
sensors

Article

A Reinforcement Learning Approach to View Planning for
Automated Inspection Tasks

Christian Landgraf 1,* , Bernd Meese 1,* , Michael Pabst 1, Georg Martius 2 and Marco F. Huber 1,3

����������
�������

Citation: Landgraf, C.; Meese, B.;

Pabst, M.; Martius, G.; Huber, M.F. A

Reinforcement Learning Approach to

View Planning for Automated

Inspection Tasks. Sensors 2021, 21,

2030. https://doi.org/10.3390/

s21062030

Academic Editor: Marina Indri

Received: 29 January 2021

Accepted: 10 March 2021

Published: 13 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Fraunhofer Institute for Manufacturing, Engineering and Automation IPA, Nobelstraße 12,
70569 Stuttgart, Germany; michael.pabst@ipa.fraunhofer.de (M.P.); marco.huber@ieee.org (M.F.H.)

2 Max Planck Institute for Intelligent Systems, Max-Planck-Ring 4, 72076 Tübingen, Germany;
georg.martius@tuebingen.mpg.de

3 Institute of Industrial Manufacturing and Management IFF, University of Stuttgart, Allmandring 35,
70569 Stuttgart, Germany

* Correspondence: christian.landgraf@ipa.fraunhofer.de (C.L.); bernd.meese@ipa.fraunhofer.de (B.M.)

Abstract: Manual inspection of workpieces in highly flexible production facilities with small lot sizes
is costly and less reliable compared to automated inspection systems. Reinforcement Learning (RL)
offers promising, intelligent solutions for robotic inspection and manufacturing tasks. This paper
presents an RL-based approach to determine a high-quality set of sensor view poses for arbitrary
workpieces based on their 3D computer-aided design (CAD). The framework extends available open-
source libraries and provides an interface to the Robot Operating System (ROS) for deploying any
supported robot and sensor. The integration into commonly used OpenAI Gym and Baselines leads to
an expandable and comparable benchmark for RL algorithms. We give a comprehensive overview of
related work in the field of view planning and RL. A comparison of different RL algorithms provides
a proof of concept for the framework’s functionality in experimental scenarios. The obtained results
exhibit a coverage ratio of up to 0.8 illustrating its potential impact and expandability. The project
will be made publicly available along with this article.

Keywords: view planning; reinforcement learning; simulation; robotics; smart sensors; automated
inspection

1. Introduction
1.1. Motivation

Due to the lack of skilled workforce, quality and productivity aspects, as well as
cost advantage, the importance of robotics and automation in production has grown sig-
nificantly in recent years [1]. Industrial robot manipulators are extremely versatile and
dominate most manufacturing processes and inspection procedures [2]. Fast and easy
programming of new tasks is a key challenge to enable efficient and profitable use of robot
technology, especially in case of small lot sizes. Despite its intuitive and concise opera-
tion, online programming via teach pendants is a time-consuming and tedious procedure,
and only economically viable in case of large lot sizes. Hence, offline alternatives allowing
for a straightforward implementation of new inspection tasks are gaining attention in
industrial research.

Offline programming (OLP) systems are based on CAD models and robot simulation
software. OLPs generate robot programs without interrupting production and fully exploit
knowledge from CAD assemblies and planning algorithms. However, a not precisely repro-
duced real-world setting without a strong reference to the online setup with its robot leads
to discrepancies between simulation and real-world and requires costly post-processing.
Manipulators equipped with sensors such as 3D stereo cameras can automatically inspect
assemblies and avoid manual post-processing of robot programs.

Sensors 2021, 21, 2030. https://doi.org/10.3390/s21062030 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-9398-8788
https://orcid.org/0000-0002-1413-8321
https://orcid.org/0000-0002-8963-7627
https://orcid.org/0000-0002-8250-2092
https://doi.org/10.3390/s21062030
https://doi.org/10.3390/s21062030
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21062030
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21062030?type=check_update&version=2


Sensors 2021, 21, 2030 2 of 17

Therefore, the goal of this works consists of developing an intelligent framework to
automatically generate suitable robot view poses for inspection based on a CAD model. It
allows the integration of any workpiece providing the availability of its CAD model, any
robot and sensor supported in ROS and any RL algorithm available in the commonly used
libraries. The work is meant to pave the way for automated inspection and CAD-based
robot programming.

1.2. Related Work

View pose generation for inspection tasks can be subdivided into two groups: In the
case of reconstructing unknown or free form objects, the next best view pose is estimated
after each measurement [3,4]. This procedure, commonly called the next best view problem,
has not been approached in the context of the present work. On the other hand, CAD
model-based view pose planning enables prior planning of all required view poses and is
the focus of this paper. The (offline) search for a set of view poses is known as the view
planning problem (VPP) and was described comprehensively by [5]. Beyond that, Ref. [6]
provides a general survey on VPP and active vision development.

The VPP is a geometric problem and can be modeled mathematically as an NP-hard
set cover problem (SCP), which has been surveyed for decades [7]. Assuming the avail-
ability of a CAD model of the particular workpiece, an early approach by [8] established
a measurability matrix indicating the visibility of a finite set of surface points linked to a
finite set of viewpoints. This concept was extended in [3] by adding further constraints
to the measurability matrix and proposing a two-stage approach including a rough and
fine modeling phase. Although the work by [8] suggested simulated annealing, Ref. [3]
implemented a greedy search algorithm, Ref. [9] proposed an evolutionary search algorithm
and [10] applied linear programming to solve the VPP. As outlined by [11], these methods
lack performance gains and efficiency over simple greedy algorithms.

Reinforcement learning (RL) is a more recent approach for solving SCP-related op-
timization problems and has exhibited remarkable results in other areas [12]. The work
of [11] identifies an RL workflow using three different RL algorithms including on-policy
SARSA, Temporal Difference (TD), as well as off-policy Q-learning in the context of VPP. We
deployed a comparable off-policy Q-learning as used by [11] in the presented framework
to demonstrate its general functionality. Furthermore, Ref. [13] implemented an ε-greedy-
based approach for online viewpoint generation in a robotic inspection scenario, which can
be seen in the spirit of previously mentioned next best view scenario. In the past 10 years,
more sophisticated, value-based RL algorithms have been developed: Ref. [14] presented
Deep Q-Networks (DQN), where deep learning function approximation is introduced for
the action-value function estimation. Since DQN was even further improved regarding
its systematic overestimation of real Q-values (Double DQN [15]) and sample inefficiency
(DQN with Prioritized Experience Replay [16]) it is also integrated in the presented OLP
framework for solving the VPP.

