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Abstract: This work presents a method for estimating key quality indicators (KQIs) from measure-
ments gathered at the nodes of a wireless network. The procedure employs multivariate adaptive
filtering and a clustering algorithm to produce a KQI time-series suitable for post-processing by the
network management system. The framework design, aimed to be applied to 5G and 6G systems,
can cope with a nonstationary environment, allow fast and online training, and provide flexibil-
ity for its implementation. The concept’s feasibility was evaluated using measurements collected
from a live heterogeneous network, and initial results were compared to other linear regression
techniques. Suggestions for modifications in the algorithms are also described, as well as directions
for future research.
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1. Introduction

Real-time service quality assessment is one of the critical aspects of modern wireless
networks. However, its practical implementation faces some challenges. One of them is
scalability: the sustained increase in the number of nodes demands fast, stable, and dis-
tributed data processing. IoT and M2M scenarios encountered in 5G and beyond systems
put even more pressure on the monitoring systems to cope with the constant increment of
traffic volume.

A second aspect is a need, from the service perspective, to measure quality indicators
at different protocol or abstraction levels. Examples are interference level at the physical
layer, delays at the MAC and network layers, and net data rate at session or application
layers. The latest application layer indicators, also called key quality indicators (KQIs) [1],
are especially relevant for the management of cellular networks. KQIs directly measure the
service performance that the user experiences when executing particular services (e.g., web
browsing, file download, video streaming [2], and video games [3]). A service provider
can then use selected KQIs to improve its network operation and plan further expansions.
Furthermore, when the final user of the system is a person, KQIs can be used to estimate
subjective indicators, such as the mean opinion score (MOS) for voice services and PEVQ
(perceptual evaluation of video quality) [4].

A third difficulty is implementing mechanisms that provide real-time assessment
of the network status, potentially impacting the service provider’s OPEX and CAPEX.
The scope of self-organized networks (SONs) [5] aims to address these demands.

Although indispensable for these three aspects, acquiring the KQIs implies facing
considerable obstacles. Firstly, KQIs are out of the operator’s measurable scope, as they are
part of the application layer. Although monitoring applications or deep packet inspection
might be a solution to access such measures, the growing use of end-to-end high layer
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encryption and concerns about users’ privacy can make those approaches unsuitable for
the task.

In this context, modeling KQIs from lower layer (accessible by the operator) mea-
surements can be vital to estimate the application specific user performance. We look for
computationally efficient algorithms capable of providing online results and suitable to
be implemented in different network nodes, such as UEs, eNBs, and EPCs [6]. Simultane-
ously, the outputs of these algorithms are also time-series. The availability of time-indexed
data is useful for additional post-processing by the operations and management (OAM)
subsystem, where flexibility is a desirable feature to enable new choices of digital signal
processing algorithms and the application of different machine learning (ML) techniques.

ML techniques are expected to play a relevant role in the management of wireless
networks, as described by Ali et al. [7] and by Boutaba et al. [8]. Recent examples in the
literature are given by Wang et al. [9], where the authors presented a robust architecture for
artificial intelligence-enabled Internet of Things (AIoT) systems, and by Fiandrino et al. [10],
which described an ML based general framework to optimize the operation of 5G and
beyond networks. Machine learning mechanisms, such as recursive neural networks
(RNNs), are also being applied to address other challenges in the context of cellular
networks, as detalied by Wang et al. [11] on the security issue of voice cloning.

Narrowing the range of applications, one of the purposes of ML in wireless networks
is the automation of service provisioning with a focus on the quality of service (QoS) and
quality of experience (QoE), where KQIs provide relevant information for numerical pro-
cessing by the ML algorithms. In this field, the work by Herrera-Garcia et al. [1] addressed
the problem of KQI modeling using an ML approach based on regression techniques, but it
did not consider an online, dynamic construction of the models. Baena et al. [12] extended
the regression approach to consider the time dependency of KQI modeling in a video ser-
vices scenario. However, the method requires prior knowledge of some parameters related
to network configuration. Fan et al. [13] also proposed an ML based method to map KPIs to
KQIs using sliding-window partitioning and random forest algorithms, but again without
an explicit model for dynamic regression. Additional studies by Fortes et al. [14–17] have
focused on the use of other high layer contextual information (e.g., location, social data)
to support the management process in correlated yet different contexts (mainly SON),
without explicit reference to multivariate time-series processing algorithms.

Going beyond the described state-of-the-art, the present paper defines a novel frame-
work for estimating KQIs based on multivariate adaptive filters in conjunction with an
ML clustering algorithm. The main distinction between this work and the ones mentioned
above is twofold: First, it contains an explicit description of a time based approach suitable
for online KQI modeling. This method has the flexibility to be used in conjunction with
other ML techniques, and we provide suggestions of different algorithms that can be used
within the general framework. The second distinction is the possibility to obtain distinct
KQI models from measurements when facing a nonstationary environment or when there
are different service configurations.

Adaptive filtering algorithms have suitable characteristics for dynamic KQI modeling,
such as online training, flexibility to provide linear and non-linear mappings, the capability
to handle multivariate time-series, and fast execution. Furthermore, it naturally provides
an indicator of accurate modeling in a stationary environment, namely the estimation error
obtained in the training phase. Proper handling of this estimation error in conjunction with
a clustering algorithm is the basis of the framework, and to our best knowledge, it has not
yet been applied to the problem of KQI modeling in wireless networks.

The rest of this paper is organized as follows: Section 2 provides the mathematical
formalization for the problem and the notation used in the rest of the text. Section 3 presents
the general description of the framework, while Section 4 details the algorithms used for
KQI modeling in a non-stationary context. Section 5 shows (i) an initial assessment of the
proposed approach using collected data from a real environment and (ii) open research
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challenges using the same general framework, but with different algorithms and slight
variations. Finally, Section 6 summarizes the conclusions of this work.

