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Abstract: In edge computing service, edge devices collect data from a number of embedded devices,
like sensors, CCTVs (Closed-circuit Television), and so on, and communicate with application servers.
Since a large portion of communication in edge computing services are conducted in wireless, the
transmitted data needs to be properly encrypted. Furthermore, the application servers (resp. edge
devices) are responsible for encrypting or decrypting a large amount of data from edge devices (resp.
terminal devices), the cryptographic operation needs to be optimized on both server side and edge
device side. Actually, the confidentiality and integrity of data are essential for secure communication.
In this paper, we present two versions of security software which can be used on edge device side
and server side for secure communication between them in edge computing environment. Our
softwares are basically web-based application because of its universality where the softwares can be
executed on any web browsers. Our softwares make use of ESTATE (Energy efficient and Single-state
Tweakable block cipher based MAC-Then-Encrypt)algorithm, which is a promising candidate of NIST
LWC (National Institute of Standards and Technology LightWeight Cryptography) competition and
it provides not only data confidentiality but also data authentication. It also implements the ESTATE
algorithm using Web Assembly for efficient use on edge devices, and optimizes the performance of
the algorithm using the properties of the underlying block cipher. Several methods are applied to
efficiently operate the ESTATE algorithm. We use conditional statements to XOR the extended tweak
values during the operation of the ESTATE algorithm. To eliminate this unnecessary process, we
use a method of expanding and storing the tweak value through pre-computation. The measured
results of the ESTATE algorithm implemented with Web Assembly and the reference C/C++ ESTATE
algorithm are compared. ESTATE implemented as Web Assembly is measured in web browsers
Chrome, FireFox, and Microsoft Edge. For efficiency on server side, we make use of OpenCL which
is parallel computing framework in order to process a number of data simultaneously. In addition,
when implementing with OpenCL, using conditional statements causes performance degradation. We
eliminated the conditional statement using the loop unrolling method to eliminate the performance
degradation. In addition, OpenCL operates by moving the data to be encrypted to the local memory
because the local memory has a high operation speed. TweAES-128 and TweAES-128-6, which have
the same structure as AES algorithm, can apply the previously existing studied T-table method. In
addition, the input value 16-byte is processed in parallel and calculated. In addition, since it may be
vulnerable to cache-timing attack, it is safely operated by applying the previously existing studied
T-table shuffling method. Our softwares cover the necessary security service from edge devices to
servers in edge computing services and they can be easily used for various types of edge computing
devices because they are all web-based applications.

Keywords: web; Web Assembly; OpenCL; LWC; fast implementation

1. Introduction

Existing cloud computing methods provide overall services, such as data processing
and transmission in servers and data centers. However, with the increase of users using
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cloud computing services, the amount of data that has to be processed by the server has
increased. So, there is a system load in the process of data processing and transmission.
To solve this problem, an edge computing method was created. Edge computing method
is a method that processes data in devices, such as smartphones, unlike the method in
which servers and data centers handle all services. Edge computing method reduces the
system load because it only processes data generated by the device. It is also relatively
efficient compared to cloud computing because it collects and processes data on its own. In
the case of cloud computing, if a server is paralyzed, it is a fatal blow, but, because edge
computing performs its own computing, it can effectively respond to failures. Therefore,
we propose a web-based application edge computing method using Web Assembly. The
existing edge computing method provides services by processing data sent from a server
using a method optimized for hardware, such as ARM, RISC-V, and AVR. However, when
edge computing is used using a variety of hardware, there is a disadvantage of having to
implement a service and cryptographic algorithm according to each hardware. However,
this method can be used generally in PCs (Personal Computer), smartphones, and IoT
(Internet of Things) devices that can use web-based applications, such as web browsers
and web apps. In addition, there is an advantage that can be used in common in various
web-based applications without additional modification on implementation.

In addition, in edge computing method, communication between server and edge
computing, communication between edge computing and users, and communication be-
tween edge computing will be achieved. For secure data communication, it is necessary to
encrypt data and verify that the transmitted data is transmitted without change. So, encryp-
tion algorithm and authentication algorithm must be used separately. However, we use
the LWC ESTATE (LightWeight Cryptography Energy efficient and Single-stateTweakable
block cipher based MAC-Then-Encrypt) algorithm, which can do this process at once. In
addition, it provides edge computing service by implementing encryption and authentica-
tion service of ESTATE algorithm with Web Assembly, which has better performance than
JavaScript for communication using web-based applications.

We propose an efficient implementation of the ESTATE algorithm that uses OpenCL
parallel processing to efficiently transfer data through the ESTATE algorithm as a web-
based application that provides edge computing services on the server. Even if the server
system load is reduced due to the edge computing method, the final processed data is
stored on the server. It is a web-based application that provides edge computing services
on the server and needs to transfer data using the ESTATE algorithm. Therefore, there is a
need for a way to efficiently operate the ESTATE algorithm on the server. Therefore, we
applied several additional methods to ensure that the ESTATE algorithm works efficiently
for each environment.

Contribution

The contribution of this paper is as follows:

1. Web-based application edge computing method using Web Assembly
As the number of users using cloud computing services increases, so does the amount
of data that must be processed. So, there is a system load in the process of providing
the service. So, the edge computing approach was created. The edge computing
method transmits and processes data to hardware, such as ARM, RISC-V, and AVR,
to reduce system load. However, this method has the disadvantage of having to
implement the service differently using each hardware environment and program-
ming language. So, we propose a web-based application edge computing method
using Web Assembly. Web Assembly was created to show similar performance to
a low-level language. The web-based application edge computing method has the
advantage that it can be used in common without additional modification in PCs,
smartphones, and IoT devices that can use web-based applications. In addition, the
edge computing method communicates data between server and web-base appli-
cation, web-base application and user, and web-base application. So, the ESTATE
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algorithm that can generate the encryption process and tag for authentication at once
is implemented using Web Assembly to provide edge computing services. Check how
far Web Assembly has caught up with the low-level language in terms of performance.
Web Assembly was run on Chrome, FireFox, and Microsoft Edge. At Chrome, FireFox,
and Microsoft Edge, Web Assembly is approximately 11%, 10%, 9% slower than
Reference C code, TweAES-128-6 is about 5%, 2%, 6% slower, and TweGIFT-128 is
about 22%, 54%, and 17% slower than Reference C code.

2. LWC ESTATE parallel processing using OpenCL
ESTATE (Energy efficient and Single-state Tweakable block cipher based MAC-Then-
Encrypt) algorithm is designed to be used in a limited environment, but the data
are finally stored on the server. Therefore, ESTATE algorithm optimization is also
required in the server. ESTATE algorithm divides AD (Associated Data) and messages
into 128-bit blocks, encrypts them one block at a time, and affects the next process, so
it cannot process a large amount of data through parallel processing at once. Servers
have to send data to multiple platforms, so if they are processed sequentially, the
communication speed becomes slow. So, we propose a method of simultaneously
generating multiple ciphertexts and tags to be sent to multiple web-based applications
for edge computing using OpenCL parallel processing. As a result, the implemented
TweAES-128, TweAES-128-6, and TweGIFT-128 implemented in OpenCL showed
performance improvement of 6.69×, 7.31×, and 1.47×, respectively, compared to the
reference C code.