Although these value-based, model-free RL algorithms are suited for determining view
poses in discrete action spaces, their major drawback is a consequence of a fundamental
assumption of the VPP itself. The assumption, that a close-to-perfect set of view poses can
be achieved by a proper subset of a finite number of predefined actions (to view poses), is
usually not covered by real-world state/action spaces. Although increasing the discrete
number of predefined poses is a reasonable approach to extenuate the problem, it also
entails an increasing computational effort.

To avoid the illustrated VPP drawback, one has to bypass the problem of discrete
action spaces. Although methods using policy gradients such as REINFORCE [17] tend to
converge fast and can be applied to problems with any type of actions, including continuous
action spaces, they lack in sample efficiency. Therefore, a hybrid form of value- and policy-
based methods are widely used when dealing with continuous action spaces, so-called
actor-critic methods. The release of Asynchronous Advantage Actor-Critic (A3C) [18] had
a big impact on RL with multiple asynchronous, in parallel trained agents exploring large



Sensors 2021, 21, 2030 3 of 17

state-action spaces in comparatively less time. The next breakthrough, Proximal Policy
Optimization (PPO) by [19], significantly stabilized the training of actor-critic methods by
using a clipping function that limits the policy update per training step. PPO has gained
lots of attention, is still among state-of-the-art actor-critic approaches at the time of writing
and therefore the third applied method to find suitable sets of view poses.

Recently, Ref. [20] presented robo-gym, a similar open-source approach to train RL
algorithms on both simulated and real-world robots. It might be interesting to compare
both frameworks in detail although robo-gym is not yet fully available for ROS Noetic and
Python 3 and not specifically designed for sensor simulation and view planning.

To execute any VPP solution on both real or simulated robots, collision-free robotic
paths need to be planned that do not suffer from singularities and are optimized in terms of
time and accuracy. This path planning problem is closely related to the Traveling Salesman
Problem (TSP), which optimizes the cost of consecutive tasks, e.g., by restructuring its
order. In literature, the combination of VPP and TSP is considered to be Coverage Planning
Problem (CPP) or more specificall Robotic Task Sequencing Problem (RTSP). However, we
use the common planning algorithms from the Open Motion Planning Library (OMPL) [21]
for path planning and focus on VPP.

1.3. Contribution

In this work, we present a holistic approach for finding high-quality view pose sets
for 3D surface inspection of a given workpiece using a robot and 3D sensor in combination
with the workpiece’s CAD model. The novel framework automates view planning in in-
spection tasks for any industrial robot arm available in ROS and any 3D sensor specification
(resolution, working distance, etc.) with a close link to the real-world setup.

The second major achievement consists of transferring the latest RL-based concepts to
the domain of VPPs and proposing a generic mathematical formulation. The approach en-
ables the direct application of state-of-the-art RL methods (DQN, PPO) and straightforward
integration of additional methods available in the OpenAI libraries. We evaluate the view
planning system for different workpieces from the ABC dataset [22] as well as a custom
assembly to demonstrate its effective operation. Our procedure reduces the programming
time for robotic inspection tasks and increases the quality and efficiency at the same time.

A key point to emphasize is that the complete code along with installation instructions
and video footage is available at https://github.com/christianlandgraf/rl_viewplanning
(accessed on 12 March 2021) and may serve as starting point for other RL-based view
planning experiments.

1.4. Structure

The article is structured as follows. In Section 2, we describe the used robot cell and
sensor setup. All individual components for dataset integration, sensor simulation, path
planning, and Reinforcement Learning of the framework are introduced and explained.
The experimental results of the proposed framework are presented in Section 3. We in-
vestigated three RL algorithms as well as different workpieces for inspection. Section 4
elaborately discusses the findings and proposes potential improvements. At last, Section 5
wraps up our contributions and provides a prospect of future work.

2. Proposed Architecture (Methods)

The following section introduces the chosen setup comprising a 3D sensor attached
to a robot arm and its corresponding simulation modules. The subsequent sections de-
scribe each component of the framework, namely robot environment, task environment,
and learning algorithm. Briefly summarized, the learning algorithm level implements a
specific RL algorithm. On top of that, the task environment explicitly formulates actions,
states and reward specific to view planning. The robot environment builds a bridge to the
simulation modules.

https://github.com/christianlandgraf/rl_viewplanning


Sensors 2021, 21, 2030 4 of 17

2.1. Hardware Setup

The experimental setup consists of a collaborative Universal Robots UR10e robot
equipped with an Ensenso N35 3D sensor as an endeffector. The UR10e possesses six
degrees of freedom, a reach of 1300 mm, and a pose repeatability of ±0.05 mm. Ensenso
N35-606-16-BL is a 3D stereo projection sensor using blue light. It has a clearing distance
(CD) of 312 mm and a working distance (WD) of up to 464 mm. The sensor has a resolution
of 1280 × 1024 Pixel (1.3 MP) and a focal length of 6 mm. This corresponds to a spatial (x-y)
resolution of 0.383 mm/pixel at a WD of 400 mm. The z-axis accuracy of the Ensenso N35
at 400 mm WD is 0.192 mm. Figure 1 illustrates the hardware setup in real-world and its
simulated equivalent.

Figure 1. Exemplary robot cell in real-world (left) and simulation (right).

2.2. Simulation
2.2.1. Controller Simulation

Figure 2 shows the overall architecture of the simulation and Reinforcement Learning
environment. The framework builds on top of the OpenAi ROS toolkit [23]. Starting at the
lowest layer, we choose Gazebo [24] as simulation software due to the existing feature of
rendering realistic 3D stereo camera data and its close link to the ROS Noetic middleware.
Other robot simulations as MuJoCo, Blender, CoppeliaSim, or Webots either lack in point
cloud rendering or in less developed ROS support. The common controller plugins of
ros_control [25] executes planned robot paths to view poses on the robot and can seamlessly
switch between real-world and simulation.

