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Abstract: One of the central concepts in the principles of Industry 4.0 relates to the methodology
for designing and implementing the digital shell of the manufacturing process components. This
concept, the Asset Administration Shell (AAS), embodies a systematically formed, standardized
data envelope of a concrete component within Industry 4.0. The paper discusses the AAS in terms
of its structure, its components, the sub-models that form a substantial part of the shell’s content,
and its communication protocols (Open Platform Communication—Unified Architecture (OPC UA)
and MQTT) or SW interfaces enabling vertical and horizontal communication to involve other
components and levels of management systems. Using a case study of a virtual assembly line that
integrates AASs into the technological process, the authors present a comprehensive analysis centered
on forming AASs for individual components. In the given context, the manual AAS creation mode
exploiting framework-based automated generation, which forms the AAS via a configuration wizard,
is assessed. Another outcome consists of the activation of a virtual assembly line connected to real
AASs, a step that allows us verify the properties of the distributed manufacturing management.
Moreover, a discrete event system was modeled for the case study, enabling the effective application
of the Industry 4.0 solution.

Keywords: Asset Administration Shell; digital twin; Internet of Things; industrial Internet of Things;
Industry 4.0; Manufacturing Execution System; Manufacturing Operation Management; Open
Platform Communication—Unified Architecture (OPC-UA); MQTT

1. Introduction

The concept of Industry 4.0 (I4.0) has been investigated and developed in economically
advanced countries for at least 5 years [1–6]. In this context, the most important research
groups include ZVEI, VDI/VDE, and BITCOM, especially in terms of refining models
such as Reference Architectural Model Industrie 4.0 (RAMI 4.0) and, consequently, the
I4.0 component model [7,8]. The entire strategy gradually evolved in Germany and spread
across Europe. In 2018, three European countries began to collaborate closely within the
manufacturing domain to improve and disseminate the concept, and their efforts yielded
the following initiatives: the Alliance Industrie du Futur in France, the German-based
Platform Industrie 4.0, and the Piano Industria 4.0 in Italy [9]. These actions and policies
enabled innovative ideas to expand into other domains, such as standardization, industrial
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communication [10,11], informatics [12–14], functional safety, cybersecurity, economics,
marketing, energy production, and social economy. Most notably, the diversity of influences
has been reflected in the concept of smart factories [15–20]. Outside Europe, the scheme
has found wide reception in the USA, China, and Japan.

Implementing the principles of I4.0 into industrial applications is a slow process,
mainly due to the generally nonsystematic approach. At present, relevant technologies
involve and rely on digitization, robotics, non-optimal data acquisition, virtual reality,
IoT, and advanced data processing [21–27]; simultaneously, however, application stan-
dards remain undeveloped or are lacking completely, and a similar deficiency also affects
corporate economy and common initiative in any given field [28–32]. Conversely, these
separate technologies help to accelerate the implementation of I4.0 principles and open
new opportunities and challenges for technical development; in the given context, such
benefits were considered unfeasible 5–7 years ago. The overall impact of I4.0 and its recent
transformations or outcomes—digitization and virtualization in particular—can then be
interpreted as epitomizing the difference between the present situation and the conditions
preceding the introduction of the initial I4.0 in 2013.

In the current process control, the Manufacturing Execution System (MES) and Manu-
facturing Operation Management (MOM) play integral roles as the central points of job
planning and management [33]. Thus, all relevant data must be transferred to these soft-
ware, of which only the MES can execute a job command task. Conversely, the concept of
I4.0 relies on decentralized (distributed) control—i.e., procedures without a central entity;
the decision-making process is then distributed between the entities in the communication
network. Within this concept, the MES/MOM ensure new product initiation and are not
involved in the job scheduling stage.

A major component of I4.0 is embodied in the AAS, which, in the industrial do-
main, characterizes assets such as the product, machine, equipment, and factory; an AAS
also communicates with other AASs as standard entities interconnected throughout a
network. The actual concept originates from a novel interpretation of the management,
where relevant components are integrated both horizontally and vertically. While the
current management methods are structured mostly vertically, in a hierarchical manner, the
novel approaches exploit the markedly higher intelligence (managing capabilities) of the
individual manufacturing components, from the top level items down to the sensors and
actuators. This concept changes the architecture of the industrial process control system
into a distributed (decentralized) form, embedding flexibility in job scheduling, failure
responses, and product customization.

