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Abstract: Submicron-sized carbon fibres have been attracting research interest due to their outstand-
ing mechanical and electrical properties. However, the non-renewable resources and their complex
fabrication processes limit the scalability and pose difficulties for the utilisation of these materials.
Here, we investigate the use of plasma arc technology to convert renewable electrospun lignin fibres
into a new kind of carbon fibre with a globular and porous microstructure. The influence of arc
currents (up to 60 A) on the structural and morphological properties of as-prepared carbon fibres
is discussed. Owing to the catalyst-free synthesis, high purity micro-structured carbon fibres with
nanocrystalline graphitic domains are produced. Furthermore, the humidity sensing characteristics
of the treated fibres at room temperature (23 ◦C) are demonstrated. Sensors produced from these
carbon fibres exhibit good humidity response and repeatability in the range of 30% to 80% relative
humidity (RH) and an excellent sensitivity (0.81/%RH) in the high RH regime (60–80%). These results
demonstrate that the plasma arc technology has great potential for the development of sustainable,
lignin-based carbon fibres for a broad range of application in electronics, sensors and energy storage.

Keywords: plasma arc discharge; lignin fibres; renewable carbon fibres; globular structure; humid-
ity sensing

1. Introduction

Humidity sensors have been successfully applied in various fields, such as food
packaging, and healthcare, as well as industrial processes [1–4]. The humidity sensing
performance is determined as the relative change of an electrical property, such as capaci-
tance or resistance [5]. Capacitive-type humidity sensors generally make use of a changing
of dielectric constant upon humidity variations, as seen for metal oxide or ceramic based
humidity sensors [3]. However, their long recovery time poses limitations on practical
applications. Another sensing mechanism is resistive that changes electrical conductance
upon interaction with water vapour/molecules. Carbon nanomaterials such as carbon
nanotubes, graphene and carbon nanofibres have recently attracted widespread research
interest due to their resistive humidity sensing properties [6–9]. Carbon (nano)fibres are
one-dimensional (1D) carbonaceous materials with a diameter in the range of 10 to 500 nm,
and afford a high surface-to-volume ratio and advantageous electrical characteristics [10,11].
Compared to graphene and carbon nanotubes, carbon (nano)fibres are usually amorphous
with randomly distributed graphite micro-crystallites and a distorted graphite layer. They
contain many voids, allowing easy surface and structure modifications to create versatile
materials with a wide range of functionalities and applications, such as sensors, energy
storage, electronics, catalysts and separation membranes [10–13]. Our previous research re-
sults also suggest that the fibrous structure of nanofibres is beneficial for high performance
humidity sensing [1]. Table 1 shows a comparison of the four main methods used for the
synthesis of carbon nanofibres and their applications. Among these, the method that has
the greatest potential for large-scale and ease of production is the electrospinning of a
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carbon precursor that is subsequently converted into carbon by thermal treatment [14]. Tra-
ditionally, petroleum-based polymers, such as polyacrylonitrile (PAN), have been widely
used as the electrospinning carbon precursors [15]. However, PAN is expensive, and its
preparation is associated with large greenhouse gas emissions (33.5 kg CO2 kg−1) [16].
Moreover, the carbonisation of PAN releases HCN and NH3, which have significant health
and safety risks. Therefore, it cannot satisfy the fast-growing demand for carbon nanofibres
produced in a sustainable manner.

Table 1. Comparison of the main carbon nanofibre synthesis methods and applications.

Methods Applications Advantages Disadvantages Ref.

Chemical Vapour
Deposition

Batteries
Supercapacitors

Fuel cells
Sensors

High yield
High performance

Precise control

High energy
consumption

High cost
[10,17]

Template Support
Growth

Batteries
Supercapacitors

Sensors

Controllable structure
Simple operation

Limited template
Extra step to remove

template
[10,11]

Hydrothermal
Adsorption

Oxygen reduction
Supercapacitors

Simple operation
High yield

High energy
consumption

High cost
Demands of reactant

Hard to control reaction

[10,11,18]

Electrospinning

Solar cells
Fuel cells
Batteries

Supercapacitors
Sensors

Low energy consumption
Easy to build and operate

Controllable structures
and functions

Requirement
post-treatment

Long processing time
[10,11,19–21]

