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Abstract: The Rędziński Bridge in Wrocław is the biggest Polish concrete cable-stayed bridge. It is
equipped with a large structural health monitoring (SHM) system which has been collecting the
measured data since the bridge opening in the year 2011. This paper presents a comparison between
the measured data and the finite element method (FEM) calculations, while taking into account
7 years of data collection and analyses. The first part of this paper concerns the SHM application.
In the next part, which contains comparisons between forces in cables and temperature changes
throughout the structure, the measured data are presented. The third part includes SHM-based
calculations and simulations with a complex FEM model to check the measured data and to estimate
future measurements. The last part contains a durability assessment calculation for the cable stays.

Keywords: bridges; stay cables; durability; maintenance; monitoring; SHM; FEM

1. Introduction

The structural health monitoring system (SHM) is a relatively new tool for examining
the technical condition of structures. A wide description of the continuous observation
methods of structures in recent years can be found, e.g., in [1]. The development over the
past decades has been focused mainly on fulfilling the expectations of the maintenance
administration to constantly control the structures’ behaviour. Such systems provide the
user with a range of information that is only compared with the design values. However,
even the most complex systems can still provide incorrect or missing information. For this
purpose, the collected data should be properly verified and checked, for example, with
the use of adequate numerical models of the monitored structure. In this paper, such a
solution is presented for the longest concrete cable-stayed bridge in Poland, the Rędziński
Bridge in Wrocław. Here, as in other cable-stayed bridges, the most important load-bearing
element are the stays and their tensioning force as the effect of all loads acting on the
whole structure. A simple tension force analysis from the SHM system does not deliver
the possibility to determine which load (vehicle movement, temperature changes, wind
impact, etc.) affects its value or fluctuates the most. For fatigue or reliability calculations,
a detailed model of each stay cable should be created. Advanced studies on the work of
anchorages and mutual friction of the wires in the strand can be found in [2–5]. However,
they are based on purely laboratory experiments.

Most of the studies related to SHM, which were cited in this work, present the general
methods of these system operations. The aim of the authors was to show how to use the
collected data for scientific purposes, which is also an extension of their own research
presented in [6], where the SHM system of the Rędziński Bridge and measured quantities
were described, but without statistical analysis. The idea of the separation of individual
load effects is presented based on data from the SHM monitoring system and FEM models
of the structure. The methods of validation of these data and the possibilities of their
further statistical analysis are also shown. An example of their use for fatigue calculations
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has been proposed, as well. The tool consisting of the big SHM system and the FEM models
shows how the collected data can be used for simulations of future results. Moreover, the
analysis performed in this way can provide valuable information on the design of further
monitoring systems for cable-stayed bridges.

2. The Rędziński Bridge and its SHM System

The Rędziński Bridge was built in 2011 and it is the main bridge within the Wrocław
motorway ring-road. The structure is a concrete cable-stayed bridge with the spans of
49.00 m + 256.00 m + 256.00 m + 49.00 m. The H-shaped pylon is 122.00 m high (Figure 1)
measured from the foundation top surface.
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Figure 1. Aerial view of the Rędziński Bridge (photo: Władysław Kluczewski).

The characteristic feature of the bridge is two separate box girder concrete decks. Due
to the Polish law at the time of the design and construction of the bridge, a separate deck
structure had to be installed under each roadway. The decks are 18.57 m wide and 2.50 m
high, suspended to one pylon with 160 stay cables (Figure 2). The stay cables are divided
into four equal planes. The theoretical cable lengths range from 67.39 m to 267.34 m. Each
cable consists of seven-wire strands, which are installed from 24 to 48 strands in a bundle
depending on the stay cable.
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Detailed stay cable parameters are presented in Table 1. The size and outstanding
structure of the Rędziński Bridge were the reasons why it was equipped with 222 structural
health monitoring (SHM) system sensors (Figure 3). A detailed description of the design
and construction of the bridge can be found in the study [7].

Table 1. Dimensions of stay cables and the number of strands installed in them.
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The installed sensors are measuring the following values: stress, temperature, acceler-
ations and displacements [6]. The connection with the system is allowed by an Internet
browser application that provides an overview of each sensor. It generates alerts and notifi-
cations if some sensors are out of order. Furthermore, the application makes it possible to
create diagrams of measured values and to export them as .csv files which are compatible
with calculation programs. After 7 years, a database of the measured values was compiled,
and it was compared with calculations conducted based on the bridge FEM model.

In case of the Rędziński Bridge SHM system, mostly vibrating wire strain gages
were used. Measurement of all static quantities is performed at the same time, with the
possibility of changing the time interval between readings from 10 to 60 min. Dynamic
quantities (accelerations) and forces are measured with a frequency of 100 Hz. Their
signals are sent to six local servers (SAD). Then they are saved on hard drives and sent
to the data collection centre (CGD) located in the motorway management centre. In the
concrete and steel elements of the bridge structure, strains are measured and converted
into corresponding stress values. System measurements are additionally supported by the
continuous geodetic measurement of pylon foot settlements.