The authors characterize a novel procedure for the automated creation of AASs via
a configuration wizard, the aim being to accelerate the formation process and to achieve
the easier implementation of AASs. In functional terms, the administration shells are
generated in compliance with the requirements and standards of I4.0. The operability of
the design is verified on a case study involving an assembly line to produce printed 3D toy
cars; this step also comprises considering and comparing two communication protocols,
Message Queuing Telemetry Transport (MQTT) and Open Platform Communication—
Unified Architecture (OPC UA).

This paper discusses AASs (Chapter 2) together with a methodology for creating the
wizard; this methodology is based on requirements relating to the functionality, formation,
and structure of the AAS. The virtual production testbed and implementation are partially
analyzed in Chapter 3, which also defines the communication interface separating the
administration shell from the asset; in our case, the assets embody the virtual manufactur-
ing components and items that participate in the manufacturing procedures. The results,
outlined in Chapter 4, are characterized more broadly in the last section of the article,
with relevant research perspectives complementing the overall discussion of the project
(Chapter 5).
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2. Asset Administration Shell

The Asset Administration Shell (AAS) is a major constituent of I4.0, creating an
interface between the physical and the virtual production variants. An AAS represents—
virtually, digitally, and actively—an I4.0 component in the I4.0 system. Any production
component in the I4.0 environment has to have an administrative shell [34–38].

In addition to multiple other modes of use, the AAS facilitates the virtualization of
the manufacturing process to model, fine-tune, and monitor the algorithms and economy
of production already before the cycle actually starts [39]. The AAS is an indispensable
precondition for decentralized industrial manufacturing management, yielding flexibility
and emergency robustness to reduce queues, bottlenecks, and other issues that limit the
efficiency of production units during their service lives.

Alternatively, the AAS can be also designated as the digital twin of a production
component [40]; in this context, however, it has to be emphasized that our approach strictly
observes and exploits the rules or procedural laws presented in the literature [7–10].

Figure 1 shows the structure of and connection between a physical item and the
corresponding administration shell (AS). A component within I4.0 integrates an asset and
its electronic model—i.e., the appropriate AS. The AAS in Figure 1 consists of a body and a
header. The header contains identifying details regarding the AAS and the represented
asset, and the body comprises a certain number of submodels to facilitate the asset-specific
characterization of the AAS (see [41–48]).
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The submodels represent different aspects of an asset. Possible aspects and associated
submodels encompass, among others, the following items: identification, communica-
tion, engineering, configuration, safety, security, lifecycle status, energy efficiency, and
condition monitoring.

Each submodel contains a structured quantity of properties that can refer to data and
functions. The properties are specifiable in accordance with the standard IEC 61360, but the
data and functions can be defined in various formats. Figure 1 shows a graphical example
of an AAS [7].

The bidding between two assets on an industrial assembly line consisting of 3D
printers is described in Figure 2, where an asset (such as a semi-finished product) asks
another asset (a 3D printer) on the assembly line if its capacity, functionality, and availability
can ensure the completion of the task using the pre-specified parameters (for example, the
dimensions of a printable semi-finished product must not exceed 150 × 200 × 50 mm; the
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applied material is PLA with a filament density of 50%; the color corresponds to RAL1003;
the layer thickness equals 0.2 mm; and the printing time has to be below 4 h).
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The requirements concerning the contents of AASs can be classified into three groups [7,9]:

1. General;
2. identifier-related;
3. AAS-specific.

All such requirements are specified in sources [7,9] and included in our proposal.
Exploiting knowledge of the procedural principles relating to AASs and their practical
usage, we designed ConfigWizard, an innovative tool to allow the comfortable and partially
automated generation of AASs. To fulfill this purpose, the software assists in the essential
steps that enable AAS formation and functions (access via a webservice; information
modeling: submodels, parameters, and events; asset integration: the mapping of the
communication properties; OPC UA server configuration), see Figure 3.

Without such a configuration wizard, all the steps must be carried out manually,
requiring intensive programming, see Figure 4. The ConfigWizard reduces the AAS devel-
opment efforts to inserting relevant configuration data via a GUI (frontend, Figure 5). The
user can add, edit, or delete each of the AAS submodel entities, such as a property, method,
or event. The ConfigWizard’s backend then automatically generates an AAS software
package based on the configuration entered by the developer; the necessary configuration
data are usually derived from a scenario-specific use case and sequence diagrams.

