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Abstract: This communication provides an integrated process route of smelting gallium-based
liquid metal (GBLM) in a high vacuum, and injecting GBLM into the antenna channel in high-
pressure protective gas, which avoids the oxidation of GBLM during smelting and filling. Then,
a frequency-reconfigurable antenna, utilizing the thermal expansion characteristic of GBLM, is
proposed. To drive GBLM into an air-proof space, the thermal expansion characteristics of GBLM are
required. The dimensions of the radiating element of the liquid metal antenna can be adjusted at
different temperatures, resulting in the reconfigurability of the operating frequency. To validate the
proposed concept, an L-band antenna prototype was fabricated and measured. Experimental results
demonstrate that the GBLM in the antenna was well filled, and the GBLM was not oxidized. Due
to the GBLM being in an air-proof channel, the designed liquid metal antenna without electrolytes
could be used in an air environment for a long time. The antenna is able to achieve an effective
bandwidth of over 1.25–2.00 GHz between 25 ◦C and 100 ◦C. The maximum radiation efficiency and
gain in the tunable range are 94% and 2.9 dBi, respectively. The designed antenna also provides a
new approach to the fabrication of a temperature sensor that detects temperature in some situations
that are challenging for conventional temperature sensing technology.

Keywords: antioxidation; frequency-reconfiguration; liquid metal; temperature sensor; antenna
sensor; thermal expansion; electrolyte-free

1. Introduction

In recent years, the reconfigurable antenna has emerged as a promising candidate to
face the challenges and requirements of high gain, broadband and multifunction in ad-
vanced communication systems. Generally, switching components such as radio frequency
microelectromechanical systems (RF MEMS) [1], varactor diodes [2] and p-type intrinsic
n-type (PIN) diodes [3] are frequently applied to ensure sensitive control of antennas’ recon-
figurable performance. More and more radio frequency (RF) switches are used in antennas
to seek better reconfigurable effects, while the complex auxiliary circuits and nonlinear
effects remain inevitable. Moreover, some possible challenges, like constrained tuning
and poor harmonics, require more strategies and solutions. Currently, ionic solutions [4],
liquid crystals [5] and liquid metals, for example, provide new methods for reconfigura-
tion. Among them, the outstanding characteristics of fluidity, electrical conductivity and
deformability of liquid metal (LM) promise to become especially important in the field of
reconfigurable electronic devices. Up to now, the potential of LM-based antennas has been

Sensors 2021, 21, 1793. https://doi.org/10.3390/s21051793 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5404-0292
https://orcid.org/0000-0002-8015-0791
https://doi.org/10.3390/s21051793
https://doi.org/10.3390/s21051793
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21051793
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/5/1793?type=check_update&version=1


Sensors 2021, 21, 1793 2 of 13

demonstrated via pattern-, frequency- and polarization-reconfigurable prototypes [6–23], in
which the LM mainly performs as a deformable structure for shape-patterning or switching
in the radiating elements.

As a conventional LM, mercury has been applied to antennas since 1939 [6–10]. Al-
though mercury is not easily oxidized at room temperature, it is volatile and highly toxic.
The effects of mercury exposure can be very severe and subtle. At present, the mercury
ban is a global trend. Gallium-based LM (GBLM) is a good substitute for mercury due
to its non-volatile and non-toxic properties [11–23]. However, the oxidation of gallium
greatly limits the antenna application of GBLM, since gallium oxide is facile to stick to
the surface of the cavity [9,24,25]. Under the effects of surface tension and oxidation, mer-
cury and GBLM fill, and withdraw from, microchannels, showing different behaviors [24].
GBLM requires more pressure to move into the microchannel than mercury. When the
pressure is removed, GBLM cannot withdraw from the microchannel like mercury does,
but requires HCl solution to eliminate gallium oxide. Compared with mercury, it is more
difficult to control the flow of GBLM in the microchannel. Only in a glove box, where the
oxygen concentration is less than 1 ppm, can GBLM maintain its unoxidized morphol-
ogy [25]. Due to the low oxygen concentration threshold, the reaction between GBLM
and oxygen occurs very easily. In [9], scientists tried to make Galinstan antennas in a
glove box with an oxygen concentration of less than 1 ppm, but the antenna could only be
used in the glove box and, once removed, it was ineffective. Additionally, the radiation
efficiency of the antenna may be reduced since the electrical conductivity of gallium oxide
(5 × 10−4 S/m [26]) is much lower than that of GBLM. Almost all existing research works on
GBLM antennas either ignore the trouble of oxidation or add acid/alkaline electrolytes [12–23].
The electrolytes used in the deoxidation process produce three serious problems. Firstly,
GBLM and acid/alkaline solutions react with and consume one another, so the system
cannot coexist. Secondly, through the chemical reaction, the system (especially after the
electrolysis reaction) generates bubbles, and multiple fluids can easily disconnect the
GBLM. Thirdly, the presence of electrolytes will reduce antenna efficiency [27]. Therefore,
avoiding oxidation or deoxidation with an electrolyte-free method is crucial for a GBLM
reconfigurable antenna, both in terms of physical fabrication and practical application.