2.2.2. Pointcloud Handling

The point cloud rendering is based on the velodyne_simulator ROS package (https:
//bitbucket.org/DataspeedInc/velodyne_simulator, visited on 25 January 2021) and sup-
ports Gaussian noise and GPU acceleration. Figure 3 illustrates its realism. Since Gazebo
simulates a hardware interface to the ROS robot driver (in our case, Universal Robots),
superior layers work independently of choosing a real robot or its simulated counterpart.
The same applies to the Gazebo sensor simulation and the Ensenso ROS sensor driver.
Further point cloud processing and semantic evaluation is based on Point Cloud Library
(PCL) [26] and Open3D [27] as described in Section 2.3.2.

https://bitbucket.org/DataspeedInc/velodyne_simulator
https://bitbucket.org/DataspeedInc/velodyne_simulator


Sensors 2021, 21, 2030 5 of 17

Figure 2. The framework architecture separated by application layer. Each instance of a layer inherits
its upper layer and displays a one-to-many relationship, e.g., multiple RL task environments descend
from a robot environment.

Figure 3. A real point cloud taken by an Ensenso N35 (left) and a simulated pointcloud (right).

2.3. Reinforcement Learning
2.3.1. Robot Environment

The robot environment layer provides an interface between a specific task environment
and a common robot cell simulation. Proposed actions of the RL agent are translated
into according robot movements using MoveIt [28], which offers a ROS platform for
OMPL and collision detection libraries. To accelerate learning procedures, we optionally
neglect detailed path planning and immediately set the sensor origin to the desired poses.
Kinematic and reachability constraints must be checked individually or covered during
presampling of potential view poses. A detailed overview of performance in terms of
training speed is given in Section 3.

2.3.2. Task Environment

Depending on the specific scenario, the task environment takes the current robot pose
and corresponding information gain by a point cloud measurement, assembles observa-
tions, shapes the reward, translates actions and implements stop criteria. In our case, we
parametrize a task environment for VPPs allowing different families of RL agents, action



Sensors 2021, 21, 2030 6 of 17

and observation spaces and predefined constraints on view poses. This is presented in
detail in the subsequent paragraphs.

Next, an RL agent operates above the task environment and learns to predict high-
quality view poses. Since the simulation environment implements the required methods of
OpenAI gym [29], theoretically, any RL algorithm in the OpenAI baselines library can be
used. Due to its ongoing support and PyTorch interface, we only tested the Stable Baselines
3 fork [30]. It is possible to start and parallelize multiple environments simultaneously to
speed up training.

Besides the detailed parametrization on task environment and learning algorithm
level, the user needs to choose a workpiece and its approximate pose as input and define
proper sensor characteristics. We integrate an exemplary subset of the ABC dataset [22]
and a custom test workpiece for experiments in Section 3.

In the following paragraphs, we formulate the briefly described components of the
task environment in detail, based on the mathematical foundation.

Theoretical Background

A Reinforcement Learning problem consists of an agent, which performs actions inside
an environment and learns from its observed states and derived rewards or penalties, respec-
tively [12]. Mathematically, this is expressed by a Markov Decision Process (MDP). MDPs
are assembled by four components: a state st ∈ S, where t determines the current time
step; an action at ∈ A; a transition probability P(st+1|st, at) from state st to another state
st+1 depending on the selected action at; and a carefully constructed reward Rt(st+1|st, at).
Due to its nature of merging state transitions, MDPs satisfy the Markov Property such that
all previous states s1, ...st−1 are represented by the most recent state st−1.

A policy πθ(at|st) represents the decision making process of choosing an action at
at state st and with parameters θ. The common goal of RL methods consists of finding
an optimal decision process. In practice, the environment model is unknown. Therefore,
most approaches either use a value-based or policy-based approach, or a combination of
both to learn from interaction with the environment. As indicated by its name, value-
based approaches aim at optimizing a value function vπ(s), which predicts the maximum
expected reward Rt for a given state st [12]. The value function is defined as

vπ(s) = Eπ

[
∞

∑
k=0

γkRt+k+1
∣∣st = s

]
, (1)

where γ ∈ [0, 1) denotes a discount factor to balance short-term and long-term rewards.
In contrast, policy-based RL methods directly optimize the policy function πθ . These meth-
ods are better suited for continuous action spaces, but suffer from sample inefficiency.

MDPs are a subset of the more generalized definition of Partially Observable Markov
Decision Processes (POMDP) [12]. Agents in POMDPs do not possess knowledge of
the complete environment state space but rather construct states based on observations.
The subsequent approach for RL-based view planning will build the state space similarly.

Action and State

In our view planning approach, an action consists of choosing a view pose and
subsequently planning and executing the robot movement toward this pose. As soon as the
robot reaches its goal, the sensor renders a 3D point cloud at this pose. The environment
state is constructed from the observations consisting of 3D measurements and current
robot pose.

Q-learning and DQN are based on a finite number of actions, which corresponds to a
set of potential view poses arranged across the workpiece. We implemented a tool for the
individual adjustment of a view pose grid including its geometry (triangular/squared),
density in x-, y-, and z-directions as well as the sensor orientation as roll, pitch and
yaw angles. In the following, we define all coordinates with respect to the default world



Sensors 2021, 21, 2030 7 of 17

coordinate system. We further set the sensor origin such that the x-axis is pointing out
of its lens and use the roll (R), pitch (P), and yaw (Y) angle definition. For setting up the
framework, step sizes sx, sy, and sz are to be chosen. The sensor orientation requires step
sizes nR, nP, and nY that result in corresponding numbers of step nR, nP and nY.

We use the bounding box center c = (xc, yc, zc) of the workpiece as well as its width
xwp, length ywp, and a threshold ε, to define the action space expansion in the x-y-plane.
The height limits of the sensor are chosen according to its working range, i.e., above its
clearing distance (zdist_min) and within the scanning range (zdist_max). Next, we specify
a starting position (x0, y0, z0) at one corner and a corresponding limit for the x, y, and z
values at the opposite corner (xlim, ylim, zlim):x0

y0
z0

 =

 xc −
xwp

2 − ε

yc −
ywp

2 − ε
zc + zdist_min

,

xlim
ylim
zlim

 =

 xc +
xwp

2 + ε

yc +
ywp

2 + ε
zc + zdist_max

. (2)

Based on the starting position (x0, y0, z0), the action space is defined by iteratively
adding the step sizes until we exceed the opposite limit (xlim, ylim, zlim). Equation (3)
formally defines the action space A1 consisting of the view pose grid.