3. Optimization method for safe and efficient operation of ESTATE algorithm
ESTATE algorithm uses TweAES-128, TweAES-128-6, and TweGIFT-128. We propose
several methods for safe and efficient operation, and apply the previously exist-
ing studied methods. In the operation process of TweAES-128, TweAES-128-6, and
TweGIFT-128, there is a process of XOR operation by expanding the 4-bit tweak value.
TweAES-128 and TweAES-128-6 expand to 8-bit, and TweGIFT-128 expand to 32-bit.
However, only 0∼7, 15 are used as 4-bit tweak values. Therefore, we propose a way
to store and use 8-bit, 32-bit extended tweak values for 94-bit tweak values through
pre-computation. In the OpenCL implementations of TweAES-128, TweAES-128-6,
and TweGIFT-128, to remove the performance load, we use a loop unwind method to
remove the load and implement it using local memory with a relatively fast working
speed. The operation process of TweAES-128 and TweAES-128-6 is the same as AES
algorithm. Therefore, the T-table method, which was previously existing studied,
was applied. In addition, AES algorithm is vulnerable to cache-timing attack, and
TweAES-128 and TweAES-128-6 with the same structure will be vulnerable. Therefore,
TweAES-128 and TweAES-128-6 are safely operated by applying the T-table shuffling
method, which is the method previously existing studied. TweAES-128 and TweAES-
128-6, which applied the table shuffling method previously existing studied, show
about 7% and 51% performance overhead, respectively. It simply shuffles the T-table,
so it shows little performance overhead.

The remainder of this paper is organized as follows. Section 2 provides a basic
overview of the web environment, Web Assembly, OpenCL, Edge computing, and LWC
ESTATE. Section 3 describes the relate work of OpenCL and Web Assembly. Section 4
describes the method proposed in the paper. Section 5 describes the performance measure-
ment results. Finally, Section 6 concludes the paper.

2. Background
2.1. Edge Computing

Several companies have used cloud computing methods [1] to provide computing
services, such as servers, storage, software, and analytics, over the Internet. Cloud comput-
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ing is a method focused on centralizing services to several large data centers. However,
such cloud computing also begins to have problems. As the number of people using cloud
services increases, the amount of data processed by servers and data centers increases,
and data delays occur in the process of analyzing and transmitting collected data. That
is why edge computing [2–4] was created to solve problems, such as data processing
speed, capacity, and security. Edge computing is performing computing at or near the
physical location of a user or data source. In the case of cloud computing, data is processed
in the data center, whereas edge computing is a method of processing data in devices,
such as smartphones. Edge computing method has several advantages. When using cloud
computing, the larger the amount of data to be processed, the higher the system load, but
in the case of edge computing, data load can be reduced because only data generated by
the device is processed. In addition, cloud computing has to strengthen security from
the process of data transmission and delivery with a central server architecture, but edge
computing is relatively more secure than cloud computing because it collects and processes
data on its own. In addition, when the server is paralyzed when using cloud computing,
the overall damage is seriously affected, but when using edge computing, it can effectively
respond to failures because it performs its own computing. Figure 1 is the structure of the
edge computing method. It shows a structure that does not process data in a server or data
center but sends data to peripheral devices that will perform edge computing services and
sends data to the user’s device after processing.

Cloud

Edge Computing Users

Data Storage

Data Processing and 
Service Provision

Service Use

Figure 1. Edge computing structure.

2.2. Web Environment

Due to the continuous development of the web environment, various functions are
being performed in the web environment. Due to the advancement of web technology,
information on the web is displayed the same on different platforms to which networks
are connected, such as PCs or smart devices. Web-based applications run within a web
browser without communicating with the operating system. Due to the development of
internet technology, and hardware performance improve, web technologies and libraries
are continuously being created so that more complex and heavy calculations and functions
can be made in a web environment. There are various web browsers in which these
functions can be used, and various web browsers, such as Chrome, FireFox, and Microsoft
Edge, exist. Each web browser has a JavaScript engine that renders JavaScript code and a
rendering engine that provides visual services to users through web screens. Chrome uses
V8 and Blink, FireFox uses SpiderMonkey and Gecko, and Microsoft Edge uses Chakra and
EdgeHTML as JavaScript engines and rendering engines. There is Node.js [5], a software
platform used for network application development. Node.js includes a built-in http server
library, so it can be operated without additional software on the web server, and through
this, more control over the operation of the web server is possible. In addition, web socket
communication is possible using Node.js. Figure 2 shows the process of communication
between the user who uses the web and the web server, and the process of storing data
generated while using the web in the database.
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Figure 2. Web operation process [6].

2.3. Web Assembly

With the development of web-based applications, various organizations, companies,
and individuals develop web-based applications to provide various services, and various
web technologies are being developed. In addition, many users access web-based applica-
tions to use the various services and functions provided. These web-based applications
are mainly developed in JavaScript, which is a cross-platform language, to display the
same information to users on multiple platforms. However, as the number of web users
increases, the amount of data that needs to be collected and processed increases, so it is
important to increase the speed of processing data to reduce the load. In order to compute
faster even in the web environment, Web Assembly [7,8] was created and it is constantly
evolving. In addition, Web Assembly can be used by converting to languages with data
types, such as C [9], C++ [10], and Typescript [11]. Therefore, it is possible to use previously
implemented codes without additional modification. Due to the existence of data types,
unlike JavaScript, mathematical operations allow the desired value to be computed without
additional computation. Figure 3 shows the process of converting to Web Assembly using
programming languages that have data types, such as C, C++, and Rust [12].

C

C++

Rust

Emscripten
WASM
module

HTML document
JS “glue code”+ Web Browser

Figure 3. Web Assembly conversion process [6].

2.4. OpenCL

OpenCL is an open general purpose parallel computing framework for creating
programs that run on heterogeneous platforms, such as CPUs and GPUs. OpenCL provides
task-based, data-based parallel computing. OpenCL can be used in AMD, Intel CPU, Intel
integrated graphics, and NVIDIA graphics card products. Table 1 and Figure 4 show the
four types of memory used in OpenCL and their respective functions.
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HOST

Host Memory

Context

Global and Constant memory

work-group work-group

Local memory Local memory

work-item

private
memory

work-item

private
memory

work-item

private
memory

work-item

private
memory

work-item

private
memory

work-item

private
memory

Figure 4. OpenCL memory structure [13].

Figure 5 shows the OpenCL platform model consisting of one host and one or more
devices. The OpenCL platform always contains only one host. Each device has one or more
compute units, and each computational unit has one or more processing element (PE). The
device is where the kernel runs. Devices are provided by CPU, GPU, DSP, and hardware
manufacturers. And the actual calculation for the device is done in PE.

⋅⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

Compute UnitProcessing Element

HOST

Figure 5. OpenCL platform model [13].
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Table 1. OpenCL memory characteristics [14,15].

Memory Characteristics

Global Memory (1) Read and write from all work items
(2) Placed in device’s main memory

Constant Memory (1) Read only from all work items
(2) Placed in device’s main memory

Local Memory (1) Can be shared and used among work items in a work group
(2) In many cases, a shared memory disposed on each operation unit is used.

Private Memory (1) Dedicated memory area for work items
(2) Often times you use registers used by processing elements.

2.5. Lightweight Cryptography (Lwc) Estate

Table 2 is a table of notations, operations, and algorithms used in the ESTATE algo-
rithm.