Regarding the underlying OPC UA technology [49–57], the user must also define the
parameters of the OPC UA channel and other items according to the OPC UA stack—i.e.,
in agreement with the OPC UA standard at each level of the ISO/OSI model (Table 1).
Using this procedural step, the connection with the AAS environment is established by the
OPC UA.
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Table 1. The OPC UA ISO/OSI model.

Layer Description

7 Application UA Application (C/S, Pub/Sub)
6 Presentation UA Binary UA XML

5 Session UA TCP
UA Secure Conversation

OAP/HTTP
WS-Secure Conversation

4 Transport TCP (RFC 793)
3 Network IP (RFC791)
2 Data Link MAC (IEEE 802.3)
1 Physical e.g., Ethernet (IEEE 802.3)

ConfigWizard thus allows us to avoid accessing the OPC UA server creator (our
research relied on Unified Automation) itself; instead, it facilitates the utilization of a
user-friendly, web-based wizard. The most significant advantage of the tool consists in the
ability to create the OPC UA nodes automatically, especially if there are more objects of
the same type (for example, more temperature sensors in a machine unit). In terms of the
fundamental idea, development, and testing, the Wizard for the automatic configuration of
AASs in different assets fully exploits the long-term experience of the authors of this paper,
offering two ways to implement I4.0 components:

• Manually formed AASs (indicated in the Industry 4.0 component model, Figure 4).
• Automated AASs (see ConfigWizard, Figure 5).

3. Implementing the Industry 4.0 Component Model

This chapter discusses the procedures, standards, programming languages, communi-
cation methods, interfaces, bidding processes, and all associated elements that are necessary
for the successful realization of the “factory of the future”. This case study demonstrates
the use of ASSs in an I4.0 virtual assembly line designed to produce plastic models of cars
(Figures 6 and 7).
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3.1. Case Study

The case study is based on a virtual production technology (the COMBED virtual
testbed), as shown in Figure 7, consisting of two assembly lines with assets—i.e., machines
(3D printers, assembly boxes), transport robots, and storage racks. The study demonstrates
a smart production management method which utilizes smart assets according to the
I4.0-based component model. Each virtual asset (for example, a product, machine, robot,
conveyor, line, or warehouse rack) has its administration shell. The AASs communicate
with each other and negotiate the production priorities and requirements according to
a pre-specified set of rules. The manufacturing operations are negotiated by a product
with respect to the principles of I4.0, enabling us to incorporate smart features into the
production processes.
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The COMBED system is employed to demonstrate the automated optimization, adap-
tation, and setup on an example of a production segment that manufactures products to
order. Multiple scenarios are possible and can be adapted by the user, in view of the tables
of parameters; the options either consider the “ideal” state or assume failures and down-
times to approach practical conditions. Based on these scenarios, we can test the smart
production management’s responses to diverse situations in real-world industrial cycles.
Our solution automatically modifies the product processing steps and stages (material
flow) to allow the use of currently available tools. The manufacturing management is also
capable of supporting very flexible production cycles (in small orders—i.e., ones down to
batch size 1), as it automatically and in real time adapts the equipment to the manufacturing
operations required by the product variant or specifications (auto-setup). With flexible ma-
chinery, the factory can simultaneously manufacture various products and their versions,
and the equipment setup operations eliminate the losses that otherwise accompany the
material/semi-product transport. The case study utilizes COMBED to demonstrate the
manufacturing of simple products—namely, plastic toy cars, each comprising a body and
a chassis.

Our smart production management technique features a completely new, decentral-
ized approach using the ideas and standards of the Industry 4.0 platform. The actual
research involved applying and refining some of the objectives of I4.0, including automated
optimization, adaptation, and setup of the manufacturing and logistics equipment; all
of these steps were performed according to the needs of the manufacturing operations
required by the product, as also stipulated within I4.0. Importantly, the entire project was
designed with respect to observing the possibilities and benefits provided by the Plug and
Produce (P&P) option. This mode enables machine builders to deliver their technologies
with standardized AASs, allowing factories that run P&P to smoothly incorporate a new
asset into the product negotiation process. The new asset carries its features, abilities, and
parameters in the AAS submodels, facilitating the smart production management process.