2. Notation, Hypothesis, and Simplifications

Measurements gathered from wireless networks may be very different in nature and
are originated from distinct network elements with different purposes. Here, we make one
basic distinction between measurements, parameters, and auxiliary data.

Here, we call measurements what we get from the network. Typical representa-
tives are:

• Data from the PHY/MAC protocol layers that can be obtained from the nodes. Typical
examples are RSSI (received signal strength indicator) measured in eNB and drive
tests logs.

• Classical KPIs from eNBs related to mobility and connection management, such as
handover success rate and dropped call rates.

We call parameters data whose values:

• Can be set in equipment, such as: UE transmitter power; number of RF carriers;
antenna downtilt;

• Numbers that characterizes a service: the minimum data rate for data services; max-
imum acceptable delay; file data size; network bandwidth. The popularization of
software-defined radio (SDR) equipment can naturally blur the distinction between
these two subgroups.

Finally, we call auxiliary data information that can be gathered from other sources
than the wireless network, such as service type (video streaming, text messages, VoIP) and
georeferenced information (demographic profiles, RF propagation environment).

In the rest of the text, we will use the notation defined in Table 1.

Table 1. Mathematical notation: main symbols with short descriptions.

Symbol Meaning

M,K,S ,A general sets of (respectively): data measurements, KQIs, network status
and actions

FXY(·) mapping between sets X and Y
n, j, i indexes used, respectively, for: time instant, input data channel, and

time-series segment
Mn multivariate measurements gathered at time n, dimensions dm × 1

mj
n jth (from dm) measurement gathered at instant n

mj
L,n jth measurement time-series window from time n− L + 1 up to n, dimen-

sions 1× L
KQItarget

n selected KQI to be modeled, at time n
{wM} generic weights of adaptive filters

wj
M,n jth (mapping) adaptive filter weights at time n, dimensions L× 1

wj
P,n jth (prediction) adaptive filter weights at time n, dimensions L× 1

eP,j
n jth prediction error at time n

eM
n mapping estimation error at time n

Using these definitions and notation, we can state our main working hypothesis:

Hypothesis 1. Time stamps that come from different sources are consistent, i.e., the algorithms
perform on the same sequence of time instants [t1 t2 · · · tn] for all measurements.

Hypothesis 2. The set K can be obtained from M. In this front, some effort has been made to
organize the set of measurement reports in standardization forums [18–20].
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3. Reference Model

The proposed approach is based on the global architecture of Figure 1. From the
measurements M obtained from the network, with the aid of information in auxiliary
databanks, a mapping FMK(·) is built to construct the set of KQIs K. Further processing
can be used to obtain the maps FKS(·) to obtain the network status S from the KQIs,
as well FSA(·), which maps S to the set of network parameters and actions A.
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Figure 1. General information flow for SON status prediction and assessment through KQI modeling and processing.
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can be added to the {wM}train and {wP}train sets. Changes in Mn, such as an modification148

of a service parameter, will result in different weights due to the tracking nature of the149

adaptive filters.150

These new elements can be labeled with an index that represents a quasi-stationary151

section of a general non-stationary behavior. The strategy is to build not only a single152

map, but a dictionary of maps (or atlas) that provides the system a set of representa-153

tions of the output space K as functions of the input space M, for different service154

or network conditions. At the operation phase, the ND mechanism can be used as a155

trigger to identify a new network operation regime not yet represented by {wM}train and156

request new maps to be added to the current atlas.157

One possible approach to build new maps from the available data, at the training
phase, is the utilization of the prediction errors

eP,j
n = mj

n − m̂j
n (5)

j = 1, 2, · · · , dm, where m̂j
n is the estimation of the jth measurement at instant n made158

by the adaptive predictor. Analogously, the estimation error eM
n can also be used. By159

monitoring the values of eP,j
n and eM

n , it is possible to take a decision whether a new map160

is needed or not.161

4. Proposed Algorithms162

This section describes the specific algorithms developed to implement the KQI163

modelling functionality as defined in the previous section. These include the mecha-164

nisms associated to the determination of linear mappings.165

4.1. Determination of Linear Mappings166

A multivariate time series with dm channels mj
n, j = 1, 2, · · · , dm, is the input of a

bank of dm adaptive filters aimed to produce an estimation K̂QI
target

n . For the sake of sim-
plicity, we use a bank of linear finite impulse response (FIR) predictors with coefficients
wj

M,i, all with the same order L:

K̂QI
target

n =
dm

∑
j=1

L−1

∑
i=0

mj
L−i wj

M,i =
dm

∑
j=1

mj
L,nwj

M,n. (6)

The mapping estimation error is used to update all the filter coefficients.

eM
n = KQItarget

n − K̂QI
target

n (7)

Figure 1. General information flow for self-organized network (SON) status prediction and assessment through key quality
indicator (KQI) modeling and processing.

The present work focuses on the problem of building the map FMK(·), using times-
tamped information originated from measurements at the physical layer, as well from
service parameters.

Before going to the formal aspects, we briefly discuss qualitatively the main framework
designed to obtain FMK(·). The procedure can be divided into four steps: mapping,
segmentation, clustering, and operation. Here, it is assumed that the set of training time-
series is a good representation of the measurements (or input) space and that there is also a
set of KQI time-series available for training, representative of the output space.

