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Abstract: Panchromatic (PAN) images contain abundant spatial information that is useful for
earth observation, but always suffer from low-resolution ( LR) due to the sensor limitation and
large-scale view field. The current super-resolution (SR) methods based on traditional attention
mechanism have shown remarkable advantages but remain imperfect to reconstruct the edge details
of SR images. To address this problem, an improved SR model which involves the self-attention
augmented Wasserstein generative adversarial network ( SAA-WGAN) is designed to dig out the
reference information among multiple features for detail enhancement. We use an encoder-decoder
network followed by a fully convolutional network (FCN) as the backbone to extract multi-scale

check for features and reconstruct the High-resolution (HR) results. To exploit the relevance between multi-
updates layer feature maps, we first integrate a convolutional block attention module (CBAM) into each
Citation: Du,]J.; Cheng, K, Yu, Y,; skip-connection of the encoder-decoder subnet, generating weighted maps to enhance both channel-
Wang, D.; Zhou, H. Panchromatic wise and spatial-wise feature representation automatically. Besides, considering that the HR results

Image Super-Resolution Via Self and LR inputs are highly similar in structure, yet cannot be fully reflected in traditional attention

Attention-Augmented Wasserstein mechanism, we, therefore, designed a self augmented attention (SAA) module, where the attention
Generative Adversarial Network.
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org/10.3390/521062158

weights are produced dynamically via a similarity function between hidden features; this design
allows the network to flexibly adjust the fraction relevance among multi-layer features and keep the
long-range inter information, which is helpful to preserve details. In addition, the pixel-wise loss is
Academic Editor: ByoungChul Ko combined with perceptual and gradient loss to achieve comprehensive supervision. Experiments on
benchmark datasets demonstrate that the proposed method outperforms other SR methods in terms
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fations. Panchromatic (PAN) images have been widely used in various applications, such

as weather forecasts, environmental monitor, and earth observation. However, since the

PAN images are always taken from space satellites with a large field of view, their spatial
BY resolution is usually quite limited, and details of ground objects, for this reason, cannot
Copyright: © 2021 by the authors.  be well distinguished. To resolve this problem, recent works began to focus on the super-
Licensee MDPL, Basel, Switzerland.  resolution (SR) of PAN images. Due to the limitation of sensors, the PAN images captured
This article is an open access article  from satellite sensors suffers from the heavy image degradation, which is an urgent need
distributed under the terms and  for R to improve resolution and rich image texture through image processing algorithms.
conditions of the Creative Commons The performance of SR algorithms [1-4] has been greatly boosted by the convolutional
Attribution (CC BY) license (hps:// 1y oyyral networks. The conventional supervised learning model tries to minimize the error

Zr;j?vewmmons'org/ licenses/by/ between ground truth and SR results, whereas this design cannot well utilize the difference
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between those two samples semantically, arising from the fact that the loss functions are
usually assigned as basic error functions, such as Mean Square Error (MSE), Structural
Similarity Index Measurement(SSIM), or L1 Norm [5]. The the adversarial generative
network (GAN) is introduced to resolve this shortage. Unlike normal generative networks,
GAN-based methods apply the discriminative network to minimize the semantic distance
between generated images and ground truth images through the discriminative error,
producing High-resolution (HR) results with more details and naturalness. Although
GAN-based SR models have made successful progress, there are still some limitations,
such as the training instability and the limited representative ability of spatial-wise and
channel-wise features [6]. The training instability is usually caused by the nonlinearity of
the discriminative supervision, which may cause mode collapse. In addition, traditional
convolution cannot respond to the different contribution among multi-channel and different
locations of the feature maps.