Biomass, a renewable resource, has become an attractive alternative for producing low
cost and sustainable carbonaceous materials with minimal environmental impact [22,23].
Lignin is regarded as a promising carbon precursor for submicron diameter carbon fibre pro-
duction [21,24–27]. This is due to its high carbon content, polyaromatic structure and low
cost as a by-product of the pulping industry. Lignin can be transformed into fibres through
electrospinning, and then carbonised using thermal pyrolysis or hydrothermal meth-
ods [22–24]. However, both methods are relatively slow processes (at least several hours)
and require either high temperature or high pressure [28]. Furthermore, to control the
nano/micro structure of carbonised lignin fibres for better performance, post-treatments,
such as doping and modification, are needed in most cases [11,13,29]. Therefore, it is
highly desirable to develop rapid carbonisation technologies with controllable micro/nano
structures that are also scalable, low-cost and easy to operate [30,31].

Plasma arc technology (also known as arc discharge technology) has emerged as a
fast and environmentally friendly technique to produce high-quality carbon nanomaterials
from carbon precursors on a large scale [32–34]. The thermal processes in the plasma arc
technique provide very efficient means for producing novel materials owing to their high
temperature, high enthalpy and high speed of quenching, which causes the homogenous
condensation of the gas phases [35]. However, it currently either uses fossil-based carbon
precursors, such as graphite and carbon black, or transition metal catalysts, such as Fe, Ni
and Co, for carbon material production. Fossil-based precursors are not suitable for sustain-
able production. Moreover, metal catalysts can be incorporated into the carbon structures
during plasma treatment and form impurities that are hard to remove. Furthermore, it
has been reported that the structures of carbon nanomaterials prepared by the plasma arc
technology are strongly influenced by varying the processing parameters, such as arc cur-
rents, process duration, pressure and other physical conditions that constitute the plasma
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arc process [35,36]. Among these parameters, arc current is the most significant parameter
affecting the quality, yield and structure of the synthesised carbon nanostructures.

Here, we use the plasma arc technology with differing levels of arc current to suc-
cessfully convert lignin fibres into micro-structured carbon fibres without a catalyst. The
application of these carbon fibres for resistive humidity sensing was then demonstrated as
a proof-of-concept. The lignin-based plasma arc technology paves the way for the catalyst-
free, low-cost, scalable and fast production of high purity renewable carbon materials.

2. Materials and Methods
2.1. Material Fabrication

Lignin fibres were prepared through the electrospinning of a lignin formulation
following a published process [12,37]. Direct current (DC) plasma arc treatment on the
lignin fibres was carried out in an arc discharge apparatus developed in-house [33,38].
Figure 1a shows the setup of the plasma arc discharge apparatus used in this work. The
apparatus consists of two main parts: a pure graphite rod (Graphitestore, Northbrook, IL,
USA), which serves as the anode with a diameter of 10 mm, and a water-cooled graphite
disc as the cathode inside the process chamber. The anode position was controlled in the
vertical direction by a stepper motor to facilitate the formation of a plasma arc with a steady
current. The chamber’s partial pressure was closely monitored and maintained at 300 Torr
to prevent the residual gases in the chamber from reacting with the lignin during the
treatment. To study the effects of the arc current on the structure of the resulting material,
different levels of current were applied in this work (10, 20, 35, 45 and 60 A). When the
plasma arc was ignited between the tips of the graphite anode and the cathode, it passed
through the lignin fibre sample which was placed on top of the graphite cathode disc. The
discharge was maintained for 5 s at a constant current. It was difficult to exactly quantify
the yield after arc discharge [39]. This was due to the fact that a certain amount of powder
adhered on the inner walls of the chamber after treatment and was difficult to collect. The
design of the collection setup needs to be optimised to allow all the final products to be
collected after the plasma arc treatment.
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Figure 1. (a) Schematic diagram of the plasma arc discharge apparatus used to treat lignin fibres. (b) Schematic of the
humidity sensor measurement setup.