To produce the KQI mapping, we use a multichannel linear adaptive filter [21,22]
with dm inputs, each one from a specific measurement m1

n, m2
n, · · · , mdm

n collected at
instant n. A selected KQItarget

n is used to train the bank of filters, and the coefficients wj
M,n,

j = 1, 2, · · · , dm, build the map FMK(·).
It is worth mentioning that if the inputs are non-stationary, the adaptive filter will

track the changes in the input space, and the set {wM} will convey only the latest repre-
sentation of KQItarget at the output space. If there is a need to cope with changes of regime,
a mechanism for detecting them is needed. In such a case, a possible solution is to store the
correspondent set of weights for each stationary section, as discussed further. This step is
called segmentation.

In parallel, the same input sequence Mn is used to build a set of autoregressive models
wj

P,n, j = 1, 2, · · · , dm. The purpose of this second filter bank is to provide a representation
of the input space that can be used in the operation phase. Again, a set of dm adaptive
predictors can be used to extract the parameters that represent the input space.

At the end of this step, both sets of weights, generically referred to as {wM}train

and {wP}train, are stored to be used in the next phases. The full architecture is depicted
in Figure 2.

The third phase, clustering, is aimed at extracting only the non-redundant models on
the sets {wM}train and {wP}train. This step is not strictly mandatory, but it was adopted as
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part of the framework with the objective of reducing the number of parameters needed to
rebuild KQItarget

n from the information available from the input space.
At the last step, the operation phase, new samples of the measurements are fed into

a bank of predictors, using the same architectural structure used in the training step.
Now, the system is constantly producing {wP}oper, which can be compared with {wP}train to
recover the correspondent {wM}train. A criterion of the minimum distance between {wM}train

and {wM}oper is used to select the best mapping in real time.

Figure 2. Adaptive filters used to construct representations of the measurement set Mn (inputs) and output space (KQIs).
Left: representation of a single adaptive filter with external training data dn (top), used as adaptive predictor (bottom);
middle: multivariate adaptive filters (KQI mapping and multichannel predictors), for a single time-series segment; right:
complete set of filter weights after the training phase.

The idea behind the model is simple, and it can be used in conjunction with anomaly
detection (ND) schemes [23–26] to identify changes in the input space in the non-stationary
scenario. This can be done in both the training and operation phases. In the training phase,
if there are significant alterations in the input space, new elements can be added to the
{wM}train and {wP}train sets. Changes in Mn, such as a modification of a service parameter,
will result in different weights due to the tracking nature of the adaptive filters.

These new elements can be labeled with an index that represents a quasi-stationary
section of a general non-stationary behavior. The strategy is to build not only a single map,
but a dictionary of maps (or an atlas) that provides the system a set of representations of
the output space K as functions of the input space M, for different service or network
conditions. In the operation phase, the ND mechanism can be used as a trigger to identify
a new network operation regime not yet represented by {wM}train and request new maps to
be added to the current atlas.

One possible approach to build new maps from the available data, in the training
phase, is the utilization of the prediction errors:

eP,j
n = mj

n − m̂j
n (1)

j = 1, 2, · · · , dm, where m̂j
n is the estimation of the jth measurement at instant n made by the

adaptive predictor. Analogously, the estimation error eM
n can also be used. By monitoring

the values of eP,j
n and eM

n , it is possible to make a decision about whether a new map is
needed or not.

4. Proposed Algorithms

This section describes the specific algorithms developed to implement the KQI mod-
eling functionality as defined in the previous section. These include the mechanisms
associated with the determination of linear mappings, namely adaptive filers.

Adaptive filters make use of a recursive, sample based rule to update their parameters
(or weights w). If the input environment is a stationary process, after a certain number
of iterations, the weights will converge (in some statistical sense) to values regarded as
optimum when they minimize a certain cost function J(w). Among different options for
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the algorithms, there are two common families of adaptive filters that provide solutions
for the recursive problem of weight update, based on the formulation of J(w). The first
is LMS based, derived from a statistical approach, where the steepest descent algorithm
is widely used. The second is RLS based, where variations of the recursive least-squares
algorithm are applied. The area of adaptive filtering is mature [27], and it was chosen
due to: (i) simplicity of training, (ii) well-known properties of convergence and stability,
and (iii) broad choice of options among existing algorithms.

4.1. Determination of Linear Mappings

The input of the multichannel adaptive filter responsible for providing FMK(·) is a
multivariate time-series with measurements mj

n, j = 1, 2, · · · , dm. For the sake of simplicity,
we chose a finite impulse response (FIR) configuration with the same order L for each
channel. A buffer of L past samples of each input channel j is then used to produce the
correspondent jth output, as depicted in Figure 2. The output of all dm filters is now
combined to produce K̂QI

target

n :

K̂QI
target

n =
dm

∑
j=1

mj
L,nwj

M,n. (2)

The difference between the estimative and the selected KQItarget
n , the mapping error, is:

eM
n = KQItarget

n − K̂QI
target

n . (3)

To provide processing speed and avoid numerical instability, we used the least-mean
squares (LMS) algorithm to update the coefficients of each channel:

wj
M,n+1 = wj

M,n + 2µ eM
n mj

L,n, (4)

where µ is the step-size parameter of the LMS algorithm. Section 5.9 contains a brief
discussion on different algorithms that may be used to update the coefficients. After
convergence, the FMK(·) mapping is stored as the set {wM}train of all coefficients wj

M,n.
For the multichannel adaptive filter used to build the jth autoregressive model wj

P,n

associated with the jth measurement, we calculated the corresponding prediction error eP,j
n :

eP,j
n = mj

n −mj
L,n−1wj

P,n. (5)

We also used the LMS rule to update the regression coefficients for each channel j,
j = 1, 2, · · · , dm:

wj
P,n+1 = wj

P,n + 2µ eP,j
n mj

L,n−1, (6)

Again, all prediction filters have the same order L, and after convergence, the autore-
gressive coefficients constitutes the set {wP}train. We also point out that there is no need to
use the same order L for both mapping and prediction filters.