3.2. Production Control Function of the AAS

With the scenarios (meaning production scenarios that simulate manufacturing be-
havior at various limit states), the smart production management can be tested and easily
evaluated by standard MESs, as are often applied in factories. The MES is routinely
employed to compute manufacturing efficiency and other relevant indicators, and an
interconnection between this system and the AAS would allow the computing functions to
be suitably utilized and expanded. For such evaluation of the management, we used the
COMES MES/MOM system, collecting data from the COMBED virtual assets to validate
the KPI (downtime analysis, Overall Equipment Effectiveness—OEE, and other relevant
indicators). In a real-world factory, this approach is expected to yield innovative effects,
including automatic production control according to the objectives pre-specified by the fac-
tory managers (for example, in response to the market situation) and high robustness of the
manufacturing processes, which thus resist diverse types of failures. From the perspective
of production control, the AAS functions can be classified into 3 implementation groups,
as follows: a service requester (SR), a service provider (SP), and a common part of the code,
involving such operations as communication and logging. Together with structured access
to data, negotiation embodies a key AAS functionality. To ensure appropriate control, it is
important that each SP be able to offer its services. The SR can browse through the SP to
find a service ideal for the processing of the required operation. Figures 8 and 9 indicate
that products actually are SRs that negotiate tasks to secure their own production.
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However, manufacturing units, such as a CNC machine or an assembly line, require
service intervention, material, tools, maintenance, and other steps or items; in such situa-
tions, the units become SRs to negotiate their requirements. Thus, the negotiation submodel
has to be fully implemented in each AAS.
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Figure 9 illustrates the standard negotiation sequence applicable to any operation. This
sequence embodies an automated process comprising a demand, offer (call for proposal),
order (proposal), and confirmation. With the algorithm, it is possible to request all available
SPs offering services and select the most suitable SP. The discussed actions and processes
then create the theoretical area that enables us to investigate, implement, and improve the
optimization algorithms, exploiting, for instance, the condition where a demand is not
valid only for the next manufacturing step but facilitates negotiating all the production
stages, including transport. In implementing the wizard-formed AASs, the basic content
element is the Component Manager (part B in the Figure 10), which brings together the
sub-models to support the functionality of the AASs. The SR negotiation algorithm begins
with the requirement for another component—namely, the mode in that no production
step is active or scheduled for the product and the production unit does not need any
service operation or resources. The Component Manager initiates negotiation to create a
Call for Proposal (CfP), which is passed on to the Interaction Manager (IM), and the IM
then sends the CfP to the service-supporting device. The communication between the
individual AASs utilizes the OPC UA communication protocol, allowing the messages to
be sent in the JSON format. The OPC UA framework alone interacts with the lower layers
of the ISO/OSI model, requiring the user to implement the application layer only (Figure
6). The data in the JSON format are well readable and ideal for debugging the algorithms
and testing the functionality; in future aggregations, a lower data size message format will
be applicable if necessary. When the waiting time for the offers has expired, the IM will
pass on the proposals available, and the negotiation algorithm will call the optimization
function to select the best bid. Subsequently, an order is created and handed over to the IM,
the SP confirms the order, and the negotiation of the next production step terminates.
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Due to the concurrent communication, the SP may encounter a situation where more
than one proposal has to be responded to before being accepted by the SR. We suggest that
the problem be resolved via one of the following approaches (for illustration, we selected
the first option):
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1. The SP will not respond to any other CfP before an acceptance or rejection is received.
This scenario involves ineffective communication arising from the undefined busy
time of the SP.

2. The SP will add the SR (sending the CfP) to a queue; if accepted, the SR’s CfP will
be handled by using one of the queue’s algorithms (e.g., first come, first served).
Moreover, the SP could inform other SRs to cancel the request.

3. The SP will add the SR (sending the CfP) to a list; if accepted, the SR will be selected
by the pre-defined priority and other SRs will be informed of the delay.