2.2. Materials Characterisation

The morphologies of the as-obtained samples were evaluated using a JSM-6700F
(JEOL, Tokyo, Japan) field-emission scanning electron microscope (FE-SEM) at a voltage
of 3 kV. The samples were sputter coated with chromium (thickness of 10 nm) prior to
observation. The fibre diameters of treated samples were calculated from the SEM images
using ImageJ software (National Institute of Health, Bethesda, MD, USA). The reported
diameters represent the averages of 50 different fibres. Fourier transform infrared (FTIR)
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spectra were recorded on a Nicolet FTIR 8700 spectrometer (Thermo Fisher Scientific
Inc., Boston, MA, USA) in the range of 500–4000 cm−1 using 32 scans. Raman spectra
were recorded using a Ramanstation400 instrument (PerkinElmer, Boston, MA, USA)
equipped with a 785 nm (1.58 eV) excitation laser. Each spectrum was collected from a spot
using five consecutive exposures to the laser (exposure time 60 s). The obtained Raman
spectra were re-plotted and analysed with Origin software (OriginLab, Northampton, MA,
USA) using Gaussian peak fitting. Thermogravimetric analysis (TGA) was conducted
using a TA Instruments Q500 (TA Instruments, New Castle, DE, USA). The samples were
heated at a rate of 10 ◦C min−1 from room temperature to 1000 ◦C under an air flow
of 10 mL min−1. X-ray diffraction (XRD) patterns were obtained using an EMPYREAN
diffractometer system (PANalytical, Malvern, UK) fitted with a Cu Kα X-ray tube and
recorded from 2◦ to 90◦, with a step size of 0.026◦. The elemental analysis of the samples
was conducted using an elemental analyser (Thermo Scientific™ FlashSmart™, Boston,
MA, USA).

2.3. Humidity Sensor Testing

Finally, the lignin fibres treated with an arc current of 45 A were used to demonstrate a
humidity sensor application (Figure 1b). The as-obtained powder was dispersed in acetone
at 1 wt% and coated on interdigitated electrodes (20 mm × 14 mm, 2 mm finger width
and 1 mm inter-gap spacing) that had been screen printed with silver ink (PSI-219, Nova-
centrix, Austin, TX, USA) on polyethylene terephthalate (PET, Officemax, New Zealand)
substrate [40]. The resistive-type humidity sensing properties were tested in an EXCAL
environmental chamber (Climats, Saint Médard d’Eyrans, France) with programmed rela-
tive humidity (RH) varying from 30% to 80% by changing the amount of moisture in the
air, in steps of 10% RH every 15 min at a fixed temperature of 23 ◦C. The direct current
(DC) resistance of carbon fibres under different humidity levels were measured using an
inductance-capacitance-resistance (LCR) meter (IM 3536, Hioki, Nagano, Japan) under an
applied voltage of 1 V [1]. The sensor response was determined using Equation (1),

Sensor response (%) =

[
R − R0

R0

]
× 100 (1)

where R and R0 are the resistances at a given RH level and at 30% RH, respectively. The
humidity sensor response and recovery times were measured by switching the RH from
30% RH to 80% RH and from 80% RH to 30% RH, respectively.

3. Results and Discussion

Typical SEM images of the electrospun lignin fibres prior to the arc discharge treatment
are shown in Figure 2a,b. These untreated lignin fibres are randomly oriented and possess
diameters of approximately 500 nm. There is no evidence of beads and/or beaded fibres,
indicating that the electrospinning process was successful. Upon applying an electric field
between the graphite electrodes, an plasma arc was generated, and a current of electrons
and plasma ions passed through the fibre network. This increased the temperature across
the electrodes, resulting in the fast carbonisation of the lignin fibres. Previously, it has
been reported that lignin is more promising for the rapid generation of graphitic carbon
by laser treatment than cellulosic materials due to its good thermal stability [24,30]. This
is supported by this work which showed the fibre-like structures were retained after
the arc discharge treatment (Figure 2c–j). More interestingly, the formation of globular
microstructures on the fibre surfaces was observed and this effect became more significant
with higher applied currents. Statistical analysis of the fibre diameters revealed a significant
decrease in thickness for samples treated at 10 A in comparison with the untreated fibres.
By contrast, for higher currents (20 A and above), an upward trend in fibre thickness was
seen as the current used during treatment was increased (Figure 2k). An explanation is
discussed in the following paragraph. It was difficult to calculate the yield of the carbon
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fibres after arc discharge as only the black powder on the electrode surface was collected
(Figure 2l).
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Figure 2. Low and high magnification SEM images of the carbon fibres treated with different levels
of arc current: (a,b) 0 A (starting material; untreated lignin fibres), (c,d) 10 A, (e,f) 20 A, (g,h) 35 A,
and (i,j) 45 A. All scale bars are 1 µm. (k) Average thicknesses of the fibres prepared with different
levels of arc current. (l) Sample collected after arc discharge at 45 A.