For the stationary case, both sets {wM}train and {wP}train will contain dm elements,
each one of length L. Due to the tracking nature of adaptive filters, in a non-stationary
environment, there is a need to identify changes in the input data that lead to a different
FMK(·). Therefore, a new time-series segment should be detected, and the corresponding
mapping and predictor weights must be stored. Using i as the index for the segments,
the weights for prediction and mapping, as well the prediction and estimation errors are
expressed respectively as wj,i

P,n, wj,i
M,n, eP,j,i

n , and eM,i
n . If S is the number of segments, by the

final training phase, there will be an atlas of S linear mappings for KQI estimation, as well
as S banks of autoregressive models. A set of S · L · dm parameters will then represents
FMK(·).
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4.2. Detection of Quasi-Stationary Segments

The detection of a new quasi-stationary state si+1 can be performed by different
anomaly (or novelty) algorithms, such as PCA [28], convolutional neural networks [29],
and the Kullback–Leibler divergence [25]. The proposed approach uses the available set of
dm × S prediction errors eP,j,i

n and a threshold γMAX as follows: for all i segments, verify if:

γi =
dm

∑
j=1

∥∥∥eP,j,i
n

∥∥∥
2
≥ γMAX (7)

is true. If γi ≥ γMAX for all segments, none of the previous i mappings is considered
suitable, and a new segment is added. We justify the use of the prediction errors because a
regime change in a single channel may lead to a different FMK(·). Now, the corresponding
coefficients wj,i+1

M,n and wj,i+1
P,n are updated according to Equations (4) and (6). No further

modifications are made on any other filter coefficients, and the process continues while
there is available training data.

Other criteria can be used to detect a new segment using the information available
from the training, such as a weighted combination of eP,j,i

n (in j index) to favor selected
measurements. Utilize the mapping error eM,i

n in conjunction with the prediction errors is
also possible, but in our approach, only the prediction errors are available in the operating
phase. Another option is to define a dissimilarity metric in the feature space, i.e., use the
distance between {wM,n}train or {wP,n}train and their past versions at some previous instant
n− T. Here, a threshold is also needed.

4.3. Clustering Phase

After segmentation, there is a total of S ≥ 1 segments. Clustering can be performed
on
{

wi
P

}train or simultaneously in both sets
{

wi
P

}train and
{

wi
M

}train (i = 1, 2, · · · S). The latter
option is preferred, as the clustering procedure should preserve the mappings FMK(·).
For instance, when using the self-organizing map (SOM) algorithm, its inputs would be:

xi
in =

[
wi

M

wi
P

]
, (8)

for i = 1, 2, · · · , S. For moderate values of S, e.g., S ≤ 50, simpler methods of clustering
can be performed, such as k-means.

4.4. Operation Phase

In this stage, new measurements are presented to the system. The mapping infor-
mation is encoded in the sets

{
wi

M

}train and
{

wi
P

}train. A prediction of the measurements
is performed in this phase in the same fashion as in the training phase. The coefficients
{wP}oper are compared with all

{
wi

P

}train, and the segment with the nearest distance is
selected, i.e., choose the segment indexed by s∗ such that:

∥∥∥ws∗ ,train
P −woper

P

∥∥∥
2

(9)

is minimum. Using the associated map coefficients ws∗,train
M , the estimation of the KQI is

produced. The complete procedure, implemented with the LMS algorithm, is presented as
pseudocode in Algorithm 1.

The computational cost of the whole procedure and the memory requirements will
strongly depend on the implementation choices. For instance, the number of arithmetic
sums and multiplications for a typical LMS based algorithm is linear with the filter order L.
Considering the multivariate approach with dm measurements, it remains linear, but now
with order L× dm. The same general observation applies to the clustering algorithms, such
as k-means, where the complexity depends on the number of clusters, the dimension of the
input data set (here L), and the number of elements of the input data (here S× dm).
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Algorithm 1 KQI modeling using LMS multivariate adaptive filtering as pseudocode.

% Initialization
Define LMS parameter µ, the order L of adaptive filters, and threshold γMAX

Assign small random values to all
{

wi
M

}train and
{

wi
P

}train coefficients
% Training Phase
for Every time step n do

% ADAPTIVE FILTERING
Select the ith category to update the coefficients

{
wi

M

}train and
{

wi
P

}train

Update mapping and prediction errors from Equations (3) and (5)
Update filter coefficients using Equations (4) and (6)

% TEST FOR NEW STATIONARY SEGMENT
for All i current segments do

Check if a new segment is needed using Equation (7)
if γi ≥ γMAX then

Add a new segment, and select it for weight update
end if

end for
end for
% Clustering Phase
Perform simultaneous clustering on the {wP}train and {wM}train sets
% Operating Phase
for Every time step n do

Update prediction filter coefficients {wP}oper using Equation (6)
Calculate the distances from {wP}oper to all entries in the clustered {wP}train set
Select index s∗ corresponding to the least distance according to Equation (9)

Use s∗ to recover the corresponding
{

ws∗
M

}train

mapping coefficients
Use Equation (2) to estimate the desired KQI

end for

The next two sections show preliminary computational results with the purpose of
assessing the framework concept. A systematic analysis, in different scenarios and with
detailed statistical analysis of the results, is reserved for future investigations.

5. Concept Evaluation: Experiments, Results, and Discussion

The first set of computational experiments was conducted to assess the capability
of the framework to model a chosen KQI from a single set of measurements. The data
were based on the execution of the service file downloaded via FTP, and all experiments
were conducted in the UMAHetNetnetwork [30]. The dataset, as described by Herrera-
Garcia et al. [1], the details of which are further described throughout this section, provides
a key example of KQIs at the application layer under variable configurations and radio
situations. It also allows for a direct comparison with other regression mechanisms applied
in that work.