The manufacturing commands are based on the PackML standard. The product, if
on the requested spot, sends the “Start” command to change the production unit’s status
according to the current stage of the manufacturing cycle. At the end of the cycle, the
status signal “Done” appears to complete the current production phase. The negotiation
and transport are carried out until the final product has been located in the warehouse or
another outgoing point. The production process requirements for the SRs should be defined
in the CfPs, including whether the relevant data are to be retained by the production unit’s
AAS or deleted after negotiation. If the data are not to be retained, the SR will send them
again before the start of the manufacturing cycle. In the current implementation of our
AAS, the data are sent out immediately before the “Start” command; it would nevertheless
be more advantageous if the production unit’s AAS stored the CfPs’ data, mainly due
to the busy communication lines in larger-scale production. The hypothetical scenario,
however, places greater demands on the AAS’s data storage space in the case of long-term
production planning.

3.3. Interating the AASs into the Demonstrator

The COMBED system, characterized in the previous chapter, replaces the real assets
(production machines) in the factory. The simulation tool facilitates integrating a “Smart
Component” that behaves like a server. A client-server connection is then established
for each device. The client simulates a control system, such as a programmable logic
controller (PLC), and runs independently of the AAS, requiring the designer to create a
communication interface between the asset (client) and the administration shell (Figure 11).
This communication interface is formed as a tag definition, which can be sent to the asset.
In our implementation, the AAS communication driver integrates a TCP/IP connection
and sends a TCP stream; thus, it is possible to employ any communication protocol and
simply assign it to the selected AAS.
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The AAS design, whose implementation allows using any communication driver
for diverse types of assets, is indicated in Figure 10, part D. However, we have to follow
the standard for communication with I4.0 components via the I4.0 language (part A in
Figure 10). Figure 11 presents in detail the integration of different communication drivers
without rebuilding the AAS or submodels. The tags are created by using the ITag definition,
which needs to be linked to an asset—i.e., a control PLC, a distributed control system (DCS),
a database, or another component.

In the given context, Read and Write methods must be implemented to enable data
exchange. If the AAS hardware is able to use not only Ethernet but also other interfaces
(RS485/232), we can establish communication with almost any asset. The overall implemen-
tation of our AASs is carried out in C#, using NET Core to ensure platform independence.
However, there may appear a difficulty with the OPC Foundation’s local discovery server
(LDS), as this server can be installed on Windows only. In general terms, using AASs
on embedded devices or single-board PCs such as the R-Pi requires a Global Discovery
server or a different implementation of the LDS server. During the testing, MQTT-based
communication was also employed, exhibiting communication latencies lower than those
achieved by the OPC UA; in the MQTT option, however, a centralized broker had to be
utilized. Such an approach appeared to suit both the fine-tuning of the algorithms and the
whole scenario. In real-world applications, the OPC UA technology is more convenient
than MQTT because, thanks to the LDS Multicast Extension, it can be used without the
central element (broker). An administration shell is formable manually by such steps as
providing data structures, tags, and other elements during the actual development and
implementation phases; however, to simplify the generation and configuration, the wizard
characterized in the previous chapter has been developed.

3.4. Formal Modeling

In addition to the continuous-variable dynamic simulation, as outlined above, we also
created a formal model using the discrete event system technique (powered by the SimPy
library available in Python). This model reflects our use case and consists of entities such
as a machine and a product (the simulation design is depicted in Figure 12). Utilizing these
elements, we follow the command level of details; thus, every machine or product can
interact with the others via commands (such as the call for proposal, start, and unload) and
events (such as started, production phase done, and unloaded). In this context, the modeled
production then comprises the bidding sequence and the Pack-ML interaction concept.

Moreover, fault injection is incorporated into the simulation, allowing us to induce a
failure in the machine operation phase and, thus, to simulate downtimes. In failure activa-
tion, based on the assumed exponential time distribution, the machine changes its state,
informs the product, and waits a Gaussian time to facilitate the repair cycle. Meanwhile,
the product aborts the current operation to launch the negotiation routine, attempting
to find another machine to be served. To transform the simulation code into a discrete
event system, some issues must be mitigated. The relevant tasks include decomposing the
execution code into atomic chunks according to the discrete event system definition; in the
bidding interaction, adopting the separate service (machine) reservation technique instead
of reservation during CfP handling; and ensuring that the service proposal evaluation is
atomic across all the machines in the factory that are associated with the product. The
discrete event simulation can run under various conditions and settings. Thus, the machine
counts and operation times were specified as close as possible to the dynamic simulation
settings, and we incorporated the Gaussian time in every operation (manipulating, pro-
ducing). Unlike the dynamic demonstrator, we simulated random product initiation (one
product per 2 s) and applied different failure-injection procedure settings.
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4. Results

To compare the manual (via an OPC client) and automated (utilizing the presented
wizard, Figure 5) approaches to the formation of an AAS, we identified the pros and cons
qualitatively (Table 2).