Each sensor has a so-called address. It is a code that indicates the place of its instal-
lation in the structure, the type of measured quantity and the method of measurement.
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Table 2 shows the method of marking the sensors on the platform, pylon and cables. The
sensors measuring the values in the cables are marked with the letter W. The cables are
numbered from the pylon to the span direction. Additional markings with the letters L
and P indicate the left and right deck of the structure. The letters W and Z indicate the stay
cable attachment to the inner or outer edge of the deck, respectively. Table 3 presents a list
of sensors used in the bridge.
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Table 2. Examples of sensor markings.

Measured Quantity Sample Mark Description

Force in the stay cable W16-LW/F

The sensor located in the stay cable No. 16
(W16), which supports the left deck (L) from
the inside (W), measuring the tension force

of the stay cable (F).

Temperature W21-LZ/Te
The sensor located on the stay cable No. 21
(W21), on the left deck (L) from the outside

(Z), measuring the temperature (Te).

Sensors measuring the tension force are only installed on the stay cables reference
strand. The isotension method used for the installation and tensioning process attempts to
create uniform stresses by applying certain sequence and force applications to individual
strands. The uniformity of the strand forces was checked by an individual strand lift-off
after each installation at the quality control step [8].

The relationship between the measured frequency by the vibrating wire strain gages
and the deformation (strain) is described by the Formula (1). The fundamental frequency
(resonant frequency) of the vibration of a wire is related to its tension, length, and mass:

f =
1

2L

√
F
m

(1)
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Table 3. List and description of sensors.

No. Description Function Photo *

1.
Vibrating wire strain gages integrated

with temperature sensors: Geokon
model 4000

Strain and temperature measurements
in the pylon and decks
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After the transformations, the following equation may be obtained:

ε =
4mL2 f 2

EA
=

4ρL2 f 2

E
(2)

where:
f —frequency (Hz), L—wire length (m), F—wire tension force (N), m—wire mass per

unit length (kg/m), ε—strain (-), E—Young’s Modulus (Pa), A—wire cross section area
(m2), ρ—wire material density (kg/m3).

Equation (1) can also be used for the determination of tension forces in stay cables.
This approach was described in [9] and its usefulness for future research is discussed in
Section 9.

3. The FEM Models

The bridge FEM models were created in the SOFiSTiK software (Figure 4) by using
the documentation provided by the bridge designer. For a general analysis, a whole bridge
model was created. The pylon and deck elements were modelled as beam elements, but
real cross-sections, not only the geometric characteristics, were used as the input for the
model. The steel core in the upper parts of the pylon was modelled in the specified sections,
because SOFiSTiK enables the calculation of the geometric characteristics just as in the case
of a substitute cross-section.
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The bridge stay cable system is made of Freyssinet cables [8]. Each cable is composed
of a different number of strands (from 24 to 48). For the sake of simplification, the cables
were modelled as circular cross-sections with an area corresponding to the number of
those strands. In the general model, the cables are modelled as a single element, which
can only be tensioned. In this model, all calculations were conducted according to the
linear analysis.

In order to test the exact work of a single strand, a representative strand model was
developed for each cable (Figure 4b). In this case, both a non-linear model of geometry and
material was adopted. The cross-section was described by the parameters for a seven-wire
strand. The loading on such a strand was its own weight and the tension force obtained
from the general FEM model or from the SHM system. The model was discretized with
elements from a length of 0.1 m. The verification of such a model was the overhang,
calculated on the basis of its own weight and the average tension force, which in the case of
the longest stay was 1.20 m. This value was consistent with the design assumptions. Such
a model will be used in the future to assess the durability of strand anchorages where a
bending moment appears, depending on the tension force.

To be sure that the general model was created correctly, it was loaded with the
load that was used during the static and dynamic load tests, described in [10], i.e., with
the load of twenty 40-tonne lorries on each deck. The displacement of the FEM model
is shown in Figure 5 and is very close to the load tests values. To compare, during
the static proof-load test, a displacement of 467.0 mm was measured. The calculated
displacement totalled 431.2 mm. During the test loads, several different load schemes
were used and compared with the model. This article presents a comparison with a
representative result. Furthermore, the first five frequencies of the natural vibrations were
calculated and compared in Table 4. After those numerical tests, the FEM model was used
for the calculations based on the SHM data.
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Table 4. Comparison of the calculated and measured frequencies.

Form Number Frequency Number and Form FEM [Hz] Tests [Hz]

1.
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4.1. Temperatures

The analysis of the temperature change’s influence on cable forces was started with
the comparison between annual summer and winter values. Diagrams from the SHM
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application showing the force and temperature plots in one of the longest cables between
January 2017 and August 2017 are presented in Figure 6.
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Table 5 shows the temperature differences in the bridge parts (pylon, deck and cables)
which were recorded by the SHM system. Those changes were applied at the FEM model
as a constant increase in temperature for individual structure elements. The results of the
calculations are shown in Table 6. The measured force differences in strands between the
coldest and warmest days in 2017 are described as ∆F (SHM). The calculated force change
is described as ∆F (FEM).