Energy efficient and Single-state Tweakable block cipher-based MAC-Then-Encrypt
(ESTATE) [16], one of the second round candidates for lightweight encryption algorithms,
adopts FCBC-like [17] authentication and is a tunable block cipher-based authentication
encryption system using OFB [18] encryption. ESTATE is based on the MAC-then-Encrypt
paradigm [19]. ESTATE does not require field multiplications and has single-state, inverse-
free, and RUP secure construction features [16]. In addition, ESTATE is divided into
ESTATE mode and sESTATE mode. In ESTATE mode, TweAES-128 and TweGIFT-128
are proposed and used as core algorithms. TweAES-128 and TweGIFT-128 are modified
versions of AES-128 [20] and GIFT-128 [21], respectively.

∀X ∈
n⋃

m=1

0, 1m, X 7→
{

0n−|X|−1‖1‖X i f |X| < n,
X otherwise,

(1)

(E1; E2)?a : b : c : d :=


a i f E1 ∧ E2
b i f E1 ∧ ¬E2
c i f¬E1 ∧ E2
d i f¬E1 ∧ ¬E2

. (2)

If the last block of the message and AD is smaller than 128-bit, padding is performed
using Equation (1). Equation (2) is to determine the tweak value used in the ESTATE
encryption process.

Table 2. Energy efficient and Single-state Tweakable block cipher-based MAC-Then-Encrypt (ESTATE) notation [16].

Notation Denote Notation Denote

|A| length(bit) of A K K ∈ {0, 1}k

(Xk−1, ..., X0)
8← x n-bit block parsing of X T T ∈ {0, 1}t

i 0 ≤ i ≤ k− 2 M M ∈ {0, 1}m

|Xi| |Xi| = n Ẽ TweAES-128 or TweGIFT-128
|Xk−1| 1 ≤ |Xk−1| ≤ n F̃ TweAES-128-6
A⊕ B the bitwise XOR of A and B X ≪ i i-bit left
A||B the concatenation of A and B X ≫ i i-bit right

n 128-bit block size k 128-bit key size
t 128-bit tag size τ 4-bit tweak size

Algorithm 1 is the functions used in the overall encryption and decryption operation
in ESTATE mode. MAC function [16] is a function that creates a tag. The FCBC∗ [16]
function is a function that determines the tweak value according to AD, message length,
and encryption process conditions. OFB function [16] is a function that creates a cipher text
using the created Tag value. Figures 6–8 show ESTATE mode operation process when both
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AD and Message are used as input values, when only Message is used, and when only AD
is used.

𝑁 𝐸𝐾
1 𝐸𝐾

0

⊕

𝐴0

● ● ● 𝐸𝐾
0 𝐸𝐾

2/3

⊕

𝐴𝑎−1

𝑉

𝑉 𝐸𝐾
0

⊕

𝑀0

● ● ● 𝐸𝐾
0 𝐸𝐾

4/5

⊕

𝑀𝑚−1

𝑇

𝑇 𝐸𝐾
0 𝐸𝐾

0

⊕𝑀0
● ● ● 𝐸𝐾

0

𝐶0
⊕𝑀𝑚−2

𝐶𝑚−2

⊕𝑀𝑚−1

𝐶𝑚−1

Figure 6. ESTATE mode (Using AD and Message) [16].

𝑁 𝐸𝐾
1 𝐸𝐾

0

⊕ ● ● ● 𝐸𝐾
0 𝐸𝐾

4/5

⊕ 𝑉

𝑀0

𝑇 𝐸𝐾
0 𝐸𝐾

0

⊕𝑀0

● ● ● 𝐸𝐾
0

𝐶0

⊕𝑀𝑚−2

𝐶𝑚−2

⊕𝑀𝑚−1

𝐶𝑚−1
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Figure 7. ESTATE mode (no AD, using Message) [16].
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Figure 8. ESTATE mode (using AD, no Message) [16].
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Algorithm 2 is the overall operation process of sESTATE mode. sESTATE mode has
the same operation process as ESTATE mode. Figures 9–11 show the process of sESTATE
mode operation.

Algorithm 1 ESTATE Encryption, Tag Creation, Authentication, and Decryption Algorithm [16].

1: function ESTATE.ENC[Ẽ](K, N, A, M)
2: T ← MAC[Ẽ](K, N, A, M)

3: C ← OFB[Ẽ](K, T, M)

4: retrun (C, T)

5: function MAC[Ẽ](K, N, A, M)
6: if |A| = 0 and |M| = 0 then
7: return T ← Ẽ8

K(N)

8: T ← Ẽ1
K(N)

9: if |A| > 0 then
10: Aa−1‖· · · ‖A0 ← A
11: t← (|M| > 0 ; |Aa−1| = n) ? 2 : 3 : 6 : 7
12: T ← FCBC∗[Ẽ](K, T, M, t)
13: if |M| > 0 then
14: Mm−1‖· · · ‖M0 ← M
15: t← (|Mm−1| = n) ? 4 : 5
16: T ← FCBC∗[Ẽ](K, T, M, t)
17: return T

18: function ESTATE.DEC[Ẽ](K, N, A, C, T)
19: M← OFB[Ẽ](K, T, C)
20: T′ ← MAC[Ẽ](K, N, A, M)

21: return (T′ = T) ? M : ⊥

22: function FCBC∗[Ẽ](K, T, D, t)
23: Dd−1‖· · · ‖D0 ← D
24: for i = 0 to d− 2 do
25: T ← Ẽ0

K(T ⊕ Di)

26: T ← Ẽt
K(T ⊕ ozp(Dd− 1))

27: return T

28: function OFB[Ẽ](K, T, M)
29: Mm−1‖· · · ‖M0 ← M
30: for i = 0 to m− 1 do
31: T ← Ẽ0

K(T)
32: Ci ← chop(T, |Mi|)

⊕
Mi

33: return (Cm−1‖· · · ‖C0)

𝑁 𝐹𝐾
15 𝐹𝐾

15

⊕

𝐴0

● ● ● 𝐹𝐾
15 𝐸𝐾

2/3

⊕

𝐴𝑎−1

𝑉

𝑉 𝐹𝐾
15

⊕

𝑀0

● ● ● 𝐹𝐾
15 𝐸𝐾

4/5

⊕

𝑀𝑚−1

𝑇

𝑇 𝐸𝐾
0 𝐸𝐾

0

⊕𝑀0

● ● ● 𝐸𝐾
0

𝐶0

⊕𝑀𝑚−2

𝐶𝑚−2

⊕𝑀𝑚−1

𝐶𝑚−1

Figure 9. sESTATE mode (using AD and Message) [16].
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Algorithm 2 sESTATE Encryption, Tag Creation, Authentication, and Decryption Algorithm [16].