Sensors 2021, 21, 1911 6 of 12

The significant morphological changes induced by the plasma arc treatment are not
often observed during the carbonisation of lignin fibres by slower and less vigorous
methods, such as high-temperature treatment. Moreover, the arc discharge currents (up
to 60 A) and treatment times (5 s) were not sufficient for the generation and deposition
of nano-structured carbon from the graphite anode, which requires either higher current
(i.e., 100 A) or much longer treatment times (i.e., 20 min) [35,41]. A possible explanation for
the carbonisation and formation of globular structures on the fibre surfaces is the release
and subsequent deposition of volatile gaseous products from the softened lignin fibre
matrix by pyrolysis during arc discharge [30,42,43]. At low currents (and the associated
lower temperatures), the volatiles release quite slowly and are only partially converted
into carbon, then precipitated [43]. The loss of gaseous materials leads to a shrinkage
of the fibres when the lignin fibres have been treated at 10 A. By contrast, the more
vigorous heating at higher current levels leads to partial fibre melting and more efficient
carbonisation of volatile gases. This results in the fusion of the fibres and a denser coverage
of the fibre surfaces with carbonaceous precipitates that were converted from volatile gases.
When the lignin fibres were treated with a higher arc current of 45 A, the formation of open
porous structures was also observed (Figure 2j), which is due to the further volatilisation
after carbonisation at higher temperatures [42,43]. The generation of such nano-structures
on the fibres’ surfaces will increase their specific surface area, resulting in more active sites
which is beneficial for applications such as sensors, supercapacitors, lithium batteries and
water splitting catalysis [11]. The lignin fibres were further treated with even higher current
(60 A). The SEM images (Figure S1) show that most of the fibres are fused together and the
porous structure disappeared. This suggests that 45 A is the optimal current for treating
lignin fibres in order to obtain porous and graphitic structures for potential applications.

Chemical characterisation of the carbon fibres after arc discharge treatment was
undertaken using FTIR (Figure 3). The spectrum of untreated lignin fibres (0 A) exhibits
typical peaks corresponding to the O–H stretching at 3350–3340 cm−1 and C–H stretching
in the methyl and methylene regions at around 2940 cm−1 and 2835 cm−1, respectively.
A further band at around 1715 cm−1 arises from the C=O stretching in un-conjugated
carbonyl/carboxyl groups [44]. The bands at 1601 cm−1 and 1512 cm−1 represent C=C
aromatic ring vibrations. The peaks in the region between 1000 cm−1 and 1500 cm−1

are mainly corresponding to the C–O stretching of guaiacyl units in lignin. In the FTIR
spectra of the arc discharge-treated lignin fibres, the main peaks of lignin’s functional
groups become gradually weaker with increasing arc current and completely disappear
in the samples treated with 35 and 45 A, indicating the full conversion of the lignin into
pure carbon.

Raman spectroscopy was used to further characterise the structures of the carbonised
fibres (Figure 4a). A peak, centred at 1430 cm−1 (D3 band, a feature of amorphous carbon),
appeared in all samples treated with currents below 35 A [45]. The intensity decrease in
the D3 band with increasingly vigorous plasma conditions confirmed the reduction in the
amorphous carbon content and an increase in carbon crystallinity. The D band at 1310 cm−1

(disordered carbon structure) and the G band at 1590 cm−1 (corresponding to graphite
planes) are evident for the samples treated with 35 A and 45 A. Moreover, there was a
shift of the G band to higher wavenumbers, which can be attributed to an increase in the
fraction of sp2-bonded carbons formed at high temperatures [45]. The intensity ratio of
the D band to the G band (ID/IG) was measured to quantify the relative abundance of the
various carbon forms in the as-obtained carbon fibres. As shown in Figure 4b, the ID/IG
ratios clearly increase with increasing arc current, from 0.56 at 10 A to 1.45 at 45 A, which
is further evidence for the transformation of amorphous carbon structures into crystalline
graphitic carbon domains [20,46]. The average size of the graphite crystallites (La) has a
significant positive effect on the electrical conductivities of carbon fibres [19,20], and was
evaluated using Equation (2) [47],