Table 5. Measured temperature differences in structure elements.

Element
Lowest Daily Average

Temperature in January 2017
(◦C)

Highest Daily Average
Temperature in August 2017

(◦C)

∆T
(◦C)

decks −2.40 22.90 +25.30

pylon −2.40 22.80 +25.20

cables −8.35 26.00 +34.35

Comparing the calculated and measured values, it is visible how much they differ
from each other. This indicates how complicated the temperature distribution problem
is concerning bridges [11] or other civil engineering structures [12,13]. The SHM bridge
system measures these values at a few selected points, which gives only a local view
of these changes, and does not characterise the entire temperature distribution in the
whole structure. Therefore, these measurements cannot be used for global or long-term
structure analyses.
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Table 6. Measured forces in strands of selected (the shortest and longest) cables compared with the calculated tension
force change.

Position The Shortest Cable
(LZ-W21) (kN)

The Shortest Cable
(LW-W1) (kN)

The Longest Cable
(LZ-W20) (kN)

The Longest Cable
(LW-W20) (kN)

Highest daily average force in
January 2017
(06/01/17)

63.14 51.82 73.17 68.31

Lowest daily average force in
August 2017
(18/08/17)

62.80 51.04 73.04 67.91

∆F (SHM) −0.34 −0.78 −0.13 −0.40

∆F (FEM) −2.60 −2.63 −4.25 −4.21

In order to obtain a wider description of the nature of the work of the bridge structure,
the changes in extreme annual temperatures in individual elements of the structure were
additionally checked (Figure 7).
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Figure 7. Annual extreme temperature chart at selected points in the structure.

Characteristic points in the structure were adopted for the thermal analysis:

• the longest stay cable (symbol W-20),
• the shortest stay cable (symbol W-01),
• bottom of the deck section (symbol PD),
• top of the deck section (symbol PG),
• steel in the pylon’s upper cross-beam (RS symbol),
• concrete in the pylon’s upper cross-beam (symbol RB).

However, the measured temperature values can be used for the local calculation of
structural elements. For this purpose, the measured temperature changes were used to
calculate a single strand in the FEM model. This model, as mentioned, is described by
the nonlinear material model and geometry characteristics as well. The crucial value in
these calculations was the starting daily strand tension force. Then, a uniform temperature
change ∆T was applied to the strand. Additionally, displacements of the theoretical an-
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chorages, resulting from heating or cooling in the global bridge model, were implemented
(Figure 8). The calculations were performed by automatic iterations, where the temporary
structure stiffness was saved after each step. The calculations ended when the stiffness and
cable sag values had been stabilized.
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Figure 10. Daily force course in single strands of cables LZ-W16, LZ-W18 and LZ-W20 (1 August 2017).

The presented analysis and results comparison show that a detailed calculation ap-
proach accurately reflects the work of the structure in the context of the temperature
changes of cable elements. The temperature changes are significant in relation to the
displacement of the cable anchorages relative to each other. Applying them in the cables
detailed in the FEM model allows for a more accurate estimation of force changes and
stresses in particular cable sections. However, the analysis of the temperature distribution
in whole suspended structures composed of various materials is a complex issue and
requires further and more accurate measurements than just SHM-based measurements to
be able to create a representative load model. A complex description of temperature distri-
bution in bridges is presented, e.g., in [11]. It is also worth adding that the differences in
temperature distribution, that should be applied to the calculation models, are included in
the design standards. The analysis performed according to SHM measurements, supported
by FEM calculations, allows to check the plausibility of the standard assumptions.

4.2. Traffic Loads

Figure 11 is a diagram for the cable force in the year 2017 in one of the medium-length
cables. Major force peaks occurred on the diagram in February, May, July, October and
December. This was the reason for creating influence lines for the cable tension force
(Figure 12). Table 8 shows calculations that were helpful in the assessment of what kind of
vehicles may have crossed the bridge. A force sensor installed on the cable only measures
the force in one single strand. For the force assessment, it is necessary to know how
many strands are installed in each cable. Multiplying the force results from the SHM
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measurement by the number of strands is allowed due to the cable assembling technology
used. It provides the same stress in each strand [8].
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Table 8. Selected and estimated force peaks in the year 2017.