This paper presents a novel idea to drive GBLM into a confined space, and proposes
a new type of GBLM-based reconfigurable antenna. Herein, by adopting the integrated
manufacturing process of metal smelting under high vacuum, and GBLM infusion under
a high-pressure shielding-gas atmosphere, an electrolyte-free antenna radiating element
nicely filled with non-oxidized GBLM is obtained. In addition, in order to drive GBLM
into enclosed spaces, a thermally controlled strategy is applied to generate the volumetric
expansion of GBLM. Thus, non-contact and accurate control for the height of the metallic
cylinder in the capillary of the antenna can be realized. In short, this work proposes
a new idea of a thermally reconfigurable control method, and a new electrolyte-free
manufacturing process for liquid metal antennas, which may pave a possible way toward
the simplification of reconfigurable antennas in the future.

2. Antenna Design
2.1. Material and Structure

Figure 1 shows the proposed monopole antenna structure, which consists of five
main parts: a SubMiniature version A (SMA) connector, a heating film, a ground plane,
an antenna radiating element and a ceramic tube. Enlarged views of the top and bottom
parts of the radiating element are shown in Figure 1b,c. The shell of the antenna radiating
element is made of quartz glass (relative permittivity: εr = 3.7, the tangent of dielectric
loss angle: tan δ = 0.00011, at 1 GHz [28]). The bottom part of the radiating element is a
temperature-sensitive bulb filled with EGaIn (a kind of GBLM with the composition of
75.5% gallium and 24.5% indium, electrical conductivity σ = 3.46 × 106 S/m) to make a
reconfigurable wire. The platinum wire (δ = 9.43 × 107 S/m) at the bottom of the radiating
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element is welded to the inner conductor of the SMA connector, which could be used to
connect the feeder.
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Figure 1. Configuration of the proposed monopole antenna. (a) Front view. (b) Top zoom. (c) Bottom
zoom. (d) Ground plane. (e) Heating film.

The bottom views of the ground plane and heating film are shown in Figure 1d,e,
respectively. The heating wire of the heating film is wrapped in rubber, and its temperature
is adjusted through a temperature control system. The heating film and the ground plane
form a heating platform. The heating film, placed under the ground plane, is used to avoid
the influence of the metal heating wire on the antenna radiating element. Ceramic tubes
and thermal grease are applied to ensure that the heat on the heating platform can be
effectively transferred to the EGaIn. The temperature change of the liquid metal is obtained
by adjusting the electric current loads of the heating film. A calibrated thermocouple with
±0.5 ◦C accuracy was applied to detect the temperature of the liquid metal.

2.2. Principles of Reconstruction

The degree of liquid expansion is usually quantified by the cubic expansion coefficient
γ, which is defined by:

γ =
1

V0

(
∂V
∂T

)
P

(1)

where V is the volume, T is the temperature, P is the pressure and V0 is the initial volume
at the initial temperature T0.

EGaIn usually remains in liquid state from 15.5 ◦C to 2000 ◦C [29] and has the charac-
teristics of cold shrinkage and thermal expansion. Its liquid-phase temperature range is
much larger than that of mercury, from −38.8 ◦C to 356.7 ◦C [30]. The thermal expansion
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coefficient of quartz glass is 5.5 × 10−7 1/K [31], which can be ignored compared to the
thermal expansion coefficient of GBLM [32].