Table 2. Comparing the AAS formation options.

Category Manually ConfigWizard (Automated)

Developing time very exhausting minimized
Knowledge of the developer demanding straight-forward

Modifications not featured supported
User-friendly dependable click and play

Compliance with the standard dependable hard-wired

The wizard-based designing was tested on the COMBED testbed, which contains
several machines involved in the manufacturing cycle. Each of these units is autonomous
and has an AAS capable of negotiating with other AASs. A product entering the cycle asks
for the services that allow it to be produced, and the machine is selected according to the
price and relevant associated parameters, with respect to the prespecified optimization
criterion. Importantly, the position of the machine on the assembly line is a major factor
determining how the products will be transported during the operational stages and after
completion, namely, when they are to be handed over to a distribution point or warehouse.
The advantage of autonomous machinery consists in its quick response to a failure. In
the event of a fault, the affected machine switches to the non-service state; if the problem
persists, the product can be re-routed and negotiated with another machine. After being
repaired, the machine returns to the operating mode to start offering its services again. At
this point, the unit may alter the price of the services due to the increased OEE. The testing
involved fourteen machines and nine warehouse rooms, with diverse quantities of products
entering production at different moments; importantly, the scenarios also comprised failure
and repair times. The entire simulation cycle was conceived to determine whether the



Sensors 2021, 21, 2004 14 of 20

AAS product algorithms can respond to emergencies, normal failures, and similar states
or conditions. In all of the scenarios tested, the planned products were manufactured
without operator intervention, as is typical of an ideal operating scheme. Regarding the
communication latencies, with a larger number of one-minute assets (the OPC UA clients
and servers) the delays were so long that the timeouts expired.

Initially, the tests were performed on only one PC, which hosted all of the AAS
instances. In this operation, the communication issues were not as prominent as those
that accompanied the scenario utilizing 14 computers with routers and switches, because
the local host interaction did not involve major packet delays, eliminating retransmission.
The high latency rates were primarily caused by the firewall and persisted even after
deactivation; due to this fact, MQTT replaced OPC UA, resulting in a significantly lower
latency. Considering possible origins of the issue, the OPC UA’s inferior performance
may have been induced by a bug in the applied framework. The latencies ranged from
hundreds of milliseconds in OPC UA to tens of milliseconds in MQTT; see Table 3.

Table 3. The communication statistics.

Message
Communication Type Message Count Average Time to Receive

Proposal or Refuse Message [ms]
First Product Manufacturing

Time [mm:ss]
Duration of Whole
Production [mm:ss]

OPC UA LDS and
OPC UA method call 5277 363 03:00 06:58

MQTT 6666 28 02:51 06:45
MQTT providers

using queue 1488 130 01:35 12:16

Using MQTT in a network of multiple PCs is associated with certain problems, and
these affected the AAS testing cycles on some of the computers. Generally, the issues
manifested themselves as follows: When initiated, an AAS product began to actively
negotiate the first service (Figure 13). This service, however, was being simultaneously
targeted by multiple other products, rendering the machines’ AASs unable to respond
quickly enough; thus, after the timeout has expired, the product started to renegotiate
the required item, and the collision domain became congested almost immediately. The
firewalls, switches, routers, and related network components then caused spurious compe-
tition between the messages and, consequently, their erroneous processing (Figure 14). As
the response time was found to be within units of seconds, a timeout would have had to
equal at least 10 s; such an approach, however, might eventually lead to undesired delays
in the manufacturing cycle.
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With multiple devices in the network, OPC UA appears to be more beneficial, espe-
cially if installed together with local discovery servers (LDSs) and supported by a multicast
extension (ME). This architecture, however, requires swapping the public keys (the PKI
standard); in such a procedure, each device to be registered by the LDS server provides
its public key, thus becoming a trusted item. In large networks comprising multiple LDS
servers, however, the same problem as that affecting the use of MQTT may appear.