L2
a

(
nm2

)
= 5.4 × 10−2E4

l

(
eV4

) ID

IG
(2)
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where El is the laser excitation energy used for Raman spectroscopy. The La values reveal
that the lignin fibres treated at 10 and 20 A have a similar crystallite size and significantly in-
creased from 0.63 nm to 1.45 and 1.63 nm for the samples treated at 35 and 45 A, respectively
(Figure 4b). This indicates that the structure of lignin can transform into nanocrystalline
graphite by arc discharge treatment at currents above 35 A.
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The thermal stability and purity of the carbon fibres are also important to ensure
their high performance [32,48]. The carbon fibres treated at 45 A, which have the largest
crystallite size, were further assessed with TGA in air, together with the untreated starting
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material (Figure 5a). The weight loss below 100 ◦C of both untreated lignin and carbon
fibres is attributed to the loss of adsorbed water. In the temperature range between 100 and
500 ◦C, the untreated lignin fibres exhibited a two-step degradation due to the thermal
stability differences in their oxygen-containing functional groups [49]. In contrast, the
TGA result of fibres treated at 45 A showed that the degradation/oxidation only started
at temperatures above 400 ◦C in air, indicating an improved oxidation resistance. The
weight loss (around 36%) of fibres when heated from 400 to 500 ◦C was attributed to the
decomposition of non-graphitic carbon while the weight loss between 500 and 750 ◦C
(around 58%) was assigned to the burning of graphitic carbon domains [29,32]. This
suggests that the treated fibres contain both amorphous and graphitic carbon domains. No
detectable residue remained after heating above 750 ◦C in open air conditions, indicating
the high purity of the carbon materials. Elemental composition results were further used
to confirm the carbonisation of the lignin fibres (Table 2). The carbon content increased
from 59.08 wt% for the untreated lignin fibres to 96.32 wt% for the arc discharge treated
fibres (45 A). The hydrogen content reduced from 6.20 wt% for untreated fibres to less
than 0.3 wt% for the treated fibre while the oxygen content reduced from 33.60 wt% for
untreated fibres to less than 3.7 wt% for the treated fibres. The results indicate that the arc
discharge treatment of lignin fibres yields fibres that are rich in carbon.
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Table 2. Elemental analysis of untreated lignin fibre and arc-discharged-treated fibre (at 45 A).

Material wt% C wt% H wt% N wt% S wt% O *

Lignin fibres 59.08 6.20 0.61 0.47 33.64
Arc-discharge-treated
carbon fibres (at 45 A) 96.32 <0.3 <0.3 <0.3 <3.68

* Oxygen wt% was calculated by difference based on the other elements’ results.

XRD was used to confirm the crystalline structure of the carbon fibres prepared at
45 A (Figure 5b). The diffraction peaks centred at 24.4◦ and 43.7◦ were assigned to the
crystallographic (002) and (100) planes in the graphitic structure [29,32]. The peaks are
broad, suggesting that the degree of graphitisation is still relatively low. Moreover, the
interlayer spacing d002 was calculated from Bragg’s equation and found to be 0.36 nm,
which is larger than that of graphite (0.335 nm). This suggests that the arc discharge
treatment introduced a defective/porous structure to the fibres. The (100) crystallite size Lc
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was calculated using the Debye formula and the value was 7.1 nm, which is similar to the
Lc of lignin fibres thermally carbonised at 1000 ◦C [50].