A1 =


(x, y, z, R, P, Y) ∈



{x = x0 + i · sx | i ∈ N, x < xlim}{
y = y0 + i · sy | i ∈ N, y < ylim

}
{z = z0 + i · sz | i ∈ N, z < zlim}
{Rinit + (i− 1) · sR | i ∈ 1, ..., nR}
{Pinit + (i− 1) · sP | i ∈ 1, ..., nP}
{Yinit + (i− 1) · sY | i ∈ 1, ..., nY}




. (3)

Similarly, we define a second view pose grid A2, where the y direction is shifted by sy
2

in every second step, which is intended to prevent inaccessible blind spots between view
poses. An example of a triangular view pose grid is shown in Figure 4.

In addition to lattice-like structures for view poses, we also evaluate a random sam-
pling of view poses as done by [11,13]. Therefore, we use the previously defined limits
(x0, y0, z0) and (xlim, ylim, zlim) to construct a box. To increase sample efficiency and avoid
empty point clouds, the sensor orientation points towards the workpiece. View poses out
of the robot’s reach are rejected during sampling, too. The RL algorithm learns to choose
a qualified set of view poses among the samples. Equation (4) defines this action space
named A3.

A3 =


(x, y, z, R, P, Y) ∈



[x0, xlim]
[y0, ylim]
[z0, zlim]
[0, 360]
[210, 330]
[0, 360]




. (4)

For policy-based algorithms such as PPO, we define a continuous instead of a discrete
action space with a finite number of poses. The action space extends across a similar cuboid
used for the grid with the same boundaries for x, y, and z used for discrete action spaces.
Instead of proposing a number between 1 and the number of view poses in the finite set,
the action is now represented by a pose within predefined limits:

A4 =



[x0, xlim]
[y0, ylim]
[z0, zlim]
[0, 360]
[210, 330]
[0, 360]

. (5)



Sensors 2021, 21, 2030 8 of 17

Figure 4. Sampling discrete actions (poses, respectively) in (a) a squared grid or (b) in a triangular
grid with four sensor orientations per position or (c) randomly inside a continuous space. Figure (d)
depicts a continuous action space.

Figure 4 shows examples for discrete action spaces with fixed z value as well as a
continuous action space. The observation space ot is constructed by the current sensor
position, the information gain from this step (It) and the cumulated point cloud of all
sensor measurements of this episode (pccum) (see Equation (6)).

ot = (xsensor, ysensor, zsensor, Rsensor, Psensor, Ysensor, It, pccum) (6)

The information gain is subject of the next paragraph. The actual state of the en-
vironment is simply represented by the current sensor pose as defined in Equation (7).
The current point cloud is omitted since it would increase the state’s memory size dramati-
cally. Therefore, the state is constructed as follows:

s = (xsensor, ysensor, zsensor, Rsensor, Psensor, Ysensor). (7)

We will discuss the consequences and alternatives of dropping point cloud measure-
ments in Section 4. To avoid negative implications during our experiments, we prevent the
RL agent from approaching the same or very similar poses multiple times on task-level.

Reward

The reward of each step is based on the scanned, previously unseen surface area.
Mathematically, we express this as the set-theoretic difference of the surface area scan SAt
at state t and the episode’s cumulated scan Acum,t−1, which both are normalized to the
workpiece total surface area SAtotal . However, convenient and established triangulation
methods for point cloud surface reconstruction could not be used, since they either tend
to wrap around noisy surface scans more or less doubling its surface area or are too
computing-intensive. Therefore, we developed a custom return-module that is optimized
in terms of accuracy and speed using the PCL library [26].

To obtain the covered surface area, we smooth each initial scan (t = 1) for noise
reduction. Although this step is not crucial for training with simulated point clouds, it
is required for processing of real-world point clouds. A second step converts the point
cloud to a voxel grid of size 0.0015 m. The covered surface area SAt is approximated by the
multiplication of voxel count and 0.00152 and normalized to the workpiece’s total surface
area, SAtotal . Finally, we export the processed voxel grid as the first part of the cumulating
point cloud.

Since the voxel size limits the minimal thickness of potential objects to 0.0015 m,
one may reduce its size if required, providing a sufficiently precise real-world robot and
sensor setup.

For any subsequent scan (t > 1), we first subdivide the previously scanned, cumulated
point cloud pcdt−1,cum into pcdt−1,in and pcdt−1,out based on the bounding box of the
current scan pcdt for faster point cloud processing. Then the normalized surface areas
of pcdt−1,in(SAt−1,in) and of the point cloud merge of pcdt−1,in and pcdt(SAt,merge) are
calculated as described above. The normalized surface area gain for state st is the difference



Sensors 2021, 21, 2030 9 of 17

of both and is similar to the total area gain of st. Finally, the merged point cloud pcdt,merge
inside the bounding box is merged with pcdt−1,out and exported as new cumulated point
cloud pcdt,cum. Equation (8) formulates the proposed reward Rt at time step t.

Rt =

{
SAt/SAtotal , if t = 1
(SAt \ SAt−1,cum)/SAtotal , if t > 1

∈ [0, 1] (8)

2.3.3. Learning Algorithm

To evaluate the presented method, we approached the VPP using three different
algorithms. First, we applied Q-learning along the lines of [11,23]. Second, we deployed
DQN [14] on a similar discrete pose set and PPO [19] using a continuous state/action space.

In off-policy Q-learning [31], the objective is to optimize Q-function Q∗ by learning
Q-values for each state-action pair (st, at) within the discrete action spaces. Therefore, it
is necessary to find the maximum expected future reward for each possible state-action
pair to select the best action by a given state. The Q-learning equation consists of the old
action-value function Q(st, at), the reward Rt+1 after taking action at, a learning rate α > 0,
and the discounted expected future reward γ max

a
Q(st+1, a):

Q∗(st, at)← Q(st, at) + α(Rt+1 + γ max
a

Q(st+1, a)−Q(st, at)). (9)

During training, the Exploration Rate ε controls whether an action is chosen based
on prior experience or randomly. It balances the exploration of unknown states and
the exploitation of gained knowledge and decays each episode through the Exploration
Discount Factor. Additionally, a lower limit for the exploration rate εmin, avoiding an
imbalance between exploration and exploitation [12].

However, off-policy Q-learning assumes that all states and actions are stored (e.g.,
in a Q-table), which becomes infeasible when it is applied to real-world problems. We are
limited in finding good view poses and there might be much better view poses, which
cannot be learned because of the limited state and action space. Nevertheless, solving the
VPP with Q-learning as done by [11] is not the goal of this work. Off-policy Q-learning
will serve as a comparison benchmark to highlight the benefits of other RL approaches.