In this way, a single campaign dataset was used for training the system and to produce{
wi

M

}train and
{

wi
P

}train. The purpose of this setup is to validate the capability to perform
segmentation and use the segments to recover the correct

{
wi

M

}train from
{

wi
P

}oper. The same
data are used in Figures 3–8.

5.1. Measurement Dataset

Five measurements and three KQIs from the FTP service were used, as depicted
in Table 2. Among these, three of them are related to RF MAC/PHY layer parameters,
namely RSSI, RSRP (reference signal received power), and RSRQ (reference signal received
quality), and two of them are parameters related to the provisioning of the FTP service:
network bandwidth and file size. KQIs to be modeled are transmission rate, session total
time, and session setup time.
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Table 2. Dataset used in the experiments from UMAHetNet. RSRP, reference signal received power;
RSRQ, reference signal received quality.

Signal Type Variable

RSSI RF PHY m1
n

RSRP RF PHY m2
n

RSRQ RF PHY m3
n

Network bandwidth Parameter (4 values) m4
n

File size Parameter (8 values) m5
n

Transmission rate FTP KQI k1
n

Session setup time FTP KQI k2
n

Session total time FTP KQI k3
n

5.2. Data Pre-Processing

Due to the large difference in the order of magnitude of the measurements and pa-
rameters, a normalization procedure was applied in order to mitigate numerical bias. All
data were normalized to the range [−1, 1]. It is worth mentioning that the final results may
change if a different normalization procedure is applied or if another range is used. Fur-
thermore, data from the lower layers are typically contaminated with noise and subjected
to large variations due to the dynamic nature of the wireless channel. To this end, in these
experiments, all PHY measurements (RSSI, RSRP, and RSRQ) were also filtered by a simple
moving average filter with a window length of five samples.

5.3. Time-Series Segmentation and Prediction of Measurements

A graph of the number of segments, or categories, obtained in the training phase for
the current example is depicted in Figure 3. The events that triggered the inclusion of a
new segment were large prediction errors. In this case, the figure shows that the number of
segments obtained at the end of the training phase was S = 16. It is interesting to note that,
in this particular case, new segments were added due the changes of measurements m4

n
and m5

n (see Figure 4).

Figure 3. (left) evolution of the number of categories during the training phase. Compare with Figure 4. (right) typical
behavior of the number of categories as a function of γMAX .
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Figure 4. Left: input signals and sum of prediction errors (not in scale). Right: corresponding
prediction and estimation errors. Dashed lines correspond to events with large prediction errors.

training phase. Alternatively, it is possible to use robust techniques with the objective of avoid point227

anomalies that may unnecessarily increase the number of mappings.228

5.4. Clustering229

For this example, the number of segments is S = 16. This is a relatively low number, and just for230

illustration purposes, we applied a k-means algorithm on the sets of {wP}train and {wM}train. Now, the231

raw data used as input to the clustering algorithm must be associated with the joint set of weights,232

according to Eq. 11.233

As the filter order is L and the number of predictors is dm, the elements of {wP}train and {wM}train

were stored as L × dm matrices. A first option would be to perform the clustering directly on the
matrices, but here we used a different method for visualization purposes. For each input vector xi

in,
we extracted two numbers: its mean αi and its standard deviation σi.

xi
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M

wi
P

]
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]
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The pair of numbers
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αi σi]T was then submitted to a k-means clustering algorithm with 5 classes.234

Results are depicted in Figure 6, where it is possible to notice the grouping of sequential indexes, in235

accordance with Figure 3. At this stage further analysis and improvements could be proposed but236

have been not tested such as perform the clustering taking into the account the relative frequency of237

utilization of each segment.238

5.5. Mapping and Estimation Errors239

In Figure 7 it is possible to verify the performance of the LMS-based multivariate adaptive filter240

that produces the set of coefficients {wM}train. The chosen KQI is "Session Total Time", expressed as a241

linear combination of RSSI, RSSQ, RSSP, Bandwidth and File Size. At this phase, it is expected that the242

estimation performs well, as long the step-size parameter µ and the filter order are properly set. In the243

particular case studied here, the waveforms m4
n and m5

n have constant values, leading to numerical244

convergence potential problems if the filter order is too high and if stabilization procedures are not245

taken.246

Figure 4. (left) input signals and sum of prediction errors (not in scale). (right) corresponding prediction and estimation
errors. Dashed lines correspond to events with large prediction errors.

Figure 3 (right) also illustrates the typical dependence of the number of categories
S according to the threshold γMAX, as a result of the procedure described in Section 4.2.
As the number of categories is ultimately determined by the threshold γMAX , it is recom-
mended to perform an intermediary step to optimize the threshold value. A brief analysis
of this issue can be found in Section 5.9.

The prediction for mj
n, j = 1, 2, · · · , 5, was implemented using one-step ahead predic-

tors of order L = 4. Further adjustment of filter order and its effect on the final results are
also expected to be performed in a further parameter optimization phase. As an example
of the performance of the predictors, Figure 4 depicts, on the left, the five measurements
and the sum of their correspondent prediction errors. At the bottom of the figure, it is
possible to note the larger prediction errors eP,j

n at transitions of file size or bandwidth due
to parameter changes. The graph on the right shows the same prediction errors at the
bottom and, with a displacement of one unit in the y-axis, the correspondent mapping
estimation errors eM

n for each category.
At the end of the procedure, a dictionary with all {wP}train and {wM}train is produced.