The testing and measurement cycles allow us to conclude that MQTT does not match
conveniently with a greater number of AASs; in this context, OPC UA embodies the more
suitable option, despite the demanding implementation and the necessity of transferring
the public keys.

To test and fine-tune the algorithms, we created an environment to visualize the
messages sent between the individual assets. This procedure enabled us to define the
communication latency and the number of messages required to complete the test scenarios.
The bidding process messages are presented in Figure 15.
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Regarding the discrete event simulation, the results also indicate that the manufac-
turing cycle is capable of fulfilling the product requirements as fast as possible in normal
conditions (Figure 16); with multiple products to be served, however, the availability of free
machines becomes markedly reduced. Moreover, in a machine failure, the product opera-
tions are actively restarted without any intervention from the central system, ensuring the
completion of all products; the overall production time nevertheless increases (Figure 17).

The entire procedure, comprising 30 products, took 1.94 s using a single-threaded
engine on a normal PC and covered about 300 s of the manufacturing cycle. The following
run was characterized by the simulation time span of 31.365 s, and the computational time
equaled 15.749 s. Thus, the results exhibited a strong correlation between the simulation and
execution times, an effect that could be caused by the large amount of short-term events.
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5. Discussion and Conclusions

The results show that the ConfigWizard software allows an AAS to be formed in
a clearer and more user-friendly manner, especially as regards the specifications of the
individual submodels and their parameters, methods, and events. The automated AAS
generation process then not only saves a substantial amount of time but also utilizes rele-
vant standards according to the user-defined input data, such as the names and attributes
of the parameters. Another outcome of the research consists of exploiting the generated
AASs to create a virtual manufacturing demonstrator facilitating production management.
The interface between the AAS and the actual assets of the virtual demonstrator can be
characterized already at the stage of designing the individual AASs, via both parameteriz-
ing the communication technology and mapping the transmitted variables. The interface
of the real asset is then specifiable in the same manner. Within the presented use case, the
production management utilizes AASs that comprise functions outlined in distributed
production planning as set out through I4.0—namely, functions to enable bidding between
semi-finished products which require processing services and also between machines or
tools providing such services. The initial simulations (both the dynamic and the event sys-
tems) indicated that the manufacturing system flexibly responds to incoming requirements
for new products (by including them in the queue) and actively resolves problems associ-
ated with manufacturing faults. To optimize the applied distributed production planning,
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it is, however, necessary to perform multiple simulations, all complemented with artificial
intelligence algorithms. For this purpose, the created event- system simulation is consid-
ered the best candidate. The dynamic simulation, namely, the integration of the AASs in
the test demonstrator, yielded the manufacturing times needed to produce the virtual car.
A more significant parameter nevertheless lies in the service bidding mean time (the period
required to accept or decline a bid), which, in the described scenario (5 AASs in a local
network), ranged within lower hundreds of milliseconds. The outcomes of the discrete
event simulation point to the suitability of a short time horizon and the need of an engine
optimization process. In order to be usable by machine learning algorithms, the model
should work as fast as possible to support a high amount of simulation iterations; this
paper then proposes a convenient trade-off between the complexity and quick executability
of the model to maintain the functions sufficiently credible. A major factor supporting
smooth applicability of the system and related procedures can be identified in the fact
that the AAS actually performs its functions, using a standard communication interface to
operate in the heterogeneous environment of a manufacturing plant. The AAS is present
at all levels of automated plant management, facilitating their effective interconnection.
Thanks to the standardized parameters, attributes, events, and communication, the data
associated with the design, preparation, order, and manufacturing stages are eventually
assignable to the final product.

The future research aims and objectives involve linking the testbed to a standard
MES control enabled by an experienced production operator and testing the production
response rate, robustness, OEE, and other factors related to both of the production control
options in the same scenarios. Importantly, the use of the created discrete event system
will be further investigated too. This plan, however, involves certain limitations, especially
in that the research and real-world production testing will require the technology to be
employed in the entire manufacturing plant; such a precondition then means that the
lengthy fine-tuning and commissioning may generate substantial costs. In this context, the
testbed facilitates monitoring and improving the functionalities and responses to diverse
errors and nonstandard situations.
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