To avoid this issue, we also applied DQN with experience replay as proposed by [14].
The core of the used DQN architecture is a multi-layer perceptron with 2 layers with
64 neurons. The deep neural network is trained with a mini-batch gradient descent op-
timization [14]. DQN approximates the Q-function using mini-batches for training and
returns actions with the highest expected reward for any input state. The objective consists
of minimizing a cost function based on the network weights θ to approach the Q-function.
Equation (10) describes the learning process. The neural network weights θ are iteratively
updated through

θ∗ ← θt + α[Rt+1 + γ max
a

Q(st+1, a; θ)−Q(st, at; θ)]∇θQ(st, at; θ)|θ=θ , (10)

where θ∗ are the desired network weights the Q-Net is converging to. The reward term
is similar to Q-learning, except that Q also depends on the network weights θ. Finally,
∇θQ(st, at; θ) is the gradient of the loss function obtained through back propagation and
used to update the network weights.

Finally, we integrated PPO [19] as an RL approach that is applicable on continuous
action spaces. Figure 5 illustrates the structure of the PPO approach to view planning and
is now explained in detail.



Sensors 2021, 21, 2030 10 of 17

Figure 5. PPO approach for view planning. Here, eSAG represents the surface area gain, ps the sensor
pose, pwp the current workpiece pose, pe the current robot pose and pt = (px, py)T the selected
sensor pose.

A main advantage of PPO compared to other Actor-Critic methods is that the policy
update is clipped guaranteeing monotonic policy improvement and therefore a very robust
training. This is accomplished by PPO’s clipped surrogate objective

LCLIP(θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)]. (11)

Here, the objective function includes the conservative policy gradient objective rt(θ)Ât.
This estimator consists of the probability ratio rt(θ) and the estimator Ât of an advantage
function and the clipped version of the conservative policy gradient objective
clip(rt(θ), 1− ε, 1 + ε)Ât using the hyperparamter ε, defining the clipping range.
Equation (11) is optimized over a batch of samples, which is indicated by the expectation Êt.

The agent is trained using the loss function in (12), which contains the objective from
(11) and two additional terms:

LPPO
t (θ) = Êt[LCLIP(θ)− c1LVF

t (θ) + c2S[πθ ](st)]. (12)

where LVF
t (θ) is a squared-error loss, S denotes an entropy bonus, and c1 and c2 are the

loss value function and loss entropy coefficients, respectively. Typical for Actor-Critic
methods, parameters are shared between the policy and value neural networks. Therefore,
a correlation between the policy objective LCLIP(θ) and a value error term c1LVF

t (θ) is
considered in (12) besides the exploration error term c2S[πθ ](st), which checks if the
exploration frequency is high enough. The link of the PPO architecture with policy and
value networks, operating as actor and critic, to the task environment of the presented
framework is visualized in Figure 5.

3. Experiments and Results

This section presents various experiments with the newly introduced learning frame-
work for view pose planning to provide a proof of concept. Figure 6 shows the exemplary
integrated test workpieces from the open-source ABC dataset [22], which collects about one
million models in total, as well as a custom test workpiece. The workpieces were scaled
such that they are approximately the same size.



Sensors 2021, 21, 2030 11 of 17

Figure 6. An illustration of the test workpieces used in our experiments. Each of them is part of the
ABC Dataset [22], except for the custom workpiece number 9.

We present experimental results for the three RL algorithms introduced in Section 2.3.3.
Table 1a displays the training settings for Q-learning, Table 1b for DQN and Table 1c for
PPO. The experiments have been executed on a PC with 32 GB RAM, an Intel Xeon W-2125
processing unit with 8 cores and 4 GHz clock rate, and a Nvidia Quadro P2000 GPU with
32 GB. The simulation framework achieves about 3 steps per second. Each iteration takes
0.38 s. However, the actual performance heavily depends on the desired sensor resolution
(see Section 2.1) and whether one wants to simulate the actual execution of the robot path.
More specifically, the reward calculation takes about 0.11 s, the sensor placement about
0.052 s, and the sensor measurement and conversion to the correct format about 0.25 s.

To deploy grid-like structures in case of a discrete action space (see Section 2.3.3,
Equation (3)), the step sizes sx and sy in x and y direction are set to 0.2 m. Due to the small
working range of the simulated Ensenso N35 sensor, the sensor height z0 is equal to 0.3 m,
i.e., zdist_min = zdist_max = 0.3. Since rotation around the x-axis results in negligible
changes of the resulting point cloud, the roll angle R remains fixed (R0 = 0). The pitch
angle is set to a fixed value of 255◦. The step size of the yaw angle is set to 90◦ starting from
45◦, such that the action space considers four different yaw angles 45◦/135◦/225◦/315◦.
The resulting grid contains 36 positions with four different orientations at each position,
making up a total of 144 view poses for both triangle and square grids.

To construct an action space of randomly chosen view poses, we sample about 70
poses as described in Equation (4), again with a fixed z-offset of 0.3 m.

The continuous actions space for PPO is constructed using similar limits for x, y,
and z following Equation (5). We use fixed initial values for z, R, P, and Y to reduce the
dimensionality of the action space and facilitate learning

Figure 7 presents the learning process of our experiments with different parameters.
The plot shows the reward (y-axis) for each episode (x-axis), which is equal to the percent-
age of covered surface area. For comparability, the inaccessible surface on the bottom side
is subtracted. To provide a comprehensible picture, we smooth the reward per episode Rt
using an exponential moving average where the smoothing weight α ∈ [0, 1).

Rt =

{
Rt, if t = 0
αRt−1 + (1− α) · Rt, if t > 0

, (13)



Sensors 2021, 21, 2030 12 of 17

Table 1. Overview of training settings. A detailed introduction of the training parameters is pro-
vided in Section 2.3.2. (a) Q-learning training parameters. (b) DQN training settings. (c) PPO
training settings.