Some improved models have been proposed to address the issue of feature repre-
sentation in SR networks. Residual channel attention networks (RCAN) [7] is introduced
to learn features across channels and enhance long-term information. Channel attention
is used to exploit the features across different channels, but this design cannot fully use
the the relevance among different locations of the feature. To further dig out the hidden
relation within features, a channel and spatial attention block (CBAM) [8] is developed via
combining channel-wise and spatial attention mechanisms into the network. Y.T. Hu first
introduced the CBAM block into SR network [9], which integrates the CBAM features of
the channel-wise attention and spatial attention into the residual block (CSAR) to modulate
the residual features. The CSAR blocks are stacked in a chain structure to dynamically
modulate multi-level features in a global-and-local manner. The multi-level features, in
this way, can be adapted and fused with a hierarchical feature map through gated fusion.
But, in fact, the relevant information between the channel feature and the spatial feature
has not been excavated in CSAR blocks.

To effectively settle the above problem, attention-augmented convolution [10] is
introduced in this paper to utilize the relevance among multiple features. Attention-
augmented convolution improves classic convolution by augmenting the features and
giving adaptive weight for feature combination, which can flexibly adjust the fraction of
attentional channels to keep inter information among features. This allows the network to
capture long-range interactions without increasing the number of parameters, whereas the
self-attention mechanism has not been fully explored in SR.

In this work, a self augmented attention Wasserstein generative adversarial network
(SAA-WGAN) is proposed for PAN images SR. We first integrate a convolutional block
attention module (CBAM) into each skip-connection of the encoder-decoder subnet instead
of stacking in a chain for CBAM features extraction in multi-scale. To obtain relevant
information for hierarchical features, the self augmented attention (SAA) block using
attention-augmented convolution are presented for extraction of the hinder feature and
contextual information. In our SAA-WGAN, an encode-decode structure with CBAMs
is used as one branch network, and the SAA block is utilized as another parallel branch,
providing more helpful features in multiply scales and layers for the reconstruction of
HR result. In addition, the pixel-wise information and high-level semantic information
can be exploited by the combined loss of pixel loss and perceptual loss. As result, our
method obtains better visual quality and recovers more image details compared with other
state-of-the-art SR methods.

In summary, the main contributions of this paper are listed as follows:

(1)  We propose a WGAN-based network (SAA-WGAN) for PAN image SR, which is
integrated with the encode-decode structure and CBAM.

(2) We apply the self-attention module into the WGAN network, from which the long-
range features can be well preserved and transferred.

(3) The generate loss is a combination of pixel loss, perceptual loss, and gradient loss to
achieve the supervise in terms of both image quality and visual effect.
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(4) Extensive evaluations have been conducted to verify the above contributions.

The remainder of this paper is organized as follows. We introduce the related Genera-
tive Adversarial Networks and Attention Features in Section 2. The proposed method of
SAA-WGAN for PAN image super resolution is described in Section 3. The experimental
results and analysis are reported in Section 4. The conclusion of this paper is stated in
Section 5.

2. Related Work
2.1. Generative Adversarial Networks

Traditional GANs [11-13] always narrow the gap between the generated sample
and the real image by minimizing the Kullback-Leibler divergence (KL)distance between
discriminative results, and the structure of gan is shown in Figure 1. The discriminator
network in GAN can distinguish real and false samples, as well as produce very realistic
SR results. Since the KL divergence is not linear for the input distribution space, which
means the supervision of the discriminator is non-uniform for all the input samples, thus,
the performance of traditional GANSs is quite limited.

In SR, the generator network is trained to capture the real data distribution so that its
generative samples can be as real as possible, which means to minimize E[log(D(I, x))] +
E[log(1 — D(I, £))]. The discriminative network estimates the probability of a given sample
coming from the real dataset, i.e., it can maximize the probability to distinguish SR sample
from real data. So, the contest between the discriminator and the generator is usually
formulated as a zero sum with cross-entropy targets.

ménmng[log(D(I, x))] + E[log(1 — D(I, %))], (1)

where x is the input, £ is the SR image, I is groundtruth, D is discriminator in the network,
and G is generator in the network. Hence, the discriminator loss is

L%ss = —E[log(D(I, x))] — E[log(1 — D(I, %))]. 2)

In practice, a modified generator loss is used:

L%ss = —E[log(D(I, ®))]. ©)]

Generator Discriminator

Network

Figure 1. Structure of standard WGAN.