As an example, Figure 5, gives the first six sets of weights (first row: {wM}train; second row:
{wP}train). It is possible to notice, even visually, that segments 1 and 2 are similar, as well as
Segments 5 and 6. This justifies the possible need for a clustering procedure on the set of
filter coefficients at the end of the training phase. Alternatively, it is possible to use robust
techniques with the objective of avoiding point anomalies that may unnecessarily increase
the number of mappings.



Sensors 2021, 21, 2017 11 of 19

Figure 5. Map (first row) and prediction (second row) weights in the training phase, for the first six (from 16; see Figure 3)
time-series segments. Each line in a graph represents the j-th group of coefficients associated with measurement mj

n.

5.4. Clustering

For this example, the number of segments is S = 16. This is a relatively low number,
and just for illustration purposes, we applied a k-means algorithm on the sets of {wP}train

and {wM}train. Now, the raw data used as input to the clustering algorithm must be
associated with the joint set of weights, according to Equation (8).

As the filter order is L and the number of predictors is dm, the elements of {wP}train

and {wM}train were stored as L × dm matrices. A first option would be to perform the
clustering directly on the matrices, but here, we used a different method for visualization
purposes. For each input vector xi

in, we extracted two numbers: its mean αi and its standard
deviation σi.

xi
in =

[
wi

M

wi
P

]
7→
[

αi

σi

]
(10)

The pair of numbers
[
αi σi]T was then submitted to a k-means clustering algorithm

with five classes. Results are depicted in Figure 6, where it is possible to notice the grouping
of sequential indexes, in accordance with Figure 3.
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Figure 6. Result of k-means clustering with 5 categories. Cluster centers are indicated by red
crosses.

potential problems if the filter order is too high and if stabilization procedures are not272

taken.273

Samples

0 200 400 600 800 1000 1200 1400
-1.5

-1

-0.5

0

0.5

1

1.5
KQI estimation from adaptive filter (train oly)

Figure 7. KQI "FTP Session Total Time" as a function of RSSI, RSSQ, RSSP, Bandwidth and File
Size (colored by segment). Black: original data. Result obtained using LMS-based multivariate
FIR adaptive filter.

5.6. KQI Reconstruction from the Prediction Coefficients274

Figure 8 shows the Session Total Time KQI recovered from the prediction coeffi-275

cients. At the operation phase, coefficients {wP}oper are compared with {wP}train. The276

closest set of coefficients at {wP}train is selected and the corresponding {wM}train are used277

to recover the KQI from the inputs. The reliability of the system depends on the consis-278

tent pairing of {wP}train and {wM}train: if there are similar prediction weights associated279

with different mapping weights, ambiguities at the operation phase will result in poor280

recovering.281

Figure 6. Result of k-means clustering with five categories. Cluster centers are indicated by red crosses.

At this stage, further analysis and improvements could be proposed, but have not
been tested, such as performing the clustering taking into account the relative frequency of
utilization of each segment.

5.5. Mapping and Estimation Errors

In Figure 7, it is possible to verify the performance of the LMS based multivariate
adaptive filter that produces the set of coefficients {wM}train. The chosen KQI is “session
total time”, expressed as a linear combination of RSSI, RSSQ, RSSP, bandwidth, and file
size. In this phase, it is expected that the estimation performs well, as long as the step-
size parameter µ and the filter order are properly set. In the particular case studied here,
the waveforms m4

n and m5
n have constant values, leading to potential numerical convergence

problems if the filter order is too high and if stabilization procedures are not taken.
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Figure 7. KQI "FTP Session Total Time" as a function of RSSI, RSSQ, RSSP, Bandwidth and File
Size (colored by segment). Black: original data. Result obtained using LMS-based multivariate FIR
adaptive filter.

KQI AMVTS LR SW-LR SVR
Transmission rate 0.95 0.66 0.89 0.82
Session setup time 0.57 0.14 0.34 0.57
Session total time 0.03 0.03 0.05 -0.01

Table 3. Comparison with other linear regression techniques using R2 performance metric (results
from [1]).
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is discrete and relatively small, one alternative is to keep all measurements and KPIs as the only292

signals to be used as inputs of the adaptive filters, and use the information in the service parameters293

as pointers to specific subsets of wj,k
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M,n. Clustering can be then performed to identify which294

group of parameters lead to similar representations.295
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Another interesting possibility is the utilization of the reverse mapping F−1
MK(·), using the KQIs299

as the input time series and the measurements as outputs. A content service provider (SP), such300

as streaming video service, may need to know if the wireless network is capable of providing a301

pre-defined level of quality. In this scenario, the SP would infer the values of KPIs and PHY/MAC302

measurements and adjust all service configurations accordingly.303
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Figure 7. KQI “FTP session total time” as a function of RSSI, RSSQ, RSSP, bandwidth, and file size
(colored by segment). Black: original data. Result obtained using the LMS based multivariate FIR
adaptive filter.
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5.6. KQI Reconstruction from the Prediction Coefficients

Figure 8 shows the session total time KQI recovered from the prediction coefficients.
In the operation phase, coefficients {wP}oper are compared with {wP}train. The closest set
of coefficients in {wP}train is selected, and the corresponding {wM}train are used to recover
the KQI from the inputs. The reliability of the system depends on the consistent pairing
of {wP}train and {wM}train: if there are similar prediction weights associated with different
mapping weights, the ambiguities in the operation phase will result in poor recovery.

Figure 8. Blue: recovered KQI from {wP}oper. Black: original data; blue: recovered KQI. Compare
with Figure 7.