(a)

Parameter Value

Learning Rate (α) 0.1
Discount Factor (γ) 0.7
Initial Exploration Rate (ε) 0.9
Exploration Discount Factor 0.999
Number of Episodes 2500

(b)

Parameter Value

Policy Multi-Layer Perceptron
(2 layers with 64 neurons)

Learning Rate (α) 0.0001
Discount Factor (γ) 0.99
Initial Exploration Rate (ε) 0.9
Minimal Exploration Rate 0.05
Number of Episodes (εmin) 20,000
Exploration Fraction of Training 0.2 (4000 episodes)

(c)

Parameter Value

Policy and Value Network Multi-Layer Perceptron
(2 layers with 64 neurons)

Learning Rate (α) 0.0001
Batch Size 4
Discount Factor (γ) 0.7
Clipping Range (ε) 0.2
Loss Entropy Coefficient (c2) 0.1
Loss Value Function Coefficient (c1) 0.5

For workpiece 9, Q-learning achieved coverage of approximately 0.14 using a squared
grid as action space and 5 view poses (Figure 7(1a)). In comparison, a triangular grid
worked slightly better achieving coverage of about 0.165 (Figure 7(1b)). The training
using randomly sampled view poses in the same workpiece converges more slowly and
resulted in a slightly worse coverage of about 0.125 (Figure 7(1c)). Contrarily, a squared
grid performed better than a triangular one for workpiece 1 and workpiece 6 achieving
coverages of about 0.175 (Figure 7(2a)) and 0.26 (Figure 7(3a)) instead of 0.16 (Figure 7(2b))
and 0.24 (Figure 7(3b)), respectively. For workpiece 6, selecting random view poses lead
to coverage of more than 0.28 (Figure 7(3c)). The same setup with workpiece 1 could not
achieve this result exhibiting a coverage of about 0.17 (Figure 7(2c)).

In contrast to off-policy Q-learning, DQN requires more time for convergence, even
though an episode is limited to 3 steps. On the other hand, the obtained results for work-
piece 9 (Figure 7(4a–c)) indicate a better coverage ratio and are scalable. The result of DQN
using a squared grid on workpiece 6 is shown in Figure 7(5a). Due to its sample-inefficient
nature, PPO needs much more training samples. Even though the introduction of a contin-
uous action space drastically increases the action space, PPO increased coverage to about
0.043 in case of three view poses per episode (Figure 7(5b)) and close to 0.07 using five view
poses (Figure 7(5c)).



Sensors 2021, 21, 2030 13 of 17

Figure 7. Training results of Q-learning, DQN and PPO using different action spaces (squared grid,
triangular grid, random poses, or continuous) and trained on three different workpieces as denoted
above each plot.

Although these experiments prove the learning ability of the framework, they do
not lead to complete coverage of the workpiece. Section 2.3.3 illustrated that Q-learning
quickly becomes infeasible when increasing the number of possible actions. Therefore, we
only considered DQN and PPO in the following experiments. Figure 8a shows the results
for DQN learning to propose 10 view poses per episode. As indicated by the previous
experiments, DQN can increase its performance accordingly and achieve coverage of
approximately 0.5. Nevertheless, DQN suffers from limitations due to its discretized action
space (see Section 2.3.3). Contrarily, PPO performs well when increasing the number
of poses per episode up to 20 and 30 steps and reaches a coverage of more than 0.8
(Figure 8b,c)



Sensors 2021, 21, 2030 14 of 17

Figure 8. Training results of DQN and PPO aiming at a high coverage ratio.

The experiments are publicly available at https://github.com/christianlandgraf/rl_
viewplanning (accessed on 12 March 2021) including training log, the view pose sequences,
and trained models. Additionally, we provide a video illustrating the inspection setup
including the robot kinematics and the 3D sensor as well as the accelerated training setup
without robot kinematics. The video is available at https://www.youtube.com/watch?v=
0mqPu0_qdD4 (accessed on 12 March 2021).

4. Discussion

Generally, our results demonstrate that the framework can increase the coverage
of a specific number of view poses for all tested RL algorithms and workpieces. The
performance of each introduced action space varies with the workpiece geometry. Further
optimization and parameter tuning will improve the results in the future. The experiments
provided in Section 3 serve as a proof of concept for the framework to plan automated
inspection tasks in various settings.

Furthermore, the experiments do not guarantee the optimality of view poses, e.g.,
whether the algorithm is stuck in a local optimum. Instead, one might refer to the ob-
tained results as sub-optimal. Nevertheless, we tuned the exploration factor and exploration
discount to avoid local minima and solve the trade-off between exploration and exploita-
tion. Although PPO performs slightly worse on a continuous action space than DQN
and Q-learning on a discrete action space, it potentially outperforms these approaches
in the future. For experiments shown in Figure 7(5b,c), the pitch angle remains fixed
for simplicity. Therefore, point clouds are rendered from various poses, but with similar
viewing directions. The shadowing of averted surfaces and sub-optimal view poses might
cause the slightly worse performance of PPO.

An extended reward function may further increase learning performance towards
optimal results. In our experiments, the reward solely depended on the scanned area
concerning the workpiece’s total surface. Instead, one might aim at covering a certain
degree of the total surface area instead of optimizing the reward regarding a fixed number
of poses. Subsequently, an additional loss term might punish non-efficient poses.

Although the implemented surface area-based reward appears appropriate for finding
view pose sets, it does not tackle the Traveling Salesman Problem (TSP) of the shortest tra-
jectories between determined view poses. If the distance between view poses additionally
alters the reward, the agent is theoretically capable of optimizing the order of view poses.
However, combining VPP and TSP is likely to increase the required number of episodes
significantly. Additionally, robot kinematics and collision avoidance need to be considered
in the context of automated, robot-based inspection. Hence, alternative solutions to the
TSP such as forwarding view poses obtained through the presented RL framework to
independent solutions for robotic task sequencing problems might be more effective [32].

Besides the need for an improved reward function, we experienced another issue
concerning the environment state space. To avoid approaching the same view pose multiple
times per episode, the agent needs to get information about the episode’s previously
scanned surface from the environment state. Unfortunately, the usage of raw point clouds
as state representation is not applicable due to its size. At the moment, we bypassed
this issue by avoiding the same pose to be executed twice per episode. Researchers of
related fields realized the necessity for more compact and efficient representation of 3D
point clouds early on [33]. Since lately, several deep learning techniques for obtaining

https://github.com/christianlandgraf/rl_viewplanning
https://github.com/christianlandgraf/rl_viewplanning
https://www.youtube.com/watch?v=0mqPu0_qdD4
https://www.youtube.com/watch?v=0mqPu0_qdD4


Sensors 2021, 21, 2030 15 of 17

meaningful binary descriptors for point clouds are available [34]. When adapted for the
continuous RL state space, two point clouds rendered from adjacent poses are encoded
to closely related, binary representations. All algorithms surveyed by [34] are capable of
point cloud encoding. By extending the Adversarial Autoencoder (AAE) of [35] to accept
3D point clouds, the 3DAAE approach of [36] can reversely generate 3D shapes based on
compact binary encodings.