2.2. Attention Features

Attention has enjoyed widespread adoption in convolutional neural networks (CNN )
models, including SR networks, because of its ability to enhance feature representation.
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Y.L. Zhang proposed channel attention (CA) mechanism to adaptively rescale channel-wise
features by considering interdependencies among channels. To consider the channel at-
tention and space attention jointly, Y.T. Hu introduced the channel and spatial attention
block (CBAM) [14] module into deep SR network [9], where a set of channel-wise and
spatial attention residual (CSAR) blocks was conducted and stacked in a chain structure
to dynamically modulate multi-level features in a global-and-local manner. Lately, more
attention mechanisms has been applied in super resolution [15,16]. Tao Dai presented a
second-order attention network (SAN [15]) that employs repeated local-source residual
attention groups (LSRAG) to learn increasingly abstract feature representations. In SAN, a
novel trainable second-order channel attention (SOCA) module was developed to adap-
tively rescale the channel-wise features by using second-order feature statistics for more
discriminative representations. Further, L.G. Wang created a parallax-attention mechanism
(PASSRnet [16]) to integrate the information from a stereo image pair, handling different
stereo images with large disparity variations.

Although these existing attention-based approaches have made good efforts to im-
prove SR performance, the reconstruction of rich details for SISR is still a challenge. In deep
networks, the low resolution (LR) inputs and extracted features contain different types
of information across channels, locations, and layers, which have different reconstruction
contributions for reasons. However, the common convolutional layer imposes locality and
translation equivariance via a limited receptive and weight sharing, respectively. The local
nature of the convolutional kernel prevents it from capturing global contexts in an image,
which is necessary for the details of SR images. Consequently, contributions across different
aspects are not equal, which causes that multiple feature maps cannot be fully utilized.

Inspired by the above observations, we propose a method that can capture the global
contexts by attention-augmented convolution and extract multi-scale features via an encode-
decode network. The features from attention-augmented convolution and the encode-
decode network are shown in Figure 2. Features of attention-augmented remain lots of
details, such as corners and edges. It further assists the HR image reconstruction in the
spatial domain and can be concatenated with the multi-scale feature.

Generator

CBAM l Discriminator

Channel-wise

lw

18]

mi l

Horg

Self-attention

Attention map -+ ‘Weighted average of values

Input l valuee .
— -”
%

Standard convolution

Output

Figure 2. Architecture of self augmented attention (SAA)-WGAN.
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3. Method

Our system reconstructs high-resolution images via Wasserstein generative adversar-
ial networks with the channel and spatial attention to obtain more representative features.
Especially, the attention of channel and spatial is a flexible mechanism to capture infor-
mation of channel features and position features in a self-adaptive manner such that
accumulated important information is weighted highly. Besides, a WGAN network with a
comprehensive loss function is applied to achieve a realistic display of SR reconstruction
results with more details.

3.1. Architecture

The architecture of the self augmented attention WGAN (SAA-WGAN) is illustrated
in Figure 2. It consists of two parallel branches, including an encode-decode network
and a self attention network. The encode-decode network is composed of two modules,
i.e., the encode-decode module (EDM) and the fully convolutional network (FCN). The
FCN involves five convolution blocks of eight kernels with a size of 3 x 3. The EDM is a
four-scale encode-decode convolutional module, and the CBAM is rubbed into each scale
to enhance multi-scale feature representation. Meanwhile, self augmented attention (SAA)
convolution is introduced to make a relation of the space and the channel feature subspace
for a powerful convolution.