1: function ESTATE.ENC[Ẽ, F̃](K, N, A, M)
2: T ← MAC[Ẽ, F̃](K, N, A, M)

3: C ← OFB[Ẽ](K, T, M)

4: retrun (C, T)

5: function MAC[Ẽ, F̃](K, N, A, M)
6: if |A| = 0 and |M| = 0 then
7: return T ← Ẽ8

K(N)

8: T ← F̃15
K (N)

9: if |A| > 0 then
10: Aa−1‖· · · ‖A0 ← A
11: t← (|M| > 0 ; |Aa−1| = n) ? 2 : 3 : 6 : 7
12: T ← FCBC∗[Ẽ, F̃](K, T, M, t)
13: if |M| > 0 then
14: Mm−1‖· · · ‖M0 ← M
15: t← (|Mm−1| = n) ? 4 : 5
16: T ← FCBC∗[Ẽ, F̃](K, T, M, t)
17: return T

18: function ESTATE.DEC[Ẽ, F̃](K, N, A, C, T)
19: M← OFB[Ẽ](K, T, C)
20: T′ ← MAC[Ẽ, F̃](K, N, A, M)

21: return (T′ = T) ? M : ⊥

22: function FCBC∗[Ẽ, F̃](K, T, D, t)
23: Dd−1‖· · · ‖D0 ← D
24: for i = 0 to d− 2 do
25: T ← F̃15

K (T ⊕ Di)

26: T ← Ẽt
K(T ⊕ ozp(Dd− 1))

27: return T

28: function OFB[Ẽ](K, T, M)
29: Mm−1‖· · · ‖M0 ← M
30: for i = 0 to m− 1 do
31: T ← Ẽ0

K(T)
32: Ci ← chop(T, |Mi|)

⊕
Mi

33: return (Cm−1‖· · · ‖C0)

𝑁 𝐹𝐾
15 𝐹𝐾

15

⊕ ● ● ● 𝐹𝐾
15 𝐸𝐾

4/5

⊕ 𝑉

𝑀0

𝑇 𝐸𝐾
0 𝐸𝐾

0

⊕𝑀0

● ● ● 𝐸𝐾
0

𝐶0

⊕𝑀𝑚−2

𝐶𝑚−2

⊕𝑀𝑚−1

𝐶𝑚−1

𝑀𝑚−1
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2.5.1. TweAES-128, TweAES-128-6

Algorithm 3 are functions of TweAES-128, a cryptographic algorithm used in ESTATE
mode. The overall process is the same as AES-128, and a process of XOR operation is added
by expanding the 4-bit tweak value to an 8-bit tweak value for every even round except the
last round. TweAES-128-6 is proposed and used as a cryptographic algorithm to be used
while designing the sESTATE mode in the ESTATE algorithm. TweAES-128-6 has the same
operation process as TweAES-128. The difference is that the TweAES-128 runs 10 rounds,
while the TweAES-128-6 only runs 6 rounds.
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Algorithm 3 TweAES-128 Algorithm [16].

1: function TweAES(K, T, M)
2: (W43, ..., W0)← KeyGen(K)
3: X ← X⊕ (W3, W2, W1, W0)

4: for i = 1 to 9 do
5: X ← SubBytes(X)
6: X ← ShiftRows(X)
7: X ←MixColumns(X)
8: X ← X⊕ (W4i+3, W4i+2, W4i+1, W4i)

9: if i%2 = 0 then
10: X ← AddTweak(X, T)
11: X ← SubBytes(X)
12: X ← ShiftRows(X)
13: X ← X⊕ (W43, W42, W41, W40)

14: return X

15: function TweAES-6(K, T, X)
16: (W43, ..., W0)← KeyGen(K, X)
17: X ← X⊕ (W3, W2, W1, W0)

18: for i = 1 to 6 do
19: X ← SubBytes(X)
20: X ← ShiftRows(X)
21: X ←MixColumns(X)
22: X ← X⊕ (W4i+3, W4i+2, W4i+1, W4i)

23: if i%2 = 0 and i < 6 then
24: X ← AddTweak(X, T)
25: return X

26: function AddTweak(X, T)
27: (X127, ..., X0)

1← X
28: (T3, ..., T0)

1← T
29: T⊕ ← T0 ⊕ T1 ⊕ T2 ⊕ T3

30: for i = 0 to 3 do
31: Ti+4 ← Ti ⊕ T⊕
32: for i = 0 to 7 do
33: X8i ← X8i ⊕ Ti

34: return X

2.5.2. TweGIFT-128

Algorithm 4 is the overall process of TweGIFT-128 used in ESTATE mode. TweGIFT-
128 has the same structure as GIFT-128, and XOR operation is added by expanding the
4-bit tweak value to 32-bit tweak value every (round + 1)%5 == 0th rounds. TweGIFT-128’s
tweak expansion process is the same as TweAES-128. First, expand it to 8-bit in the same
way, and then use the expanded 8-bit value to store the same value in the remaining 24-bits
and expand it to a total of 32-bits.

Algorithm 4 TweGIFT-128 Algorithm [16].

1: function TweGIFT(K, T, X)
2: C ← 000000
3: for i = 0 to 39 do
4: X ← SubCells(X)
5: X ← PermBits(X)
6: (K, X)← AddRoundKey(K, X)
7: (C, X)← AddRoundConstant(C, X)
8: if (i + 1)%5 = 0 and i < 39 then
9: X ← AddTweak(X, T)

10: return X

11: function AddTweak(X, T)
12: (X127, ..., X0)

1← X
13: (T3, ..., T0)

1← T
14: T⊕ ← T0 ⊕ T1 ⊕ T2 ⊕ T3

15: for i = 0 to 3 do
16: Ti+4 ← Ti ⊕ T⊕
17: T15..8 ← T7..0

18: T23..16 ← T7..0

19: T31..24 ← T7..0

20: for i = 0 to 31 do
21: X4i ← X4i ⊕ Ti

22: return X
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3. Related Work
3.1. Existing Crypto Implementation Using OpenCL

Due to the development of multi-core processes, parallel processing technology is
being used in various fields. In addition, the use of OpenCL for parallel processing is
increasing, and it is efficient for processing large amounts of data. Therefore, studies
are being conducted to rapidly encrypt a large amount of data using an cryptographic
algorithm using OpenCL.

In Reference [22], we use OpenCL to improve encryption speed using the AES en-
cryption algorithm. They used the NVIDIA GeForce GTX 1060 to measure performance.
Table 3 is a table comparing the results measured in Reference [22] with previous studies.
As a result, their research results show that the XTS (XEX-based tweaked-codebook mode
with ciphertext stealing) mode is 12.86% and the CTR (Counter) mode is 14.71%, compared
to the previous studies.

Table 3. AES (Advanced Encryption Standard) fast implementation study results comparison.

Paper GPU Language Mode Throughput (Gbps)

Yuan et al. [23] ATI HD 7670M OpenCL CTR 5.04 Gbps
Wang et al. [24] NVIDIA GTX 285 OpenCL XTS 8.59 Gbps
Wang et al. [24] NVIDIA GTX 285 CUDA XTS 9.74 Gbps
Conti et al. [25] NVIDIA GT 555M OpenCL CTR 10.00 Gbps
Biagio et al. [26] NVIDIA GT 8800 CUDA CTR 12.50 Gbps
Sanida et al. [22] NVIDIA GTX 1060 OpenCL XTS 12.53 Gbps
Sanida et al. [22] NVIDIA GTX 1060 OpenCL CTR 14.71 Gbps

In Reference [27], various cryptographic algorithms are implemented in OpenCL and
used for image encryption. Table 4 is an information table that implements AES (Advanced
Encryption Standard), DES (Data Encryption Standard), BlowFish, and RSA (Ron Rivest,
Adi Shamir, Leonard Adleman) using OpenCL in Reference [27]. Table 5 is the result of
measurement by CPU and GPU for each cryptographic algorithm implemented using
OpenCL. As a result, AES, DES, BlowFish, and RSA show performance improvements of
8 times, 2.5 times, 11.13 times, and 5 times, respectively.