Hence, V, the volume of liquid metal, can be expressed by the dimensions marked in
Figure 1, i.e., D2, D6, H2, H3 and H4:

V =
π

12

(
D3

6 + 3D2
6 H2 + D2

2 H3 + D2
6 H3 + D2D6H3 + 3D2

2 H4

)
=

π

4
C +

π

4
D2

2 H4 (2)

where C is a constant value during temperature variation, and it can be expressed as:

C =
1
3

(
D3

6 + 3D2
6 H2 + D2

2 H3 + D2
6 H3 + D2D6H3

)
(3)

According to (1), the volume of liquid metal can be rewritten as (4) when the tempera-
ture increases by ∆T:

V = V0 + ∆V = V0(1 + γ∆T) (4)

Additionally, the relationship between H4 and ∆T can be derived from (2) and (4):

H4 = H40 +
C + D2

2
D2

2
γ∆T (5)

where H40 is the initial length of H4 at the initial temperature T0. After the geometric
structure is determined, T is the only variable of H4. As the length L (L = H1 + H2 +
H3 + H4) of the radiating element of the monopole antenna generally should satisfy the
condition of L = λ/4, the resonant frequency of the antenna can be changed by controlling
the temperature.

2.3. Parametric Analysis

The working frequency band of the antenna proposed in this work is designed in
the L-band (1–2 GHz). As mentioned above, the lengths of EGaIn mainly determine the
working frequencies of the proposed antenna. All the initial geometric dimensions of
the antenna structure (for example, H2, H3, H40) need to be uniquely confirmed. A full-
wave electromagnetic high-frequency structure simulator (HFSS) was used to simulate the
proposed antenna in this communication. The entire antenna, except the SMA connector,
was considered as the simulation model. Figure 2a shows a clear change in reflection
coefficient values (represented by S11), as H40 and H2 changes. It can be seen that the
smaller H40 is, the higher the operating frequency of the antenna and the lower the reflection
coefficient would be. However, the initial value of H40 should be large enough so that
EGaIn would not flow back into the temperature-sensitive bulb when the temperature
drops. Therefore, trade-off values should be chosen, while taking the highest working
frequency of 2 GHz into consideration. In this work, the initial lengths of H40 and H2 were
chosen to be 17.5 mm and 6 mm, respectively. Figure 2b shows a little change in reflection
coefficient values as H3 changes. The length of H3 is finally assigned to be 7.0 mm with
a lower reflection coefficient value. By using this method of controlling variables, other
dimensions can also be optimized similarly. The optimized dimensions of the proposed
antenna shown in Figure 1 are given in Table 1.
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Table 1. Dimensions of the Optimized Antenna (Unit: mm).

H1 H2 H3 H40 H5 H6
6.0 6.0 7.0 17.5 37.0 2.0
H7 H8 H9 H10 D1 D2
2.0 4.0 4.2 6.0 2.0 0.32
D3 D4 D5 D6 D7 D8
6.3 0.5 0.5 3.0 4.0 8.6
D9 D10 D11 D12 L1 L2

14.8 4.0 2.0 100.0 5.0 14.0

3. Fabrication and Measurement
3.1. Fabrication Process

Initially, in a glove box with nitrogen protection, an attempt was made to inject GBLM
through a syringe into an open glass tube. However, the antenna failed after being removed
from the glove box because the GBLM was still oxidized. Later, a mechanical pump was
used to extract air from the semi-closed glass tube. The prepared liquid metal was filled
into the glass tube by the pressure difference between the inside and outside of the glass
tube. The fabricated antenna still had the problem that GBLM had been oxidated and
incompletely filled. Through many previous failed experiments, two important pieces
of information were confirmed. Firstly, the GBLM would be partially oxidized rapidly
(when exposed to air) before it was applied in antenna manufacturing. Secondly, it was
difficult to completely fill the channel using both manual perfusion and pressure perfusion
with a mechanical pump. Therefore, an integrated solution for preparing GBLM under
high-vacuum conditions and filling GBLM under high-pressure conditions was proposed.