Peak Number
(Month)

Peak
Value

Monthly
Average Strand

Force

Force
Difference in

Strand

Force Difference
in Cable

(48 Strands)

Estimated
Loading on
Whole Deck

Example Vehicles

1 (February) 101.8 kN 97.3 kN 4.5 kN 216.0 kN 360 t

3 loaded concrete
mixers

(3 × 40 t) + 10 lorries
(10 × 15 t) and cars

2 (May) 103.6 kN 97.9 kN 5.7 kN 273.6 kN 460 t

Military transport
(e.g., Stanag MLC
150) + lorries (15 t)

and cars

3 (July) 105.0 kN 98.0 kN 7.0 kN 336.0 kN 570 t

Military transport
(e.g., Stanag MLC
150) + lorries (15 t)

and cars
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Some of the peaks on the force diagram may be considered to be measuring errors.
In order to exclude them, it is necessary to check whether the neighbouring cables have
similar peaks at the same time. Table 8 presents estimations for the proved peaks only (also
marked on Figure 11). The bigger peaks cannot be caused by a single vehicle, so it was
necessary to consider a situation with a traffic jam or the accumulation of heavy vehicles.
The situation is presented in the last column of Table 8.

After the assessment of crossing cars, a simulation of a moving vehicle on one bridge
deck was carried out with the FEM model. The aim of that calculation was to assess the
biggest deck displacement and accelerations during the crossing and to check the medium
force peaks appearing on the cable force spectrum. The calculation was carried out for a
40-tonne truck that was moving with the speed of 80 km/h (Figure 13). Figure 14a shows
the vertical deck displacements for three points of the deck structure (description under
the figure).
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The SHM system is not equipped with vertical displacement sensors. With a proper
FEM model, the bridge supervisor is able to assess that important value. The biggest
displacement was noticed in the middle part of the span (26.05 mm). Figure 14b shows
the force change that appeared in the medium-length cables W12. There can be noticed a
difference between the inner and outer cables. The outer cables are a little longer, because
of the deck rotation to provide the transverse slope on the road surface. It causes an
unsymmetrical load distribution between cables. Such a difference is also noticed by the
SHM system (Figure 11) in the corresponding cable pair.

Table 9 shows the calculation of force change for the LZ-W12 and LW-W12 cables. The
values were calculated for a single strand (these particular stays consist of 48 strands each).
It was assumed that one vehicle weighing 40 tonnes is moving on the deck. The results
show that for a simple and quick estimation of the tension force changes, it is enough to
use the tension force influence line. For a more detailed description, a complete analysis of
the vehicle’s crossing should be confuted, because then, the work of the stay cable system
is more accurately included. As a result, the difference between the force change in the
external and internal cable is noticeable. This relationship is also visible in Figure 11, where
the measured force also takes into account the self-weight of the structure. For larger
vehicles passing, different peaks are visible.

The presented and verified approaches for estimating changes in tension forces can be
used to characterize the work of cables that are not equipped with sensors.

Another important issue is the estimation of the vibration acceleration of the structure
on the basis of vehicle passage. Although the SHM system is equipped with vibration
sensors, these do not give accurate results as they record the measured values every 5 min.
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For dynamic values, such a time interval is completely inefficient. It only gives information
about the range of changes in the vibration acceleration of the structure. Both phenomena
are presented in the daily measurement of the acceleration of the vertical vibrations of the
deck at the anchorage of the W-32 cables. Note that the system acceleration sensor requires
calibration; changes oscillate around a value other than zero (Figure 15a).

Table 9. Comparison of tension force changes in one strand of LZ-W12 and LW-W12 cables calculated
according to the influence line and with the modelled dynamic passage of a 40 t vehicle.

Stay Cable Number Force Change Calculated
from Influence Lines

Force Change Read from the FEM
Model during the Dynamic Crossing

LZ-W12 1.07 kN 1.20 kN

LW-W12 1.05 kN 0.94 kN
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Figure 15. (a) Deck accelerations near the cable W-32 anchorages registered by the SHM system; (b) vertical acceleration in
the middle span deck point (below the cables W-32) during the vehicle crossing.

Figure 15b shows the results of the vertical accelerations in the middle span deck point.
The maximum accelerations are between 0.06 m/s2 and 0.08 m/s2 and are the effect of a
heavy vehicle crossing. Lower calculated values (0.02 m/s2–0.04 m/s2), before the crossing,
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correspond to the values change range measured with the SHM system. Accelerations of
the vibrations at this level are negligible. The calculation model assumes no damping. The
damping factor for such a structure as the Rędziński Bridge should be tested separately,
which is a subject of ongoing investigation. The presented approach aims to show only the
maximum possible values of vibration accelerations, which supplement the data measured
by the SHM system. Further advanced static and dynamic analyses should be carried out
in accordance with [14,15].

The comparison shows that due to the required sampling frequency in measurements
of the vibration acceleration, long-term monitoring (several years) would be too burden-
some. For this purpose, high-capacity, high-speed storage drives would be needed, which
from a maintenance point of view, could prove to be an expensive undertaking.

