86

(a) (b) (c)

Figure 15. The classification maps of Indian Pines. (a) Ground-truth map. (b) Classification results of the Transformer
without metric learning. (c) Classification results of the Transformer with metric learning.

(a) (b) (c)

Figure 16. The classification maps of Salinas. (a) Ground-truth map. (b) Classification results of the
Transformer without metric learning. (c) Classification results of the Transformer with metric learning.
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(a) (b) (c)

Figure 17. The classification maps of University of Pavia. (a) Ground-truth map. (b) Classification
results of the Transformer without metric learning. (c) Classification results of the Transformer with
metric learning.

4.2. Effectiveness of the 1-D Convolution and Parameter Sharing

In Section 2.1, we declare that the parameter sharing strategy can improve the model
classification result. Here, we will compare the performance of the transformer model with
the 1-D convolution and parameter sharing, the transformer model with 1-D convolution,
the transformer model with the linear projection layers and parameter sharing, and the
transformer model with the linear projection layers.

From Figure 18, we can conclude that both 1-D convolution layers and parameter
sharing boost the model performance.

Figure 18. Effectiveness of the 1-D convolution and parameter sharing.

4.3. Effectiveness of the Activation Function

The Mish activation function can promote model performance slightly. Figure 19
shows the classification OA of the transformer models based on different activation
functions.
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Figure 19. Effectiveness of the activation function.

5. Conclusions

In this article, we introduce the transformer architecture for hyperspectral image
classification. Meanwhile, by replacing the linear projection layer with the 1-D convolution
layer, the image patches can be embedded into sequences with more information. It can
lead to an increase in classification accuracy. Besides, the Mish activation function is
adopted instead of the Relu activation function; hence, the model performance can be
further boosted.

In the experiments, the influence of three innovative changes based on the classical
vision transformer, including metric learning, the 1-D convolution layer, and the Mish
activation function, is proved. Moreover, many state-of-the-art methods based on convolu-
tional neural networks, including 2-D CNN, 3-D CNN, multi-scale 3-D CNN, and hybrid
CNN, are taken into account. The results demonstrate the advantage of the proposed
model, especially under the condition of lacking training samples.
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