Wasserstein GAN. Wasserstein GAN is proposed by Martin Arjovsky and others
to optimize a discriminator by maximizing the Earth Mover (EM) distance between the
discriminative result of fake and real samples. Thus, the “discriminator” is not a direct
critic of telling the fake samples apart from the real ones anymore. Instead, it is trained to
learn a K-Lipschitz continuous function (satisfy |f|; < K) to help compute Wasserstein
distance [17] which is linear for the entire sample space. The Wasserstein distance is
informally defined as

mé'nmgx — (=E[D(I,x)] + E[D(I, %))]), 4)

where [ is LR image; x is the real image; and # is SR image. Loss is the set of 1-Lipschitz
functions. The discriminator loss is

L%ss = —E[D(I,x)] + E[D(I, %)]. 5)

In practice, a modified generator loss is expressed as

L(();ss = —E[D(I, %)]. (6)

Wasserstein GAN removes the logarithm for continuous gradient update and uses
gradient penalty for the relevance of parameters and constraints. It solves some problems,
such as the unstable gradient of the generator and insufficient diversity of generated
data, in GAN. So, it is used in our model to facilitate the reconstruction of more detail in
SR image.

Channel and spatial attention block (CBAM). Attention model has been used to
help the network to focus on the features which are more critical for the performance.
In our model, to fully exploit its information, we utilize a channel and spatial attention
block for the feature re-enhancement. The CBAM adopts average-pooling to squeeze the
spatial dimension of the input feature map to achieve channel attention. It also applies
average-pooling and max-pooling operations along channel axis for spatial attention, then
concatenates these features, and generates a spatial attention map by a convolution layer. In
this way, the weights of different channels and different positions can be flexibly adjusted
under the importance of the information. The input of CBAM is the feature of each layer
in EDM, and the multi-scale features captured by CBAM are displayed in the first row of
Figure 3.
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Fusion of
multi-scale
feature

Attention-
augmented
feature

Figure 3. Attention-augmented results.

The CBAM structure as Figure 4, CBAM feature math expression can be inferred by a
1D channel attention map M, and a 2D spatial attention map M;, and the CBAM feature
F.bam can be expressed as

Febam = Ms(F) X) Mc(F) Q) F, 7)

Mc(F) = (W (AvgPool(F)) + Wi (MaxPool (F))) = o(W1(Wo(Fipg)) + W1(Wo(Fax)),
®)

M;(F) = o(f77 ([AvgPool(F)); (MaxPool (F)])) = o(f77 ([Fyyq, Fruax])), ©)

where (X) denotes element-wise multiplication. AvgPool() is average-pooling, and
MaxPool() is max-pooling. Ff,, and Fj,,, denote channel average-pooled features and
max-pooled channel features, respectively. F;,, and F;,;, denote average-pooled spatial
features and max-pooled spatial features, respectively. o denotes the sigmoid function, and
f7*7 represents a convolution operation with the convolutional filter size of 7 x 7. Wy and
Wy are feature weights after pooling and after activation.

Out

Figure 4. Channel and spatial attention block (CBAM).

Self augmented attention (SAA) convolution. Self augmented attention (SAA) con-
volution aims to compute a weighted average of values from hidden units, and the weights
are produced dynamically via a similarity function. It can also capture long-range interac-
tions among input signals and gives the dynamical weights obtained by hidden units to
the input. The SAA takes local information and re-calibrated global information into the
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convolution. That is, two heads of feature subspace can participate in the attention mecha-
nism to get both spatial and channel-wise weighted maps, which are used to re-weight the
corresponding location of the input image, and, finally, concatenates with the point-wise
convolution to achieve the enhanced convolution operation in SAA. Therefore, augment
convolutions are applied to the self-attention mechanism for representative and abstract
features, as displayed in the second row of Figure 3.