The peaks appearing on the force diagrams in SHM data often approach the upper
safety limit set in the SHM system, therefore the cause of their appearance should be
determined each time. Often, these can be just a measurement error. However, when they
are a real representation of the load and occur too often, they can cause fatigue damage to
cables. Therefore, their source should be determined, and the effects of this load checked
in FEM models. It should also be remembered that exceptional vehicles often pass on the
bridges and need the appropriate permits. The manager equipped with the SHM system
of the facility and its FEM model can, using such tools, easily determine the conditions
and possibilities of such a passage and what impact it may have on the durability of the
structure. In addition, we are constantly dealing with an increase in vehicle traffic on the
roads. The ongoing updating of calculations compared with the results from the SHM
system will allow for the accurate determination of the current load capacity of the object.
When the calculated and measured values start to differ significantly, this will indicate a
possible failure of the facility and a quick decision may prevent a catastrophe.

5. Cable Forces Analysis

From the design and analytical point of view, it is important to determine the impact
of individual types of loads on the fatigue strength of stay cables. The works [6,16]
discuss various approaches to considering the moving loads on bridges. It is assumed that
continuous vehicle traffic has a completely different impact on the forces and displacements
(vibrations) of cables than other short-term intense weather changes such as windstorms or
big amplitudes of temperature. The amount of collected data allows one to create statistics
on the occurrence of particular types of bridge loads. An additional advantage of the
monitoring system measurements is the fact that the data are collected continuously in
real time. Parallel simulations based on the already collected data can be verified on an
ongoing basis. The measured tension force in the strands is the effect of various impacts on
the bridge, which include dead load, thermal impact, vehicle crossing and wind pressure
on the structures. The whole impact can be described with the general formula:

F(t) = g(t) + T(t) + q(t) + w(t), (3)

where:
F(t)—total force in the cable strand; g(t)—component of force from dead load; T(t)—

component from thermal interactions; q(t)—random function that illustrates the impact of
passing vehicles; w(t)—random function representing the influence of wind; t—time.

Comparing the diagrams in Figures 9 and 10, the influence of temperature on the
change of the tension force is clearly visible. The temperature drop leads to increased
tension in the stay cable and vice versa. Analysing the fluctuations of forces during the
day, one can ignore the influence of rheological changes in the concrete of the bridge and
the pylon. This change, in the form of function g(t) in Equation (3), is negligibly small, and
only noticeable in the long-term analysis.

For this reason, in the first phase of the analysis presented, Equation (3) will be
simplified to:

F(t) = G(t) + Q(t), (4)
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where:
G(t)—total tension force from own weight and temperature changes; Q(t)—changes in

the tension force from variable loads. Function G(t) was approximated by successive series
of the Fourier series:

G(t) = a0 +
n

∑
i=1

aicos(iωt) + bisin(iωt) (5)

The correctness of fitting the G(t) function to F(t) was measured with four parameters.
Sum of Squares Due to Error. This statistic measures the total deviation of the response

values from the fit to the response values. It is also known as the summed square of
residuals and is usually labelled as SSE. The closer the value is to 0, the better the match.

R-Square. This statistic measures how successful the fit is in explaining the variation
of the data. In other words, R-square is the square of the correlation between the response
values and the predicted response values. It is also known as the square of the multiple
correlation coefficient and the coefficient of multiple determination. The closer the value is
to 1, the better the match.

Root Mean Squared Error. This statistic is also known as the fit standard error and the
standard error of the regression. It is an estimate of the standard deviation of the random
component in the data. The closer the value is to 0, the better the match. Table 10 presents
an example of the scope of the particular fit parameters for subsequent stays on 17 August
2018. Figure 16 presents the result of such an operation for one whole month (May 2013)
for the W16 stay. The first graph is a pure data plot from the SHM system, F(t), the next is
a graph of successive approximated daily functions, G(t), and the last one shows filtered
force changes—amplitudes, Q(t).

Table 10. Sample parameters from 17 August 2018.

Cable SSE R-Sqr RMSE

LZ-W20 1.2 0.984 0.067

LZ-W16 2.1 0.981 0.089

LZ-W01 5.4 0.976 0.141
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Figure 16. Graphs showing split data according to the described algorithm.
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On the basis of such mathematical operations, monthly and annual histograms de-
scribing the range of stresses and their changes were made for the separated graphs. Their
statistical interpretation will be presented in the next chapter. The presented algorithm
can also be an alternative or supplement to the commonly used rain-flow cycle counting
method. The basics of such probabilistic calculations are described, e.g., in [17,18].

The presented mathematical procedure allows for a better understanding of the charac-
teristics of the structure’s work. According to the authors, subsequent SHM systems could
be equipped with such, or even more complex, algorithms for an immediate separation of
the current measured signal.

6. Histogram Interpretation

Figure 17a shows these histograms for the discussed cables. Ranges from −5 to 5 MPa
were defined in order to improve their readability. By examining the entire stress spectra,
stress changes of up to 60 MPa appear in them. Figure 17b presents the histograms of
stresses in the analysed cables without separating thermal influences and dead weight. The
dissipation of stress values over a year is visibly larger due to the influence of temperature
on the tension force in the cable.