Future work might include 3DAAE encodings of point clouds into state representation
in the VPP framework to improve RL on continuous action/state spaces. Additionally, we
intend to integrate more sophisticated action/state spaces and RL setups in general as well
as other sensors, e.g., laser scanners.

5. Conclusions

The authors present a novel simulation framework for solving the view planning
problem (VPP) for automated, robot-based inspection of workpieces. State-of-the-art Re-
inforcement Learning algorithms are deployed to determine suitable sensor view pose
sets for a given CAD model. The framework allows the integration of any commonly
used robot, sensor characteristics, and RL algorithm available in the OpenAI libraries.
The experimental results for off-policy Q-learning, DQN, and PPO demonstrate the sys-
tem’s ability to generate rational view poses for a given workpiece based on its position
within the simulated robot cell. By considering robotic and sensor constraints, the approach
significantly reduces required expert knowledge and manual programming for finding
suitable view pose sets for inspection tasks. The framework builds on top of open-source
libraries and is publicly available along with this article.

Author Contributions: C.L. and B.M. are the main authors of this article. C.L. focused on general
software implementation and simulation setup. B.M. focused on point cloud processing and reward
shaping. M.P. contributed to Reinforcement Learning experiments, in particular to PPO. G.M. and
M.F.H. reviewed and supervised the project. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the Ministry of Economic Affairs of the state Baden-Württemberg
grant number 036-170017 (KI-Fortschrittszentrum “Lernende Systeme”).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this work are openly available together with the
project code in https://github.com/christianlandgraf/rl_viewplanning (accessed on 12 March 2021).
An example video is available at https://www.youtube.com/watch?v=0mqPu0_qdD4 (accessed on
12 March 2021).

Acknowledgments: We thank all colleagues that helped with constructive discussions and feedback.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AAE Adversarial Autoencoder
CAD Computer-Aided Design
CD Clearing Distance
CPP Coverage Planning Problem
DQN Deep Q-Networks
MDP Markov Decision Process
MDPI Multidisciplinary Digital Publishing Institute
OLP Offline Programming
PCL Point Cloud Library
POMDP Partially Observable Markov Decision Process
PPO Proximal Policy Optimization

https://github.com/christianlandgraf/rl_viewplanning
https://www.youtube.com/watch?v=0mqPu0_qdD4


Sensors 2021, 21, 2030 16 of 17

RL Reinforcement Learning
SARSA State-Action Reward State-Action
TD Temporal Difference
SCP Set Cover Problem
TSP Traveling Salesman Problem
VPP View Planning Problem
WD Working Distance

References
1. Hägele, M.; Nilsson, K.; Pires, J.N.; Bischoff, R. Industrial Robotics. In Springer Handbook of Robotics; Siciliano, B., Khatib, O., Eds.;

Springer: Berlin/Heidelberg, Germany, 2016; pp. 1385–1422. [CrossRef]
2. International Federation of Robotics. 2020. Available online: https://ifr.org/free-downloads (accessed on 12 March 2021).
3. Scott, W.R. Model-based view planning. Mach. Vis. Appl. 2009, 20, 47–69. [CrossRef]
4. Engin, S.; Mitchell, E.; Lee, D.; Isler, V.; Lee, D.D. Higher Order Function Networks for View Planning and Multi-View

Reconstruction. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31
May–31 August 2020; pp. 11486–11492. [CrossRef]

5. Scott, W.R.; Roth, G.; Rivest, J.F. View planning for automated three-dimensional object reconstruction and inspection. ACM
Comput. Surv. (CSUR) 2003, 35, 64–96. [CrossRef]

6. Chen, S.; Li, Y.; Kwok, N.M. Active vision in robotic systems: A survey of recent developments. Int. J. Robot. Res. 2011,
30, 1343–1377. [CrossRef]

7. Feige, U. A threshold of ln n for approximating set cover. J. ACM 1998, 45, 634–652. [CrossRef]
8. Tarbox, G.H.; Gottschlich, S.N. Planning for Complete Sensor Coverage in Inspection. Comput. Vis. Image Underst. 1995,

61, 84–111. [CrossRef]
9. Martin, R.; Rojas, I.; Franke, K.; Hedengren, J. Evolutionary View Planning for Optimized UAV Terrain Modeling in a Simulated

Environment. Remote Sens. 2016, 8, 26. [CrossRef]
10. Englot, B.; Hover, F. Planning Complex Inspection Tasks Using Redundant Roadmaps. In Robotics Research; Christensen, H.I.,

Khatib, O., Eds.; Springer: Cham, Switzerland, 2017; Volume 100, pp. 327–343. [CrossRef]
11. Kaba, M.D.; Uzunbas, M.G.; Lim, S.N. A Reinforcement Learning Approach to the View Planning Problem. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5094–5102.
[CrossRef]

12. Sutton, R.S.; Barto, A. Reinforcement Learning: An Introduction, 2nd ed.; Adaptive Computation and Machine Learning; The MIT
Press: Cambridge, MA, USA; London,UK, 2018.

13. Jing, W.; Goh, C.F.; Rajaraman, M.; Gao, F.; Park, S.; Liu, Y.; Shimada, K. A Computational Framework for Automatic Online Path
Generation of Robotic Inspection Tasks via Coverage Planning and Reinforcement Learning. IEEE Access 2018, 6, 54854–54864.
[CrossRef]

14. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing Atari with Deep
Reinforcement Learning. arXiv 2013, arXiv:cs.LG/1312.5602.

15. van Hasselt, H.; Guez, A.; Silver, D. Deep reinforcement learning with double Q-Learning. In Proceedings of the 30th AAAI
Conference on Artificial Intelligence, AAAI 2016, Phoenix, AZ, USA, 12–17 February 2016; pp. 2094–2100.