5.7. Setup for Validation

For comparison purposes, from the same dataset used so far, nMAX = 400 samples
were selected, now divided into disjoint training and testing subsets. As the predictor filters
require a time window of length L from the input series to produce an estimate, the test
samples cannot be randomly chosen as a single measurement Mn. With the objectives of
(i) providing a preliminary assessment of the method and (ii) maintaining the sequential
operation of the adaptive filters in the operation phase, one out of p samples from the
dataset were taken sequentially through all measurements. This extraction results in two
disjoint subsequences, both ordered in time, with lengths nMAX · (p− 1)p−1 and nMAX · p−1.
The first subsequence is used as the training set and the second as the testing set.

Figure 9 depicts results using LMS filtering. In this example, we set p = 10 to obtain
the graph at the left, where it is possible to verify that the reconstructed signal follows
the changes of the original KQI used for training. The coefficient of determination R2 was
used to evaluate the algorithm’s performance. This figure of merit measures how much
the variance of a dependent variable (i.e., the estimated KQI) can be predicted from an
independent one (i.e., the measured KQI). This is a widely extended measure to quantify
the quality of regression mechanisms [31]. R2 absolute values are defined in the range [0, 1],
where a value of one implies a perfect fit.

In this scenario, the approach provided a value of R2 = 0.95, showing a very high
performance. In the same Figure 9, on the right, it is possible to verify some degradation of
the performance if there is a reduction of p. As smaller values of p reflect an increase in the
proportion between testing and training sets, this behavior is expected.
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Figure 9. Recovered KQI from {wP}oper at left (a). Black: original data; blue: recovered KQI. Red dots are samples used for
testing, not present in the training data. At right (b), the effect of the size of the training set in R2.

5.8. Optimization of Free Parameters

Table 3 contains a list of parameters that can be optimized in the training phase.
From them, we selected the threshold γMAX, directly related to the number of
detected segments.

In this evaluation, the number of segments was limited to a maximum value SMAX,
with five different values: 4, 8, 12, 16, and 20. For each value of SMAX, the threshold was
changed from 10−3 to 10−1. The effect on the mean squared value of the estimation error:

eest
n = KQItarget

n − K̂QI
target

n (11)

is depicted in Figure 10.

Figure 10. Estimation MSE (left) and coefficient of determination R2 (right) as a function of prediction error threshold γMAX

using different values for the maximum number of segments SMAX .

Figure 9. Recovered KQI from {wP}oper at left (a). Black: original data; blue: recovered KQI. Red dots are samples used for
testing, not present in the training data. At right (b), the effect of the size of the training set in R2.

5.8. Optimization of Free Parameters

Table 3 contains a list of parameters that can be optimized in the training phase.
From them, we selected the threshold γMAX, directly related to the number of
detected segments.

In this evaluation, the number of segments was limited to a maximum value SMAX,
with five different values: 4, 8, 12, 16, and 20. For each value of SMAX, the threshold was
changed from 10−3 to 10−1. The effect on the mean squared value of the estimation error:

eest
n = KQItarget

n − K̂QI
target

n (11)

is depicted in Figure 10.

Figure 10. Estimation MSE (left) and coefficient of determination R2 (right) as a function of prediction error threshold
γMAX using different values for the maximum number of segments SMAX .
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Table 3. Free parameters to be optimized.

Parameter Meaning Algorithm

µ LMS step size LMS
L Order of FIR filters LMS
γMAX Prediction error threshold Segmentation

Optimization of γMAX is important to achieve good performance, but the other pa-
rameters from Table 3 also have an effect on R2 (or equivalently, on MSE). In particular,
the order of the FIR filters L cannot be made too large to avoid numerical instabilities.
Furthermore, the LMS step µ has an optimal value that depends on the eigenvalues of the
correlation matrix of the input data [32]. Results from Figure 10 were obtained with L = 4
and µ = 0.15, and similar outcomes were observed with simulations within the ranges of
L ∈ (2, 8) and µ ∈ (0.05, 0.25).

Table 4 shows the results from this framework, labeled AMVTS (adaptive multivariate
time-series), compared with other linear regression techniques using the R2 parameter
as a metric for comparison. We chose linear regression (LR), stepwise linear regression
(SW-LR), and support vector regression (SVR), as detailed by Herrera-Garcia et al. [1],
where the authors used the same dataset. As can be seen, AMVTS obtains values up to
0.95 for “transmission rate”, improving the good performance of SVR for this KQI by 6%.
Moreover, AMVTS achieves the same performance with the best “session setup time” KQI
technique, where the performance was 0.57. AMVTS performed worse only with the KQI
“session total time”, where all linear techniques had poor results due to the fact that these
KQIs’ values were nearly constant and completely dependent on the computational speed
of the FTP server.

Table 4. Comparison with other linear regression techniques using the R2 performance metric
(results from Herrera-Garcia et al. [1]). AMVTS, adaptive multivariate time-series; SW-LR, stepwise
linear regression.

KQI AMVTS LR SW-LR SVR

Transmission rate 0.95 0.66 0.89 0.82
Session setup time 0.57 0.14 0.34 0.57
Session total time 0.03 0.03 0.05 −0.01

5.9. Discussion and Alternative Approaches

This section identifies and discusses the open research lines generated by the present
study, establishing a roadmap for future works and improvements. These focus on three
three lines: variations of the general framework, application of the framework to the SON
context, and further research.

5.9.1. Variations on the General Framework

In the presented framework, the time-series segmentation treats service parameters as
components of the multivariate time-series. If the number of combinations of the service
parameters is discrete and relatively small, one alternative is to keep all measurements and
KPIs as the only signals to be used as the inputs of the adaptive filters and use the informa-
tion in the service parameters as pointers to specific subsets of wj,i

P,n and wj,i
M,n. Clustering can

then be performed to identify which group of parameters leads to similar representations.
As an example, in the specific case reported (refer to Table 2), only m1

n, m2
n, m3

n would
be utilized to produce local approximations of FMK(·), and the 8 × 4 = 32 possible
combinations of m4

n and m5
n would define 32 sets of wj,i

P,n and wj,i
M,n.