Self attention-augmented convolution is achieved by concatenating convolutional
feature maps into self-attentional feature maps which is capable of modeling longer range
dependencies (see Figure 5). First, we flatten the input matrix X shape of (H, W, d;;) to
(HW,d;,) and take an operation of multi-head attention as the transformer architecture [8].
The output of the self-attention module for a head / can be formulated as:

(XW,) (XWi)"

Oy,(X) = Softmax
an
k

(XWo), (10)

where W, Wy € Rdin Xd?, and W, € Rin xd5 are learned linear transformations used to map
the input X to queries Q = XW,, keys K = XWj, and values V = XW,. Attention (Q, K, V)
map uses query Q and keys K matrix as weight of values V, and we can obtaina HW x HW
matrix via (XWq) (X Wk)T. Then, the outputs of all heads (1, 2, 3, ..., ) are then concatenated
as follows:

Oattgn(X) = COTlClli‘[Ol,Oz, O3,...,Oh]WO, (11)

where W € R%*d? ig 3 linear transformation. Outten(X) is then reshaped into a tensor of
shape (H, W, dv) to match the original spatial dimensions.

Attention map Weighted average
of values
values Output
Input
| I | . Concat
A
Standard
convolution

Figure 5. Attention-augmented convolution results.

The comprehensive feature Fs, is expressed by SAA feature Fy,jr and FCN feature Fy,.

PST(') = C(Fselfr chn)/ (12)

Fon = F (2 Ficbam)/ (13)

where C(-) function is sum of Fy., and Fy¢, and F. function is series of convolution in FCN
module. Y, Figpgy, is the fusion Figpen (i =1, 2,3, 4), Ficpay is the CBAM feature, Fy ¢ is the
SAA feature, and Fy,, is the FCN feature.
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3.2. Loss function

Efficient loss functions and deep CNN networks have been exploited in other SR
methods [18]. To achieve better performance, we utilize the pixel-wise loss (e.g., L1 loss)
to minimize the error between the real image and SR result in pixel-level, which has
been widely used in many image reconstruction problems [19]. The pixel-wise loss can
get excellent performance in Peak Signal to Noise Ratio (PSNR) but always introduces
some artifacts. To avoid image artifacts, we also introduce the perceptual loss in our
model. Perceptual loss tries to reduce the feature gap between the real image and the
reconstructed image at certain layers of VGG19 features, and it can be used to preserve
semantic information and achieve better visual quality. In addition, the gradient loss is used
to minimize the gradient difference between the real image and the reconstructed image in
different directions. The combination of pixel-wise loss, gradient loss, and perceptual loss is
applied to supervise the training process. The combined generator loss can be expressed as

Lossfinai (I, £) = —[a *10sspjx (I, £) + b x l0ssper (1, £) + ¢ x 1088 ¢r0a(1, £)]. (14)
G

In addition, the discriminator loss is

Loss finar(x, £) = [a % 10s8ix (I, £) + b+ 10sSper(1, £) + ¢ % 1058 ¢704(1, £)]
D . (15)
—[a x1losspix (I, x) + b x lossper (I, x) + ¢  108Sgraq (I, x)]

Here, losspix, [ 0SSper and lossgmd denote the pixel-wise loss, perceptual loss, and gradi-
ent loss, respectively, [0sspix = [ — [, [085¢ra = [V (I)V(2)l5, l0ssper = [61(I) — 61(%)]3;
a, b, and ¢ are weighted values which are adjusted according to the training situation. V()
is gradient computation, ¢() is the feature map of the /th layer of VGG19 (I =1, 2, 3, 4, 5),
|l indicates L1 norm, and |||, indicates L2 norm.

We conducted the three experiments using different combination of these losses to
validate the effectiveness of the comprehensive loss. It can be seen from Table 1 that the
loss acted on the generative network can improve the performance as expected, from 32.23
dB to 33.29 dB. These comparisons firmly demonstrate the effectiveness of loss.

Table 1. Test of different loss on the Set5 dataset.