16. Schaul, T.; Quan, J.; Antonoglou, I.; Silver, D. Prioritized Experience Replay. arXiv 2016, arXiv:cs.LG/1511.05952.
17. Williams, R.J. Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning. In Reinforcement

Learning; Sutton, R.S., Ed.; Springer: Boston, MA, USA, 1992; pp. 5–32. [CrossRef]
18. Mnih, V.; Badia, A.P.; Mirza, M.; Graves, A.; Lillicrap, T.P.; Harley, T.; Silver, D.; Kavukcuoglu, K. Asynchronous methods for

deep reinforcement learning. In Proceedings of the 33rd International Conference on Machine Learning, ICML 2016, New York,
NY, USA, 19–24 June 2016; pp. 2850–2869.

19. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal Policy Optimization Algorithms. arXiv 2017,
arXiv:cs.LG/1707.06347.

20. Lucchi, M.; Zindler, F.; Mühlbacher-Karrer, S.; Pichler, H. robo-gym—An Open Source Toolkit for Distributed Deep Reinforcement
Learning on Real and Simulated Robots. arXiv 2020, arXiv:cs.RO/2007.02753.

21. Sucan, I.A.; Moll, M.; Kavraki, L.E. The Open Motion Planning Library. IEEE Robot. Autom. Mag. 2012, 19, 72–82. [CrossRef]
22. Koch, S.; Matveev, A.; Jiang, Z.; Williams, F.; Artemov, A.; Burnaev, E.; Alexa, M.; Zorin, D.; Panozzo, D. ABC: A Big CAD Model

Dataset For Geometric Deep Learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Long Beach, CA, USA, 15–19 June 2019; pp. 9601–9611.

23. Zamora, I.; Lopez, N.G.; Vilches, V.M.; Cordero, A.H. Extending the OpenAI Gym for robotics: A toolkit for reinforcement
learning using ROS and Gazebo. arXiv 2017, arXiv:cs.RO/1608.05742.

24. Koenig, N.; Howard, A. Design and use paradigms for gazebo, an open-source multi-robot simulator. In Proceedings of the 2004
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Sendai, Japan, September 2004; pp. 2149–2154.
[CrossRef]

http://doi.org/10.1007/978-3-319-32552-1-54
https://ifr.org/free-downloads
http://dx.doi.org/10.1007/s00138-007-0110-2
http://dx.doi.org/10.1109/ICRA40945.2020.9197435
http://dx.doi.org/10.1145/641865.641868
http://dx.doi.org/10.1177/0278364911410755
http://dx.doi.org/10.1145/285055.285059
http://dx.doi.org/10.1006/cviu.1995.1007
http://dx.doi.org/10.3390/rs8010026
http://dx.doi.org/10.1007/978-3-319-29363-9-19
http://dx.doi.org/10.1109/CVPR.2017.541
http://dx.doi.org/10.1109/ACCESS.2018.2872693
http://dx.doi.org/10.1007/978-1-4615-3618-5-2
http://dx.doi.org/10.1109/MRA.2012.2205651
http://dx.doi.org/10.1109/IROS.2004.1389727


Sensors 2021, 21, 2030 17 of 17

25. Chitta, S.; Marder-Eppstein, E.; Meeussen, W.; Pradeep, V.; Tsouroukdissian, A.R.; Bohren, J.; Coleman, D.; Magyar, B.; Raiola, G.;
Lüdtke, M. ros_control: A generic and simple control framework for ROS. J. Open Source Softw. 2017, 2, 456. [CrossRef]

26. Rusu, R.B.; Cousins, S. 3D is here: Point Cloud Library (PCL). In Proceedings of the 2011 IEEE International Conference on
Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 1–4. [CrossRef]

27. Zhou, Q.Y.; Park, J.; Koltun, V. Open3D: A Modern Library for 3D Data Processing. arXiv 2018, arXiv:cs.CV/1801.09847.
28. Coleman, D.; Sucan, I.; Chitta, S.; Correll, N. Reducing the Barrier to Entry of Complex Robotic Software: A MoveIt! Case Study.

arXiv 2014, arXiv:cs.RO/1404.3785.
29. Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; Zaremba, W. OpenAI Gym. arXiv 2016,

arXiv:cs.LG/1606.01540.
30. Raffin, A.; Hill, A.; Ernestus, M.; Gleave, A.; Kanervisto, A.; Dormann, N. Stable Baselines3. GitHub. 2019. Available online:

https://github.com/DLR-RM/stable-baselines3 (accessed on 12 March 2021).
31. Watkins, C.J.C.H.; Dayan, P. Q-learning. Mach. Learn. 1992, 8, 279–292. [CrossRef]
32. Wong, C.; Mineo, C.; Yang, E.; Yan, X.T.; Gu, D. A novel clustering-based algorithm for solving spatially-constrained robotic task

sequencing problems. IEEE/ASME Trans. Mechatron. 2020, 1. [CrossRef]
33. Gumhold, S.; Wang, X.; Macleod, R. Feature Extraction from Point Clouds. In Proceedings of the 10th International Meshing

Roundtable, Newport Beach, CA, USA, 7–10 October 2001; pp. 293–305.
34. Guo, Y.; Wang, H.; Hu, Q.; Liu, H.; Liu, L.; Bennamoun, M. Deep Learning for 3D Point Clouds: A Survey. IEEE Trans. Pattern

Anal. Mach. Intell. 2020. [CrossRef]
35. Makhzani, A.; Shlens, J.; Jaitly, N.; Goodfellow, I.; Frey, B. Adversarial Autoencoders. arXiv 2016, arXiv:cs.LG/1511.05644.
36. Zamorski, M.; Zięba, M.; Klukowski, P.; Nowak, R.; Kurach, K.; Stokowiec, W.; Trzciński, T. Adversarial autoencoders for compact

representations of 3D point clouds. Comput. Vis. Image Underst. 2020, 193, 102921. [CrossRef]

http://dx.doi.org/10.21105/joss.00456
http://dx.doi.org/10.1109/ICRA.2011.5980567
Https://github.com/DLR-RM/stable-baselines3
http://dx.doi.org/10.1007/BF00992698
http://dx.doi.org/10.1109/TMECH.2020.3037158
http://dx.doi.org/10.1109/TPAMI.2020.3005434
http://dx.doi.org/10.1016/j.cviu.2020.102921

	Introduction
	Motivation
	Related Work
	Contribution
	Structure

	Proposed Architecture (Methods)
	Hardware Setup
	Simulation
	Controller Simulation
	Pointcloud Handling

	Reinforcement Learning
	Robot Environment
	Task Environment
	Learning Algorithm


	Experiments and Results
	Discussion
	Conclusions
	References