Table 4. Memory size, line of code for cryptographic algorithm implementation using OpenCL [27].

Cryptographic Algorithm Key Size Constant Space Compilation Time

AES [20] 128-bit 844 KB 2.7 ms
DES [28] 192-bit 1294 KB 5.3 ms

BlowFish [29] 256-bit 252 B 3.5 ms
RSA [30] 128-bit 6 KB 1031 ms

Table 5. Measuring cryptographic algorithm results using OpenCL [27].

Device AES DES BlowFish RSA

AMD FX 6100 3.0 GHz (CPU 6 Cores) 240 Mbps 144 Mbps 736 Mbps 4 Mbps
NVIDIA GTX 550 (GPU) 1920 Mbps 368 Mbps 8192 Mbps 20 Mbps

Ratio of Performance Improvement 8 times 2.5 times 11.13 times 5 times

In Reference [31], AES-256 encryption and decryption implementation using OpenCL
parallel processing is compared with AES-256 implemented using sequential processing.
As a result, when 10,240,000 work items are used, the implementation using OpenCL
parallel processing shows performance improvement of about 240 times for encryption and
481 times for decryption. In addition, as measured by AMD Radeon HD 8850M and AMD
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Radeon HD 8570, AMD Radeon HD 8570 shows performance improvement of 3.8 times
and 3.3 times in encryption and decryption, respectively.

3.2. Web Assembly

Web Assembly shows better performance than JavaScript in web-based applications, and
due to continuous development, it will continue to be close to the performance of low-level
languages, such as C language. In addition, research on Web Assembly is actively underway.

In Reference [6], the revised CHAM, P-256-wNAF (window Non-Adjacent Form),
SHA-256 (Secure Hash Algorithm), and HMAC (Hash-based Message Authentication
Code) algorithms are compared after implementation using Web Assembly and JavaScript
for more efficient encryption, key exchange, and authentication in the web environment.
Table 6 shows the performance measurement results for cryptographic algorithms, and
it can be seen that it is more efficient when Web Assembly implements cryptographic
algorithms than JavaScript. In addition, in the case of wNAF used for key exchange, the
Atomic block method was applied to be safe from side-channel attack (SCA) [32]. Web
Assembly shows that it can operate efficiently and safely because its performance overhead
ratio is lower than that of JavaScript.

Table 6. Web Assembly and JavaScript performance measurement and comparison through cryptographic algorithm
implementation (cpb: Cycle Per Byte) [6].

Chrome FireFox Microsoft Edge

Web Assembly JavaScript Web Assembly JavaScript Web Assembly JavaScript

revised CHAM-64/128 [33]
120 cpb

(2.1 times) 260 cpb
120 cpb

(2.1 times) 260 cpb 120 cpb
(2 times)

240 cpb

revised CHAM-128/128 [33]
60 cpb

(3 times) 180 cpb
60 cpb

(1.6 times) 100 cpb 70 cpb
(1.8 times)

130 cpb

revised CHAM-128/256 [33]
70 cpb

(3 times) 210 cpb
70 cpb

(2.1 times) 150 cpb 70 cpb
(2.8 times)

200 cpb

wNAF
27 cpb

(11 times) 300 cpb
30 cpb

(12 times) 365 cpb 27 cpb
(11 times)

322 cpb

wNAF [34] (Atomic block [35])
42 cpb

(10 times) 447 cpb
37 cpb

(10 times) 405 cpb 37 cpb
(14 times)

522 cpb

wNAF
(Improved Atomic block [6])

32 cpb
(11 times) 365 cpb

32 cpb
(12 times) 387 cpb 30 cpb

(14 times)
437 cpb

SHA-256 [36]
27 cpb

(7.5 times) 203 cpb
20 cpb

(10.8 times) 216 cpb 20 cpb
(11 times)

221 cpb

HMAC [37]
92 cpb

(7.5 times) 697 cpb
93 cpb

(24.8 times) 2315 cpb 97 cpb
(7.1 times)

693 cpb

Reference [38] converts the Picnic algorithm [39] to Web Assembly, measures the
performance in Chrome, FireFox, and Microsoft Edge, and compares it with the C/C++
implementation. As a result, the Picnic algorithm implemented by Web Assembly is about
2∼3 times slower than the C/C++ implementation.

3.3. Cache Timing Attack

There are various attack methods, such as differential attack and side-channel attack,
to find out important information about encryption algorithm. In addition, there is an attack
method that finds out the key value, which is important information of the cryptographic
algorithm through the cache access time of the CPU, and research on this is being actively
studied as interest in it increases. Ref. [40] proved the vulnerability through an attack to
find the last round key against the T-table AES algorithm of OpenSSL 1.1.0f [41]. So, in
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Reference [40], they study and apply the T-table shuffling method to be safe against Flush
+ Reload, a kind of cache-timing attack [42]. In Reference [40], they randomly shuffle the
array containing values from 0 to 255 using the Fisher-Yates function [43]. Then, the values
stored in 4 256-byte T-tables are shuffled and used by using the shuffled array values. In
Reference [40], the T-table was shuffled using the Fisher-Yates function in the AES T-table,
and the test shows that it is safe against Flush + Reload cache-timing attacks.

4. Proposed Implementation for Secure Communication in Edge Computing Services
4.1. Overall Architecture of Proposed Software

The existing edge computing method processes data received from a server or user
or data to be sent, and communicates through encryption and authentication. Therefore,
in hardware, such as ARM, AVR, and RISC-V used in edge computing for encryption
and authentication, secure communication is implemented by implementing encryption
algorithms and authentication algorithms using programming languages suitable for each
environment. However, since each environment uses different performance, different
functions, and different programming languages, even the same algorithm needs to be
implemented in each hardware. So, we use Web Assembly to implement encryption and
authentication so that it can be used generally on each device. In addition, it uses the
LWC ESTATE algorithm, which has both an encryption function and an authentication
process. Web Assembly is designed for performance similar to a low-level language in a
web environment. The ESTATE algorithm implemented by Web Assembly can be used in
general without additional modification in PCs, smartphones, and IoT devices where web
apps and web browsers can be used. Therefore, once created, it can be used in multiple
devices for secure communication. In addition, the finally processed data is stored on the
main server. Therefore, we propose additional optimization methods to use the ESTATE
algorithm efficiently in the server. The operation process of the ESTATE algorithm has
a characteristic that affects the next process using the previous value. Therefore, it is
difficult to process a large amount of data at the same time. However, if the main server
processes data sequentially, even if the edge computing method is used, the communication
process eventually shows slow performance. So, we propose a method of using OpenCL
parallel processing so that multiple ciphertexts and tags to be sent to multiple web-based
applications can be created at the same time. In addition, to safely and efficiently operate the
ESTATE algorithm, an additional method is proposed, and the previously existing studied
methods are applied. During operation of TweAES-128, TweAES-128-6, and TweGIFT-
128 used in the ESTATE algorithm, the 4-bit tweak value is checked for each specific
round through conditional statements, and then expanded to perform XOR (exclusive
OR) operation on the encrypted data. Therefore, we propose a method of storing and
using the extended tweak values for 9 4-bit tweak values through pre-computation. So,
tweak values are extended to 8-bit and 32-bit, respectively, through pre-computation.
In the implementation of OpenCL, if there is a conditional statement, there is a load in
the operation process. The ESTATE algorithm uses conditional statements due to the
type of input value, tweak value check for each specific round, and tweak value XOR
operation for each specific round. So, when we implement TweAES-128, TweAES-128-6,
and TweGIFT-128 using OpenCL, we implement it using the loop unrolling method to
eliminate performance degradation. In addition, it operates using local memory, which
has a high operation speed. TweAES-128 and TweAES-128-6 are similar in operation to the
AES algorithm. Therefore, it operates faster by applying the existing T-table method. In
addition, there are studies that the AES algorithm is vulnerable to cache-timing attacks.
Since TweAES-128 and TweAES-128-6, which have the same structure as the AES algorithm,
can be vulnerable, they are safely operated by applying the T-table shuffling method, which
is an the existing cache-timing attack response algorithm.
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4.2. Edge Computing and Estate Implementation Using Web Assembly