According to the Palmgren–Miner rule, each cycle ni (two amplitudes are a whole
cycle) causes a small damage in the steel structure n/N. N is the amount of particular
destructive cycles due to the Wöhler curve and n is the cycles measured. More extensive
descriptions of the advanced fatigue calculations, considered in this article, can be found
in [19,20]. If D describes the sum of all damages caused by different cycles, a simple
equation can be formulated, namely:

D =
q

∑
i=1

ni
Ni

, (6)

In order to compare this classical method of counting cycles, comparative calculations
were made to the approach proposed in this paper. Two comparison parameters were
introduced: Da and Ds.

Da =
n

∑
i

σa,ini (7)

Ds =
1
2

n

∑
i
| σs,i | ni (8)

At this point, Formulas (7) and (8) should be interpreted. Based on the Formula (6),
parameter ni was omitted. This procedure is allowed due to the fact that ni is a constant
value resulting from the i-th interval directly from the Wöhler curve. The magnitude of
σa,i is the amplitude of one complete symmetric cycle of change in stress, calculated with
the rain-flow procedure. These are values greater than zero. Coefficient Ds contains stress
| σs,i | oscillations around the average value. Due to the method adopted here, this value is
0, and therefore the fluctuations are negative and positive. They can be treated as separate
upper and lower half cycles. Therefore, value 0.5 appears before the sum sign in Formula
(8) to enable a comparison with parameter Da. Table 11 compares parameters Da and Ds
for the analysed stay cables from 2018.

Table 11. Parameters Da and Ds in year 2018.

Stay Cable Ds Da Ds/Da

LZ-W01 16,705.2 13,983.9 1.19

LZ-W16 34,320.3 28,593.4 1.20

LZ-W20 52,831.9 44,848.1 1.18
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As can be seen, ratio Ds/Da is greater than zero. On this basis, it can be concluded
that the changes in the forces in the stays are not symmetrical. Tension is greater than
compression.

The histograms created are an introduction to performing accurate fatigue calculations.
The methods described in the literature [20,21] are based on the constant mean force, the
accompanying amplitudes and the Wöhler curve. The above analyses show that with long-
term observations, the mean tension force changes. Therefore, it is important to separate
the long-term and short-term effects, and the calculation of the failure accumulation
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parameter D should be performed for smaller data ranges, e.g., by weeks or months.
Even if the parameter D will not increase quickly, it can be used in further calculations
as an index reducing the load capacity of the material due to microscopic damage to the
material structure. Moreover, the above analysis of the stay cable statics shows that the
classical fatigue strength calculation methods for cables, based on the Wöhler curve, may be
inaccurate. Therefore, the so-called fatigue surfaces or Haigh diagrams should be used as it
is indicated in [18,21,22]. Their methodology is based on a separate influence of the mean
force and amplitudes, which solves the problem of the differences between the presented
parameters Da and Ds.

The general idea of calculating the D parameter on the basis of the fatigue surface is
shown in Figure 18. In order to create such a surface, two data distributions should be used:
p(σa)—the probability distribution function of amplitude stress changes, and p(σm)—the
probability distribution function of the average tension stress. The functions describing
these distributions are presented in Table 12. They were calculated on the basis of the
separated diagrams shown in Figures 16 and 17.
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Table 12. Applied, exemplary types of probability distribution function of the analysed quantities.

Probability Distribution Function (PDF) Distribution Parameters

Average stress
σm

Normal

p(σm) =
1

σ
√

2π
exp
(
−(σm−µ)2

2σ2

) σ—average value
µ—standard deviation

Stress amplitudes
σa

Weibull
p(σa) =

(
k
λ

)( σa
λ

)(k−1)e−(σa/λ)k
λ—scale parameter
k—shape parameter

The fatigue surface N(σa, σm) is calculated and described individually for each steel,
just like the Wöhler curves [18]. The stress probability density area p(σa, σm) is the product
of the single probability distribution functions (PDFs), described above. R is the yield
strength of steel; n1 is the number of cycles in the measured period t. The whole idea is
derived directly from Formula (6).
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Table 13 shows the calculated parameters for measurements from the available years
and for future data simulations, in accordance with the projected durability of the particular
bridge. The method of data simulation is described in Section 7.

Table 13. Values of the failure accumulation parameter D.

Year Cable LW-20 Cable LW-16 Cable LW-01

2011 0.00 0.00 0.00
2012 0.00 0.00 0.00
2013 1.71 × 10−6 7.57 × 10−7 1.74 × 10−9

2014 3.48 × 10−6 1.46 × 10−6 3.67 × 10−9

2015 5.62 × 10−6 1.97 × 10−6 4.73 × 10−9

2016 8.04 × 10−6 2.58 × 10−6 5.88 × 10−9

2017 1.08 × 10−5 3.33 × 10−6 7.32 × 10−9

2018 1.43 × 10−5 4.15 × 10−6 8.85 × 10−9

2025 * 8.75 × 10−5 2.15 × 10−5 4.24 × 10−8

2050 * 5.02 × 10−3 5.80 × 10−4 1.26 × 10−6

2075 * 3.89 × 10−2 2.83 × 10−3 6.30 × 10−6

* for simulated data.