The final schematic manufacturing process of the proposed liquid metal antenna is
shown in Figure 3a. Firstly, the glass tube used as the temperature-sensitive bulb, and the
capillary tube, were sintered and connected. Secondly, the platinum feeding electrode and
the glass tube were sintered together. The feeding electrode was made of platinum wire
because platinum is not easily oxidized and has high conductivity. Thirdly, EGaIn was
prepared and filled into the glass tube under a vacuum environment. The relationship
between temperatures and heights was properly marked. The temperature-sensitive bulb
was heated so that the excess EGaIn was discharged. Meanwhile, the top of the glass tube
was sintered and sealed. Steps 1, 2 and 4 are common measures for the manufacture of
thermometers, which were entrusted to Wuqiang Huayang Instrument Co., Ltd., China.
Step 3 will be described in more detail below.
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As shown in Figure 3b, the fusion and infusion processes of EGaIn (Step 3) were carried
out in a two-stage vacuum system to avoid oxidation. This two-stage vacuum system is
a miniaturized vacuum induction smelting furnace customized by Shanghai Mengting
Instrument Co., shanghai, China. As shown in Figure 3c, it contains two-stage pumps (a
mechanical pump and a molecular pump), a smelting chamber (volume approximately 0.1
m3), an induction coil, cooling water, a refrigerator, an air compressor, a vacuum gauge and
a rotating arm, among other things. Firstly, the metal elements were weighed in proportion
and placed in a graphite crucible (inner diameter 44 mm, height 100 mm, made by Guanzhi
New Material Technology Co., Guangzhou, China). Graphite crucibles were used here,
instead of ceramic crucibles, because graphite crucibles are reductive and can better protect
metals from oxidation. The graphite crucible containing the metal elements for smelting
GBLM was placed in the induction coil, and the petri dish with the empty glass tube was
put in a suitable position below the graphite crucible. After that, the mechanical pump
was turned on for half an hour to reach a low vacuum (10 Pa) in the melting chamber, and
then the molecular pump was turned on for two hours to reach a high vacuum (10−4 Pa).
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Subsequently, under a high vacuum, EGaIn was prepared at 200 ◦C, and poured into a
petri dish by the rotating arm, submerging the unfilled glass tube. Finally, 300 kPa of argon
was filled into the two-stage vacuum system. EGaIn was forced into the empty glass tube
under a great pressure difference. This integrated process of smelting EGaIn in a high
vacuum, and injecting EGaIn in a high-pressure protective gas, ensured that a fully filled
and non-oxidized antenna radiating element was obtained. The proposed antenna, after
the assembly, is shown in Figure 4.
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tube. (b) Bottom view. (c) Measurement setup of the liquid metal reconfigurable antenna in an
anechoic chamber.

During the fabrication process in this work, the EGaIn did not become oxidized when
it was smelted and filled into the antenna. Moreover, the non-contact thermal expansion
strategy utilized here could enable the EGaIn to be completely sealed in a vacuum container,
eliminating the necessity for electrolytes. The designed antenna can be applied in the air
for a long time without worrying about oxidation.

3.2. Results and Discussion

The Keysight Technologies N5247A vector network analyzer (VNA) was used to
measure the antenna’s reflection coefficient, and its radiation characteristics were tested in
a microwave anechoic chamber, as shown in Figure 4c.

The cubic expansion coefficients of EGaIn at 40–100 ◦C were measured, as shown in
Table 2. In addition, the data in Tables 1 and 2 were brought into (1)–(5), and the lengths
of H4 at different temperatures were calculated and compared with the measurement
results, as shown in Figure 5. As can be seen, the length of H4 increases linearly with
temperature, and the measurement and calculation results are consistent. These modest
differences could be traced to the failure of eliminating the expansion effect of the quartz
tube when measuring the cubic expansion coefficients of EGaIn, and inaccurate reading
when measuring the length of H4.

Table 2. The Cubic Expansion Coefficients of EGaIn.

Temperature (◦C) 40 50 60 70 80 90 100

γ × 106 (1/K) 113.1 114.3 115.0 115.4 116.1 117.4 118.6
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The reflection coefficients of the proposed antenna at different temperature states are
shown in Figure 6a, and the relationship between impedance bandwidth and temperature
is shown in Figure 6b. Under ambient temperature (25 ◦C), simulated and measured
bandwidths with a reflection coefficient below −10 dB are 24.4% (1.55–1.97 GHz, resonated
at 1.72 GHz) and 29.4% (1.50–2.00 GHz, resonated at 1.70 GHz), respectively. As the
temperature gradually rises from 25 ◦C to 100 ◦C, EGaIn in the glass tube expands. The
measured length of H4 increases from 17.5 mm to 25 mm linearly. Hence, the resonant
frequency of the antenna decreases. The simulated frequency range with |S11| < −10 dB
reduces to 1.24–1.43 GHz (resonated at 1.32 GHz), while the corresponding measured results
decrease to 1.25–1.44 GHz (resonated at 1.32 GHz) by degrees.