We propose a web-based application edge computing method using Web Assembly.
Web Assembly was created to show performance similar to low-level language in web
environment. The existing edge computing method provides services by optimizing each
environment and functions in hardware, such as ARM, AVR, and RISC-V. However, this
method is difficult to use in general because it uses programming languages and functions
used in each environment, such as ARM, AVR, and RISC-V, and additional cost is consumed
because additional implementation is required for each device. The web-based application
edge computing method proposed by us can be used in PCs, smartphones, IoT devices, etc.
that can basically use web-based applications. In addition, even if the platform is different,
it is efficient because it can be used generally without additional modification in terms of
implementation. In addition, in order to implement the algorithm with Web Assembly, the
existing code implemented in a programming language with a data type can be converted
and used, so there is no additional cost. In addition, if you use a library, such as Node.js, so
that web socket communication is possible without adapting the communication process to
each hardware, communication becomes easy. Web-based application In the edge computing
method, communication between server and web-based application, communication between
web-based application and user, and communication between web-based application are
made. Encryption and authentication functions are required to safely send data in various
communication processes. So, we use the ESTATE algorithm, which has encryption and
authentication functions. Therefore, as shown in Figure 12, in a web-based application
using Web Assembly, a ciphertext and a tag for authentication are created using the ESTATE
algorithm, and data is safely delivered to the user.

Cloud Computer Data Center

Edge Computing using 
web-based application

Figure 12. Edge computing structure using Web Assembly.

4.3. Parallel Implementation of Estate Using OpenCL

The ESTATE algorithm uses TweAES-128 and TweGIFT-128 to encrypt each block of
128-bit size. Then, the next step is performed using the previously encrypted result value.
Therefore, it is impossible to use a method of processing a large amount of data at once
through parallel processing. It is designed for use in a limited environment, but the finally
communicated data is stored on the server. Therefore, it is necessary to implement ESTATE
according to the server environment so that the server can use ESTATE efficiently. We use
OpenCL to simultaneously calculate and transmit ciphertext and tag generation to be sent
to multiple web-based applications.

Instead of sequentially processing multiple data using the ESTATE algorithm, it uses
a method of simultaneously processing using OpenCL parallel processing as shown in
Figure 13. When implemented using OpenCL parallel processing, performance degradation
occurs when conditional statements exist. TweAES-128, TweAES-128-6, and TweGIFT-128
use conditional statements to check the type of input value, check whether or not padding,
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check the tweak value, and perform the extended tweak value XOR operation for each
round. We use the loop unrolling method to remove the conditional statement in order
to remove the performance load in the OpenCL implementation. In addition, the local
memory has the fastest operation speed among OpenCL memories. For this reason, data is
moved to local memory and encrypted to improve performance. Algorithm 5 is an OpenCL
code algorithm that reduces the performance load by eliminating conditional statements
using a loop unrolling method.

Algorithm 5 TweAES-128, TweAES-128-6, TweGIFT-128 proposed by applying loop unrolling method.

1: function loop unrolling TweAES-128(K, T, X)
2: (W43, ..., W0)← KeyGen(K, X)
3: X ← X⊕ (W3, W2, W1, W0)
4: for i = 1 to 4 do
5: X ← SubBytes(X)
6: X ← ShiftRows(X)
7: X ←MixColumns(X)
8: X ← X⊕ (W4i+3, W4i+2, W4i+1, W4i)

9: X ← SubBytes(X)
10: X ← ShiftRows(X)
11: X ←MixColumns(X)
12: X ← X⊕ (W8i+3, W8i+2, W8i+1, W8i)
13: AddTweak(X, T)

14: X ← SubBytes(X)
15: X ← ShiftRows(X)
16: X ←MixColumns(X)
17: X ← X⊕ (W39, W38, W37, W36)
18: X ← SubBytes(X)
19: X ← ShiftRows(X)
20: X ← X⊕ (W43, W42, W41, W40)

21: function loop unrolling TweAES-6(K, T, X)
22: (W43, ..., W0)← KeyGen(K, X)
23: X ← X⊕ (W3, W2, W1, W0)
24: for i = 1 to 2 do
25: X ← SubBytes(X)
26: X ← ShiftRows(X)
27: X ←MixColumns(X)
28: X ← X⊕ (W4i+3, W4i+2, W4i+1, W4i)

29: X ← SubBytes(X)
30: X ← ShiftRows(X)
31: X ←MixColumns(X)
32: X ← X⊕ (W8i+3, W8i+2, W8i+1, W8i)
33: AddTweak(X, T)

34: X ← SubBytes(X)
35: X ← ShiftRows(X)
36: X ←MixColumns(X)
37: X ← X⊕ (W23, W22, W21, W20)
38: X ← SubBytes(X)
39: X ← ShiftRows(X)
40: X ← X⊕ (W43, W42, W41, W40)

41: function loop unrolling TweGIFT-128(K, T, X)
42: C ← 000000
43: for i = 0 to 7 do
44: for j = 0 to 3 do
45: X ← SubCells(X)
46: X ← PermBits(X)
47: (K, X)← AddRoundKey(K, X)
48: (C, X)← AddRoundConstant(C, X)

49: X ← SubCells(X)
50: X ← PermBits(X)
51: (K, X)← AddRoundKey(K, X)
52: (C, X)← AddRoundConstant(C, X)
53: AddTweak(X, T)

54: for i = 35 to 39 do
55: X ← SubCells(X)
56: X ← PermBits(X)
57: (K, X)← AddRoundKey(K, X)
58: (C, X)← AddRoundConstant(C, X)
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Figure 13. Structure of ESTATE algorithm operation using parallel processing.

4.4. Safe and Efficient Implementation of TweAES-128, TweAES-128-6, TweGIFT-128 of
Estate Algorithm

TweAES-128 and TweGIFT-128 are used in ESTATE mode, and TweAES-128-6 is
used in sESTATE mode. TweAES-128, TweGIFT-128, and TweAES-128-6 have the same
operation process as AES-128 and GIFT-128, but additionally, the process of XOR operation
by expanding the 4-bit tweak value is added. However, in TweAES-128, TweAES-128-6,
and TweGIFT-128, only 0∼7, 15 are used as tweak values. Therefore, we propose a method
to extend the 4-bit tweak value to 8-bit and 32-bit in advance to fit each algorithm and use
it after storage. This method eliminates the unnecessary process of repeatedly checking
and expanding tweak value. In addition, TweAES-128 and TweAES-128-6 have the same
structure as the AES algorithm, so the existing studied T-table method to quickly compute
AES can be applied. In addition, it is possible to perform faster operation by processing the
16-byte input value used in both algorithms in parallel.