7. Data Simulations

A frequent problem of large monitoring systems are their temporary failures related
to electricity supply, etc. This may result in longer or shorter periods related to the lack
of measured data. To do this, in order to keep the overview, the data should be properly
simulated. The advantage of long-term SHM measurements is that their database is
constantly growing. The histograms and graphs created above show how data can be
divided and sorted. In such a prepared form, they can be used to simulate consecutive or
missing data. Figure 19 shows the idea of such a simulation scheme.
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Figure 19. Data simulation scheme. Step 1: no data; step 2: simulating the average course of forces on
the following days on the basis of a randomly selected Fourier series from the created database; step 3:
linear data fit correction; step 4: simulation of amplitudes using the inverse distribution function.

Using data from the relevant months in the previous years, an empirical distribution of
the stress change distribution can be created (Figure 20). Additionally, a matrix containing
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all approximated functions (Fourier series) is described by Formula (5). The simulation
began with a random selection of successive polynomials describing the mean force value.
This fit was next adjusted linearly to obtain signal continuity. The last step was to add
random amplitudes to which the inverse cumulative distribution method was applied,
using the empirical cumulative distribution function just created. All calculations were
made in the Matlab software according to original scripts.
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Figure 21 shows an example of a graph with missing and simulated data parts obtained
by using the method specified in Figures 19 and 20. The chart obtained in this way can
be used for further theoretical analyses. In a similar way, assuming different levels of
the average tension of the cables, a series of data simulations for subsequent years were
performed. In this way, D parameters were calculated according to the formula in Figure 18.
Table 13 summarises the calculated annual D parameters for measured and simulated (years
marked with *) data, respectively. First, monthly values were calculated and summed up
over the following years.
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Figure 21. LW-16 force chart in July 2016. Upper chart with missing data and lower with simulated one.
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From the results in Table 13, it is clear that the bridge was designed correctly, and the
stay cables are not exposed to fatigue damage from changes in tensioning forces. Another
sensitive point may be their anchors, where the influence of cable bending should also be
considered [3–5]. This is a separate research topic that is to be the subject of future analyses.
However, the data show that the greatest D parameter increment occurs in the LW-20 cable,
with the largest force/stress amplitude, and in the LW-16 stay with the highest average
tension force.

8. Characteristics of the Influence of Individual Loads on the Cable Tension Force

The analysis presented above shows how differentiated the influence of individual
loads is on the total tension force in stay cables. For the concrete cable-stayed structure,
which is the Rędziński Bridge, its main component comes from its dead load.

Based on the observations, a cyclic change in the tension force in the cables was found.
It increases in the summer and decreases in the winter. Similar fluctuations occur in the
cycle of daily changes, with the difference being that during the day, there is a decrease
in strength and an increase at night. This phenomenon is a result of the deformation of
the pylon and the deck due to temperature changes. In daily cycles, the tension force is
affected by the deformation of the superstructure itself, while the difference in the mean
tension force between the summer and winter results from the mutual displacement of
the anchorages on the pylon and decks. Local and rapid changes in the tension force are
caused by the passage of heavy vehicles or by the overlapping effects of individual moving
loads. These types of effects are noticeable within the entire group of stay cables, located in
the load zone of the decks.

The authors realize that these are not all of the factors influencing the long-term stress
of cables in cable-stayed bridges. The influence of rheology on force redistribution, pylon
settlement [23] or the complicated issue of aerodynamics or seismic issues [24,25] remains
a problem. However, in this paper, the aim was to initially decode the values measured by
a specific SHM system, which in the coming years will provide a lot of information that
could complement the analysis that has already been started.

9. Discussion

Monitoring and continuous observation of bridge structures has become an important
part of the work of designers and scientists over the last few decades [1,7,15,17,26–30]. Both
new structures and old ones require supervision for maintenance purposes [31]. Structural
health monitoring (SHM) allows one to monitor the structure according to its purpose: old
bridges should be monitored in the places of identified damage [32], and the examination
of new bridges enables a real assessment of the structure’s behaviour. SHM system saves
a lot of information from a big number of sensors. The analysis of the results should be
approached with caution. First of all, on the basis of the measurements, the behaviour of
the whole structure should be assessed, and then it should be ensured that the results are
reliable. For this purpose, it is worth creating an auxiliary FEM model of the tested object to
verify the measured data, which has been shown in this paper. Measurements only carried
out with SHM systems, or theoretical calculations alone, do not allow a good verification of
the bridge behaviour and the assessment of its condition. Furthermore, the load test results
of the Rędziński Bridge provided additional information to verify the FEM model. Such a
set of available research tools and methods can be useful for assessing the durability of the
bridge structure and its elements. However, continuous monitoring with the support of
SHM systems and data verification is a reliable source of information about the behaviour
of cable-stayed bridges, but a detailed analysis of data from SHM also allows one to create
an extensive statistical database. By adding calculations based on realisable FEM models,
unmeasured SHM values can be defined. The calculation of the D parameter based on the
available statistics and the implementation of advanced simulations ultimately allows one
to develop a trend of the force changes influence on the stay cable system.
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It can be stated that the creation of an efficient tool in the form of a coupled monitoring
system with a numerical model can be easily used in practice. The analysis of the collected
data presented in the article shows how complex the problem of determining the impact of
individual loads on the effort of the structure is. In the case of structures with a complex,
hyper static scheme, such as the described bridge, intuitive determination of the influences
may turn out to be wrong.