Sensors 2021, 21, x FOR PROOF 8 of 13 
 

 

difference is mainly observed in the lower reflection coefficient obtained by the measure-
ment, which may be due to manufacturing errors and reflections from the environment. 

 
Figure 5. The lengths of H4 at different temperatures. 

The normalized radiation patterns of the E-plane (X-Z plane) and H-plane (Y-Z 
plane) at four different temperatures and resonant frequencies of the antenna are shown 
in Figure 7. Similarly to simulated results, this antenna shows typical radiation patterns 
for a classical monopole antenna with a stable omnidirectional radiation on the H-plane 
and a bidirectional radiation on the E-plane. Furthermore, radiation efficiencies in differ-
ent cases were calculated using the maximum gain and directivity. As shown in Figure 8, 
the maximum radiation efficiency and gain are 94% and 2.9 dBi, respectively, in the tuna-
ble range. There are differences in gain and efficiency trends between the simulations and 
measurements, because the simulations represent ideal conditions, which are not com-
pletely consistent with the actual conditions. The measurement results show that the loss 
of the antenna increases as the frequency increases, resulting in a decrease in efficiency 
and gain. The loss comes from dimensional errors, dielectrics, cables and interfaces. 

Figure 6. (a) Reflection coefficients of the antenna at different temperatures. (b) Impedance band-
widths performance of the antenna at different temperatures. 

Figure 6. (a) Reflection coefficients of the antenna at different temperatures. (b) Impedance band-
widths performance of the antenna at different temperatures.

This frequency reconstruction process would be expected to be continuously changing
since the temperature changes are successive. The working frequency band basically covers
the L-band, and the minimum reflection coefficient is better than −15 dB for all the cases.
The simulated results are in good agreement with the measured ones. The slight difference
is mainly observed in the lower reflection coefficient obtained by the measurement, which
may be due to manufacturing errors and reflections from the environment.



Sensors 2021, 21, 1793 9 of 13

The normalized radiation patterns of the E-plane (X-Z plane) and H-plane (Y-Z plane)
at four different temperatures and resonant frequencies of the antenna are shown in
Figure 7. Similarly to simulated results, this antenna shows typical radiation patterns
for a classical monopole antenna with a stable omnidirectional radiation on the H-plane
and a bidirectional radiation on the E-plane. Furthermore, radiation efficiencies in dif-
ferent cases were calculated using the maximum gain and directivity. As shown in
Figure 8, the maximum radiation efficiency and gain are 94% and 2.9 dBi, respectively, in
the tunable range. There are differences in gain and efficiency trends between the simula-
tions and measurements, because the simulations represent ideal conditions, which are not
completely consistent with the actual conditions. The measurement results show that the
loss of the antenna increases as the frequency increases, resulting in a decrease in efficiency
and gain. The loss comes from dimensional errors, dielectrics, cables and interfaces.
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The prototype antenna was fabricated to verify the feasibility of the thermal expansion-
based strategy, currently with a tuning range of 1.25–2.00 GHz, but this is not the limit
for the thermal-expansion-based antenna. For example, higher operating frequencies can
be obtained by reducing the geometric size, especially by tuning H1, H2, H3, H4 and D2,
or lowering the operating temperature, unless the liquid–solid phase transition occurs.
When the geometry is determined, the lowest working frequency is determined by the
maximum operating temperature. Considering the heat resistance of common materials
and the safety of measurements, as a prototyped antenna, its operating temperature range
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in the aforementioned measurements is only 25–100 ◦C. Under the geometric dimensions
shown in Table 1, the trend in Figure 6 is that when the length of H4 increases by 10 mm
every time, the temperature rises by 100 ◦C. The increased operating temperature can
further reduce the resonance frequency. In short, the smaller geometric size and wider
operating temperature range can greatly broaden the working bandwidth of the antennas,
based on the proposed control method. Moreover, the antenna proposed in this study can
also serve as a temperature sensor for high-temperature measurement, since the boiling
point of liquid metal is extremely high. When working as a temperature sensor, the heat
source to be measured replaces the heating platform. The designed antenna will have
both temperature sensing and signal transmission functions. In measuring high tempera-
tures, the major concern is the heat resistance of the antenna materials. It is necessary to
replace the organic glue in this study with high-temperature-resistant inorganic glue (heat
resistance temperature can exceed 1300 ◦C [33]) and replace the Polytetrafluoroethylene
radio frequency connector with the ceramic radio frequency connector (heat resistance
temperature can exceed 600 ◦C [34]).
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Several LM frequency-reconfigurable antennas, and traditional frequency-reconfigurable
antennas, are listed in Table 3 for comparison. In [1], only two discrete frequencies can
be reconfigured. Gains are not given in [3,11]; furthermore, efficiencies are not given
in [2,3,9,11]. The tuning range is relatively small in [11] and the antenna needs an external
force to achieve reconfigurability. The tuning range is broad in [9]. Since the oxidation
problem of Galinstan was not solved well, highly toxic mercury was used instead of Galin-
stan in [9]. The principles of continuous electrowetting (CEW) and electrically controlled
capillarity (ECC) are used to drive LM in [12,13], respectively. In [13], the peak efficiency
is 70%, which is lower than the levels seen in this work, because the NaOH solution is
used as a conductive liquid in the bias circuit and to eliminate gallium oxide in [12,13].
Compared with the above work, the antenna proposed in this communication is safer and
more convenient to apply, since the oxidation problem is avoided without use of another
protective device.
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Table 3. Performance comparison between different antennas.