The humidity sensing properties of our carbon fibres were measured at different RH
levels between 30% and 80%. The fibres treated at 45 A exhibited the highest carbonisation
degrees and, therefore, the highest conductivity (lowest resistance). Together with their
porous structure, this renders them the best candidates for high performance sensing
materials. Therefore, we exclusively used the fibres treated at 45 A to demonstrate humidity
sensing in the air. As shown in Figure 6, the relative resistance of the treated fibres increased
with increasing RH level, which is mainly due to the physical adsorption of water molecules
on the carbon fibre surface. The electrical conduction of p-type carbon fibres is dominated
by holes. With increasing humidity, water molecules are adsorbed on the carbon fibre
surface that serve as electron donors. The donated electrons from the water molecular
transfer to the valence band of carbon fibres, leading to a decrease in the hole concentration
and increasing the electrical resistance of the carbon fibres [6,9,51]. The microporous
structure of the fibres after arc discharge treatment increased the interaction surface area
between water molecules and carbon fibres. This facilitates the moisture adsorption onto
the fibre surface [1,6]. The specific surface area and porosity of treated fibres will be
further characterised by nitrogen adsorption/desorption and Brunauer–Emmett–Teller
(BET) analysis [6]. More importantly, the humidity sensitivity (0.81/%RH, defined as the
slope of linearly fitted humidity response vs. RH) is greater at higher relative humidity
(i.e., 60–80%). One possible reason for this is that more water molecules are adsorbed on
the fibre surface at higher RH compared to the water adsorption at lower RH. Another
possible reason is the difference in electron transport mechanisms between the moisture
and carbon fibre sensing layer [5]. To test the sensor response and recovery, the RH in the
chamber was cycled between 30% and 80% RH, at a constant temperature of 23 ◦C. Our
previous work found that the actual humidity changes between two different RH levels
(i.e., 30% and 80%) in the environmental chamber do not occur immediately due to the
large volume (400 L) of the chamber [1]. Each step therefore lasted 15 min to allow for full
response/recovery. When the RH was repeatedly cycled between 30% and 80%, our carbon
fibre-based sensor showed a stable and reproducible response (Figure 6b).
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It is evident that the resistance baseline gradually increased due to the accumulation
of trapped water molecules on the carbon surface. One way to solve this problem is
to heat the sensor to evaporate the adsorbed moisture [7]. In comparison with other
reported carbon-based humidity sensors, such as multiwall carbon nanotubes (MWCNTs)
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and porous graphene (Table 3), our sensors exhibit a stronger humidity response for RH
between 30% and 80%, which can be attributed to the globular and porous structure of
carbon fibres induced by the plasma arc [6]. Further studies on the effects of temperature
and interfering gases on the humidity sensitivity are necessary to fully understand the
suitability of our sensor for potential applications in human breathing monitoring or food
spoilage detection [2,4,9].

Table 3. Comparison of the humidity sensing performance of different materials.

Sensing Materials Output Signal RH Range Sensor
Response

Sensitivity
(%RH)

Response/Recovery
Time (Minute) Ref.

MWCNTs Resistance 70–90% ~100% (∆R/R0) Not reported Not
reported/120 [8]

Oxidised-
MWCNTs Current 33–95% 18–33% (∆I/I0) 0.41 5~8/7~11 [51]

Carbon nanocoil Resistance 4–80% ~12.2%
(∆R/R0) 0.15 0.03/0.025 [6]

Porous graphene Resistance 12–97% 5% (∆R/R0) 0.022 1/7 [9]
Arc-treated
carbon fibre Resistance 30–80% 23% (∆R/R0) 0.08 (30–60%)

0.81 (60–80%) 3–4/3–4 This work

4. Conclusions

We have successfully fabricated micro-structured carbon fibres from electrospun
lignin fibres through plasma arc treatment. After 5 s of plasma arc treatment at 45 A, the
electrospun lignin fibres were transformed into carbon fibres with globular structures on
their surfaces. SEM and Raman results confirmed that the structure of the carbon fibres
can be controlled by using different levels of an arc current, and the graphitic crystallite
size in the carbonised fibres also increased with increasing current. Further development
and optimisation of the electrodes and collection setup design will enable the fast (few
seconds) and large-scale production of carbon fibres by the plasma arc technique. More-
over, this method is safe and inexpensive compared to other techniques such as thermal
pyrolysis or hydrothermal methods. The plasma arc discharge-induced carbon fibres were
demonstrated as a humidity sensing material with high response and repeatability in the
range from 30% to 80% RH. Further work is required to fully understand the ability of the
sensor for potential applications. This work provides a strategy to fabricate sustainable
carbon fibres with a controllable structure and crystallite size from lignin for applications
in cost-efficient sensors and electronic devices.

Supplementary Materials: The following are available online at https://www.mdpi.com/1424-822
0/21/5/1911/s1, Figure S1: Low and high magnification SEM images of lignin fibres treated with
60 A.
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