There are, however, exceptional situations that cannot be detected on the basis of
SHM measurements. Figure 22 shows the deformed sheath of the LZ-W11 stay cable.
This situation occurred as a result of a passenger vehicle fire near its bottom anchorage
zone. Unfortunately, no force sensor is installed in this stay cable. However, checking
the force values from neighbouring cables and their implementation into the numerical
model allowed for the estimation of the force after the accident in the damaged stay cable.
Ultimately, it could be concluded that, apart from the deformation of the cover, the internal
strands were not damaged.
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Figure 22. LZ-W11 cable sheath deformed as a result of a vehicle fire.

An alternative method that can be used for the determination of a stay cable force
are dynamic measurements by using, e.g., external accelerometers. The potential of this
method is a subject of the Polish–Portuguese NAWA-FCT research project “Dynamic
monitoring of bridge structures”, supported by the Polish National Agency for Academic
Exchange and Fundação para a Ciência e a Tecnologia in Portugal, that is carried out,
among others, on the Rędziński Bridge (Figure 23). Dynamic measurements indicate the
wide applicability, easiness and practicality to validate the design assumptions of bridges
and assess the condition of their stay cable systems [9,14]. This method can support the
SHM system and the FEM model-based force analysis. It will be used as the future research
direction on the Rędziński Bridge.

It is worth adding that the analysis of SHM data from the first 10 years of the bridge’s
existence shows that it was designed correctly. Continuous observation of data from the
monitoring system ensures the safety of the structure and its users, despite minor accidents
such as a vehicle fire. Furthermore, the road administration (General Directorate for National
Roads and Motorways) receives annual reports based on measurements from the SHM
system supported by a constant FEM analysis.



Sensors 2021, 21, 1927 26 of 27

Sensors 2021, 21, x FOR PEER REVIEW 26 of 29 
 

 

 
Figure 22. LZ-W11 cable sheath deformed as a result of a vehicle fire. 

An alternative method that can be used for the determination of a stay cable force 
are dynamic measurements by using, e.g., external accelerometers. The potential of this 
method is a subject of the Polish–Portuguese NAWA-FCT research project “Dynamic 
monitoring of bridge structures”, supported by the Polish National Agency for Academic 
Exchange and Fundação para a Ciência e a Tecnologia in Portugal, that is carried out, 
among others, on the Rędziński Bridge (Figure 23). Dynamic measurements indicate the 
wide applicability, easiness and practicality to validate the design assumptions of bridges 
and assess the condition of their stay cable systems [9,14]. This method can support the 
SHM system and the FEM model-based force analysis. It will be used as the future re-
search direction on the Rędziński Bridge. 

  

Figure 23. Accelerometers used for determination of a stay cable force. 

It is worth adding that the analysis of SHM data from the first 10 years of the 
bridge’s existence shows that it was designed correctly. Continuous observation of data 
from the monitoring system ensures the safety of the structure and its users, despite 
minor accidents such as a vehicle fire. Furthermore, the road administration (General 
Directorate for National Roads and Motorways) receives annual reports based on meas-
urements from the SHM system supported by a constant FEM analysis. 

Figure 23. Accelerometers used for determination of a stay cable force.

Author Contributions: Conceptualization, P.H. and M.T.; methodology, M.T.; software, M.T.; vali-
dation, M.T.; formal analysis, M.T.; investigation, J.B., P.H. and M.T.; resources, J.B., P.H. and M.T.;
data curation, M.T.; writing—original draft preparation, M.T.; writing—review and editing, P.H. and
M.T.; visualization, P.H. and M.T.; supervision, J.B. and P.H.; project administration, J.B. and P.H.;
funding acquisition, J.B. and P.H. All authors have read and agreed to the published version of the
manuscript.

Funding: The research project “Dynamic monitoring of bridge structures”, mentioned in Section 9, is
co-financed by the Polish National Agency for Academic Exchange (grant number: PPN/BIL/2018/1/
00235/U/00001).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding authors.

Acknowledgments: The authors are indebted to the General Directorate for National Roads and
Motorways in Wrocław, Poland for providing access to data collected by the SHM system of the
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