Ref. Radiator Methods of
Reconstruction

Liquid
Metal

Solution
Environment

Reconstruction
Speed

Control
Circuit
Power

Reconfigurable
Characteristics

(GHz)

Peak
Gain

(Mea.)

Peak
Efficiency

(Mea.)

[1] Planar
inverted F RF-MEMS None None Fast Small 0.718 and 4.96 3.3 dBi 85%

[2] Quasi-Yagi Varactor diodes None None Fast Small 6.0–6.6 6.35 dBi N/A

[3] Planar
inverted U PIN diodes None None Fast Small 2.63–3.7 N/A N/A

[9] Monopole Micro pump Mercury Teflon
solution 16 s Medium 1.29–5.17 2.5 dBi N/A

[11] Dipole External force EGaIn None N/A None 1.91–1.99 N/A ≈90%

[12] Slot Continuous
electrowetting Galinstan NaOH

solution 0.9 mm/s Medium 2.2–2.6 2 dBi N/A

[13] Monopole
Electrically
controlled
capillarity

EGaIn NaOH
solution 3.6 mm/s Medium 0.66–3.4 3.4 dBi 70%

This
work Monopole Thermal

expansion EGaIn None ≈1 s/◦C High 1.25–2.00 2.9 dBi 94%

Nevertheless, the speed of the antenna’s response to temperature is expected to be
improved. During the tests, it took 20–30 s to obtain a temperature difference of 25 ◦C. In
other words, the temperature change rate is about 1 ◦C/s. In fact, a long reconfiguration
time is a common problem for antennas using liquid metal through fluid flow, and the
thermal-expansion-based actuation is no exception. Whether using external force meth-
ods [11], pumping methods [9], CEW [12] or ECC [13], the speed of liquid metal antennas
is currently not comparable to control methods using radio frequency switches [1–3]. On
the other hand, heating the plane requires more power. In the future, heating methods
with a high density such as laser heating may be used to accelerate the reconfiguration
procedure of thermal-expansion-based liquid metal antennas.

4. Conclusions

A frequency-reconfigurable antenna based on the thermal expansion of GBLM has
been investigated and verified by measurement. A continuous operating frequency range
of 1.25–2.00 GHz is acquired via manipulating the temperature between 25 ◦C and 100 ◦C
using EGaIn. The tunable working bandwidths cover the majority of the L-band. Under the
conditions of four representative temperatures, the maximum radiation efficiency and gain
in the tunable range are 94% and 2.9 dBi, respectively. Moreover, during the fabrication
process in this work, the GBLM did not become oxidized when it was smelted and filled
into the antenna because an integrated process route was proposed, in which GBLM was
smelted in a high vacuum and injected into the antenna in a high-pressure protective
gas. In brief, a thermal-control strategy is proposed in order to realize, for the first time,
frequency reconfigurability of a monopole antenna via the thermal expansion of GBLM.
This provides a promising solution for reconfigurable antennas based on liquid metal
techniques. The designed antenna can be used as a temperature sensor in some situations
that are challenging for conventional temperature sensing methods.
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