Another interesting possibility is the utilization of the reverse mapping F−1
MK(·),

using the KQIs as the input time-series and the measurements as the outputs. A content
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service provider (SP), such as a streaming video service, may need to know if the wireless
network can provide a pre-defined level of quality. In this scenario, the SP would infer
the KPIs and the PHY/MAC measurements’ values from the KQIs and adjust all service
configurations accordingly.

The proposed KQI modeling can be modified by changing its main algorithms, but
maintaining the general framework. Some suggestions are:

• Choice of adaptive filter algorithms: Different options for LMS and recursive least
squares (RLS) families can be found in Diniz [33], Sayed [34] and Haykin [32]. It is also
possible to use a non-linear adaptive filtering approach, such as radial basis functions
(RBFs), multilayer perceptrons (MLPs), and Volterra filters. The FIR structure can
also be changed to IIR (Infinite-Implulse Response) as detailed by Regalia in [35],
order-recursive lattice filters, or a stated based approach using Kalman filtering and
its variations as described by Haykin in [36].

• Detection of quasi-stationary segments: A suggestion to extend the proposed method
is implementing prediction filters that compute not only samples one step ahead, but
also p steps ahead. A vector of p prediction errors can be used to provide a more
reliable decision on creating a new category.

• Clustering strategies: A possibility beyond the minimization of redundancy between
different time segments is to perform the clustering, not within a segment, but among
the measurements mj, to reduce the input dimensionality dm.

• Different options to build representations of M and K spaces. The proposed method
builds the feature representation of measurements and KQIs via adaptive filter coef-
ficients. These are not the only option, and the efficiency of other indirect features
can be investigated. Immediate suggestions based on the speed of calculations are
spectral analysis via FFT (with a link to segmentation as pointed by Perron in [37])
and wavelets. The choice of the best feature space is this multivariate time-series
problem is not obvious, and a deeper look at the subject may be worth the effort.

5.9.2. Application of the Framework to the SON Context

Self-healing (SH) techniques can make use of the proposed algorithms. The network
“homeostasis” is provided through a series of self-regulation mechanisms through closed-
loop mechanisms, following the same general schematic of Figure 1.

A first impression of the direct applicability of the proposed framework for SH pur-
poses is the use of FKS(·), to monitor the system status in the eNB scope. Once the KQI
time-series is obtained, the same adaptive prediction and mapping approach can produce a
time-series sn representing the network status. After proper identification of common faulty
states, self-recovering procedures can then use these states to circumscribe a faulty node’s
effects in its neighborhood. The monitoring of the current status and prediction of its future
values also allows the change of posture, from a reactive standpoint reacting to a failure or
misconfiguration, to a functional perspective seeking automated preventive actions.

Closing the loop via FSA(·) is challenging due to several reasons:

• The temporal granularity of the sets S and A can be very different, and the informa-
tion loopback cannot be unstable. This reinforces the need for reliable maps obtained
from FMK(·) and FKS(·).

• The actions should work in harmony with collaborative techniques, such as coordinated
multipoint (CoMP), ICIC (inter-cell interference cancellation), and network coding.

• One single status sn may be related to a set of actions in A. In this scenario, the time
horizon of observation of sn must be properly tuned such that a specific sequence of
states is properly mapped to their correspondent sequences in A.

• The action performed in a specific cell may affect its neighboring cells. One interesting
technique that could be assessed to cope with the spatial nature of effects is adaptive
diffusion mechanisms [38], which optimize cost functions over a network of nodes.

• Typical networks are deployed in a multi-vendor environment, and node parameters
are usually vendor-specific. Furthermore, the management information base (MIB) of
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network nodes may have hundreds of parameters. In this scenario, full automation
can be costly to implement and face resistance from the service providers.

5.9.3. Further Research

Two topics still need a detailed assessment of their technical feasibility. The first is
focused on the measurements and database building via a surplus of computing power
at network nodes to provide better KPIs and KQIs. Some FMK(·) maps can be built as
background processes called by the operating system at the network mobile nodes. This
decentralized approach requires ML algorithms and auxiliary databases in Figure 1 to be,
if not entirely, at least partially distributed. The OAM wireless system could be responsible
for implementing other intensive data processing layers to cope with the complex interrela-
tionships of information, such as spatial interdependence and user profiles. Related to this
front line, another interesting possibility is to use the Age of Information concept [39] to
relax the implicit constraints present in the recursive weight update of the multichannel
adaptive filters.

A second topic is the investigation of new mappings from KQI to quality of experience
(QoE). As quality is inherently service-dependent and possesses a subjective nature, QoE
models are built typically for a specific traffic type, such as the ITUrecommendations for
video services [40]. If Q is a comprehensive set or a representative indicator of the user’s
final experience, a suggestion would be the search for new mappings FKQ(·) from KQIs
K to Q using the same adaptive modeling and segmentation strategies adopted to build
FMK(·).

6. Conclusions

The proposed method can produce KQI estimates from network measurements, with a
performance comparable to other linear regression models. Its general framework allows
flexibility to build the measurement-to-KQI maps by utilizing other choices than LMS
based adaptive FIR filters, such as RLS based ones or non-linear adaptive filtering. In a non-
stationary environment, the continuous generation of new KQI models is possible, but as
the size of the atlas required to represent different mappings increases, we recommend
using clustering techniques to reduce the number of parameters. Its applicability to the
SON context is also possible, where the proper handling of the measurements timestamps
could be adopted under the lens of the Age of Information paradigm [41], integrating
the concept of the freshness of the data in the construction of the models and utilizing a
restricted set of actions to be performed at the nodes before closing the information loop.
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