As shown in Figure 14, the operation process of TweAES-128 and TweAES-128-6 used
in the ESTATE algorithm uses an efficient method of simultaneously calculating 16-byte
input values through OpenCL parallel processing. In addition, T-table shuffling method,
which is the method studied in Reference [40], is applied to the T-table used in ESTATE
TweAES-128 and TweAES-128-6 to safely operate against cache-timing attack.

Using method in Reference [40], mix the index value of 0∼255 to shuffle the T-table.
Then, the T-table is shuffled using the mixed index value. Algorithm 6 is a process that will
be used every round of ESTATE TweAES-128 and TweAES-128-6.

Algorithm 6 ESTATE TweAES-128, TweAES-128-6 Proposal Method Applying T-table Shuffling

1: Te0-sf : Te0[shuffle-array]
2: Te1-sf : Te1[shuffle-array]
3: Te2-sf : Te2[shuffle-array]
4: Te3-sf : Te3[shuffle-array]

5: function 1-round(S0∼S3, RK)
6: S0 = Te0-sf[S0� 24] ⊕ Te1-sf[S1� 16 & 0xff] ⊕ Te2-sf[S2� 8 & 0xff] ⊕ Te3-sf[S3 & 0xff] ⊕ RK
7: S1 = Te0-sf[S1� 24] ⊕ Te1-sf[S2� 16 & 0xff] ⊕ Te2-sf[S3� 8 & 0xff] ⊕ Te3-sf[S0 & 0xff] ⊕ RK
8: S0 = Te0-sf[S2� 24] ⊕ Te1-sf[S3� 16 & 0xff] ⊕ Te2-sf[S0� 8 & 0xff] ⊕ Te3-sf[S1 & 0xff] ⊕ RK
9: S0 = Te0-sf[S3� 24] ⊕ Te1-sf[S0� 16 & 0xff] ⊕ Te2-sf[S1� 8 & 0xff] ⊕ Te3-sf[S2 & 0xff] ⊕ RK

10: function 1-round with AddTweak(S0∼S3, RK, tweak)
11: S0 = Te0-sf[S0� 24] ⊕ Te1-sf[S1� 16 & 0xff] ⊕ Te2-sf[S2� 8 & 0xff] ⊕ Te3-sf[S3 & 0xff] ⊕ RK
12: S1 = Te0-sf[S1� 24] ⊕ Te1-sf[S2� 16 & 0xff] ⊕ Te2-sf[S3� 8 & 0xff] ⊕ Te3-sf[S0 & 0xff] ⊕ RK
13: S0 = Te0-sf[S2� 24] ⊕ Te1-sf[S3� 16 & 0xff] ⊕ Te2-sf[S0� 8 & 0xff] ⊕ Te3-sf[S1 & 0xff] ⊕ RK
14: S0 = Te0-sf[S3� 24] ⊕ Te1-sf[S0� 16 & 0xff] ⊕ Te2-sf[S1� 8 & 0xff] ⊕ Te3-sf[S2 & 0xff] ⊕ RK
15: AddTweak(S0∼S3, tweak)
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𝑻𝟎[𝑺𝟎] ⊕ 𝑻𝟏[𝑺𝟓] ⊕ 𝑻𝟐[𝑺𝟏𝟎]
⊕ 𝑻𝟑[𝑺𝟏𝟓] ⊕ 𝑹𝑲

𝑻𝟎[𝑺𝟒] ⊕ 𝑻𝟏[𝑺𝟗] ⊕ 𝑻𝟐[𝑺𝟏𝟒]
⊕ 𝑻𝟑[𝑺𝟑] ⊕ 𝑹𝑲

𝑻𝟎[𝑺𝟖] ⊕ 𝑻𝟏[𝑺𝟏𝟑] ⊕ 𝑻𝟐[𝑺𝟐]
⊕ 𝑻𝟑[𝑺𝟕] ⊕ 𝑹𝑲

𝑻𝟎[𝑺𝟏𝟐] ⊕ 𝑻𝟏[𝑺𝟏] ⊕ 𝑻𝟐[𝑺𝟔]
⊕ 𝑻𝟑[𝑺𝟏𝟏] ⊕ 𝑹𝑲

𝑻𝟎[𝑺𝟎] ⊕ 𝑻𝟏[𝑺𝟓] ⊕ 𝑻𝟐[𝑺𝟏𝟎]
⊕ 𝑻𝟑[𝑺𝟏𝟓] ⊕ 𝑹𝑲⊕ 𝒆𝒙𝒑_𝒕𝒘𝒌

𝑻𝟎[𝑺𝟒] ⊕ 𝑻𝟏[𝑺𝟗] ⊕ 𝑻𝟐[𝑺𝟏𝟒]
⊕ 𝑻𝟑[𝑺𝟑] ⊕ 𝑹𝑲⊕ 𝒆𝒙𝒑_𝒕𝒘𝒌

𝑻𝟎[𝑺𝟖] ⊕ 𝑻𝟏[𝑺𝟏𝟑]
⊕ 𝑻𝟐[𝑺𝟐] ⊕ 𝑻𝟑[𝑺𝟕] ⊕ 𝑹𝑲

𝑻𝟎[𝑺𝟏𝟐] ⊕ 𝑻𝟏[𝑺𝟏]
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Figure 14. Parallel operation process of TweAES-128 or TweAES-128-6 using T-table method.

5. Results

Table 7 is an environment in which the results were measured by applying the methods
proposed by us to the ESTATE algorithm using OpenCL parallel processing, the ESTATE
algorithm implemented with Web Assembly, and the reference C ESTATE algorithm.

Table 8 is a comparison result of OpenCL parallel processing, AES T-table, extended
tweak pre-computation, and ESTATE algorithm applying loop unrolling methods and the
reference C code ESTATE algorithm for sequential processing. We measured the process of
creating a total of 6,400 ciphertexts and tags, respectively. As a result, in ESTATE TweAES-
128, TweAES-128-6 and TweGIFT-128, OpenCL was 6.69 times, 7.31 times, and 1.47 times
faster than the reference C/C++ code, respectively.

Table 7. Performance measurement environment.

Operationg System CPU RAM SW Languages and
API Used Input Value

ESTATE
Operation

Count

Window 10 Education
Intel

8 GB
(1) Chrome (1) C/C++ Nonce: 25,600-byte

6400i5-8250U (2) FireFox (2) Web Assembly AD: 51,200-byte
1.6 GHz (3) Microsoft Edge (3) OpenCL Message: 512,000-byte
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Table 8. Performance comparison of OpenCL implementation and C/C++ reference code applying the proposed method
(ns: nanosecond).

Algorithm OpenCL Reference C/C++ Performance Improvement

ESTATE TweAES-128 19,088,500 ns 127,842,877 ns 6.69 times
ESTATE TweAES-128-6 15,966,333 ns 116,813,270 ns 7.31 times
ESTATE TweGIFT-128 1,958,343,000 ms 2,897,251,400 ns 1.47 times

Table 9 shows the result of comparing the algorithm to which the T-table shuffling
method was applied and the algorithm not applied. This is a measurement result of the
process of shuffling and calculating the 1024-byte T-table. Due to shuffling, performance
overhead occurs because memory must be accessed twice, unlike the method not applied.
As a result, ESTATE TweAES-128 and TweAES-128-6 show performance overhead of 7%
and 51%, respectively.

Table 9. Performance overhead measurement result through application of T-table shuffling method
(ns: nanosecond).

Algorithm Applied T-Table
Shuffling Method Normal Method Performance

Overhead

ESTATE TweAES-128 20,589,394 ns 19,088,500 ns 7%

ESTATE
TweAES-128-6 24,192,899 ns 15,966,333 ns 51%

Table 10 shows how much performance overhead occurs compared to C language by
implementing the ESTATE algorithm in Web Assembly to use the edge computing method
using Web Assembly. Measurements were made for C and Web Assembly using the same
input values. Web Assembly was measured on Chrome, FireFox, and Microsoft Edge.
As a result, TweAES-128, TweAES-128-6, and TweGIFT-128 implemented as Web Assembly
have 11%, 5%, 22% performance overhead in Chrome, 10%, 2%, 54 in FireFox. It shows %
performance overhead, and 9%, 6%, and 17% performance overhead in Microsoft Edge.
The reason the performance overhead ratio is different for each web browser is that the
rendering engine and JavaScript engine used for each web browser are different. However,
in the case of TweAES-128 and TweAES-128-6, the performance overhead is not large, so it
can be seen that it is efficient to perform edge computing through a web-based application
using Web Assembly.

Table 10. Performance overhead measurement result of ESTATE algorithm using Web Assembly (ns: nanosecond).

Algorithm Reference C/C++ Code
Web Assembly

Chrome
(Performance Overhead)

FireFox
(Performance Overhead)

Microsoft Edge
(Performance Overhead)

ESTATE TweAES-128 127,842,877 ns 142,775,000 ns (11%) 141,000,000 ns (10%) 140,374,999 ns (9%)

ESTATE
TweAES-128-6 116,813,270 ns 123,155,001 ns (5%) 120,000,000 ns (2%) 124,045,001 ns (6%)

ESTATE TweGIFT-128 2,897,251,400 ns 3,560,440,001 ns (22%) 4,490,000,000 ns (54%) 3,401,205,000 ns (17%)

6. Conclusions

The existing edge computing method takes over the role of cloud computing services
in hardware, such as ARM, AVR, and RISC-V. Therefore, there is a disadvantage of having
to implement separately using a function and programming language suitable for each
environment used in ARM, AVR, and RISC-V. In this paper, we propose a web-based



Sensors 2021, 21, 1987 20 of 22

application edge computing method using Web Assembly in order to use an efficient edge
computing method.

1. Implementation of ESTATE algorithm using Web Assembly
Web Assembly was created to show similar performance to low-level language in
a web environment. Cryptographic algorithms using web-based applications can
use web-based applications, and can be used without additional modification in
PCs, smart phones, and IoT devices used as edge devices. Therefore, even if the
platforms used are different, it is also cost-effective because it can be used generally
without additional modification in terms of implementation. In addition, web-based
application edge computing communicates with various platforms, so, to send data
securely, we implement and use the ESTATE algorithm, which has both encryption
and authentication processes, in Web Assembly. We can see how Web Assembly has
caught up with the performance of low-level languages. ESTATE Web Assembly
implementation compares performance with reference C/C++ code. Web Assembly
implementation is measured in web browsers Chrome, FireFox, and Microsoft Edge.
As a result, TweAES-128, TweAES-128-6, and TweGIFT-128 implemented as Web
Assembly have 11%, 5%, 22% performance overhead in Chrome, 10%, 2%, 54 in
FireFox. It shows % performance overhead, and 9%, 6%, and 17% performance
overhead in Microsoft Edge. As a result, it is slower than C/C++, which is a low-
level language, but it can be used efficiently because it can be used without special
modifications on devices that can use web-based applications.

2. ESTATE algorithm using OpenCL parallel processing
Data processed by the web-based application edge computing method are eventually
stored on the main server. Therefore, in order to use the ESTATE algorithm efficiently,
it is necessary to implement it according to the server environment. So, we propose
a method of simultaneously processing ciphertext and tag generation to be sent to
multiple platforms using OpenCL parallel processing. Through OpenCL parallel
processing, each byte value is processed simultaneously instead of sequentially for
the 16-byte input value used for one encryption process. OpenCL has a load when
using conditional statements. In the ESTATE algorithm, a conditional statement is
used to XOR the extended tweak value every specific round. Therefore, the loop
unrolling method was used to remove the performance load by removing the process
of using conditional statements. In addition, data is stored in a local memory with a
fast operation speed and encrypted to perform efficient operation. For performance
comparison, we compare the OpenCL parallel processing implementation and the
reference C/C++ sequential processing implementation. As a result, the OpenCL
implementation shows about 6.69 times, 7.31 times, and 1.47 times performance
improvement in ESTATE TweAES-128, TweAES-128-6, and TweGIFT-128 than the
reference C/C++ implementation.

3. Method for efficient and safe operation of ESTATE algorithm
Additional methods are applied to safely and efficiently operate the ESTATE algo-
rithm itself. The ESTATE algorithm uses conditional statements to check the type
of input value to be encrypted, check whether it is the last block, check the tweak
value, and calculate the extended tweak value for each specific round. The 8-bit and
32-bit extended tweak values used in TweAES-128, TweAES-128-6, and TweGIFT-128
are stored and used in advance through pre-calculation. This method reduces the
performance load by removing unnecessary conditional statements. In addition,
TweAES-128 and TweAES-128-6 have the same operation process as the AES algo-
rithm, so they may be vulnerable to cache-timing attacks. So, we apply the T-table
shuffling method, which is a previously studied method, to operate safely. We re-
duced the performance load by applying the proposed methods to minimize the
performance load even when the T-table shuffling method is applied. As a result of
applying the T-table shuffling method, TweAES-128 and TweAES-128-6 show about



Sensors 2021, 21, 1987 21 of 22

7% and 51% performance overhead, respectively, than those without applying the
T-table shuffling method.

4. Future Work
Web-based application using Web Assembly can be used in various devices without
additional modification, so it can reduce the system load of the server and is effec-
tive in responding to failures. Web Assembly is currently continuously developing,
and, since various devices, such as PCs, smart phones, and smart devices, are de-
veloping more and more, web technology is also developing accordingly. Currently,
technologies using high-end hardware, such as Web Assembly’s SIMD technology
and WebGPU, are being developed. In addition, it is being developed so that Web
Assembly and WebGPU can be used together. When these technologies become stable
in the future, many web developers will develop web services using various technolo-
gies, such as SIMD and WebGPU. Therefore, it can be used in various ways in terms
of crypto security, and various studies will be conducted using web technologies
developed in the field of crypto security. Therefore, the web-based application edge
computing method can also be developed, and performance will be improved. Cur-
rently, there are various NIST LWC (National Institute of Standards and Technology
LightWeight Cryptography) Round 2 candidate algorithms. However, the OpenCL
parallel processing method we used is a method applicable to other candidate al-
gorithms. Even if the LWC algorithm other than ESTATE is used to send data to
multiple devices, the service can be provided more efficiently by using the method of
simultaneously processing multiple ciphertexts and tags through the OpenCL parallel
processing method.
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