Loss losspix lossper lossgraa PSNR
1 v X X 32.23
2 X v v 32.37
3 v v X 32.45
4 v X v 32.71
5 v v v 33.29

4. Experimental Evaluation

In this part, we conduct experimental comparison of state-of-art deep learning meth-
ods, including SRCNN [20], VDSR [21], EDSR [22], LapSRN [23], RCAN [7], ESPCN [24],
RDN [25], SRGAN [11], and CGAN [26]. And the baselines are re-implemented based on
the source-code that the authors provided. We implement our models with the TensorFlow
framework and train them using NVIDIA Titan V GPU. In the following subsection, we
will provide reasonable settings for the implementation details and parameters in our
SR model.

4.1. Implementation Details

We use the DIV2K dataset, a high-quality (2K resolution) dataset with 800 images, for
our training. The training samples are randomly cropped from the original images with a
fixed size of 64 x 64.
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House, tree, airplane
SR results without
self-attention

House, tree, airplane
SR results with self-
attention

The generative model is trained using the loss function in Equation (11) with a = 0.22,
b = 0.43, c = 0.35. The learning rate is initialized as 1 x 10~* and decayed by a factor of
1 every 1 x 10° of mini-batch updates. For optimization, we used Adam with g; = 0.9,
B2 =0.999, ¢ = 19, and step size a = 0.001. We alternately updated the generator and
discriminator network until the model converges.

4.2. Comparisons and Results

To validate the effects of self-attention, we carried out a series of experiments involving
the following three parts:

*  Comparison test between castrated model without SAA convolution and SAA-WGAN.

e  Comparison test on PAN datasets of DOTA and GEO, evaluation index of PSNR and
SSIM on GEO images.

¢ Comparison with benchmark networks on classic datasets, including Set5, Set14,
BSD100, and Urban100.

First, we test the performance of SAA-WGAN and the castrated model without SAA
on the DOTA dataset, and some results are shown in Figure 6. The details of the airplane,
the shade of the tree, and the house in Figure 6 have been significantly improved because
of SAA ability to keep long-distance details, indicating that self-attention could improve
the network performance.

Then, comparisons are conducted on DOTA and GEO images using state-of-art al-
gorithms, which proves the performance superiority of SAA-WGAN. The results of the
SAA-WGAN are displayed in Figures 7-9. We show visual comparisons of different bench-
mark algorithms on scale x4 in Figure 7. As can be seen, all the compared methods suffer
from blurring artifacts with varying degrees, failing to recover more details. However, our
SAA-WGAN can recover them obviously, showing more faithful to the ground truth. Due
to the resolution of the image is too high, the size of PAN images are cropped into 64 x 64.

Figure 6. Panchromatic (PAN) image super-resolution (SR) from GEO.
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SAA-WGAN

SAA-WGAN

Figure 7. DOTA image for x4 scale SR.

To further illustrate the universality advantage on other datasets of SAA-WGAN,
we compare our method with 8 state-of-the-art methods (Bicubic, SRCNN, SCN, VDSR,
LapSRN, EDSR, RDN, RCAN) on some most used SR dataset, e.g., Set5, Set14, BSD100,
Urban100. More comparisons about PSNR/SSIM are provided in Table 2. It shows quanti-
tative comparisons for x2, x4, and x8 SR. The best results are annotated with blue text in
Table 2. It demonstrates that our method almost achieves the best performance on all the
datasets with all scaling factors.

We also find that, when the scaling factor becomes larger (e.g., 8), the PSNR gain of our
method also becomes larger. When the scale factor is 2, the PSNR gain of our method tested
on BSD100 and Urban100 exceeds RCAN by 1.5 dB and 1.2 dB, respectively. Similarly,
on the same two datasets with the scale factor of 4, the proposed method has more gains
than RCAN of 2.2 dB and 1.4 dB, respectively. When the scale factor is 8, the PSNR gain of
this method exceeds RCAN by 2.99 dB and 1.97 dB, respectively. This observation shows
that deeper network structure and powerful attention mechanism can improve network
performance.
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(b) SRCNN

(e) ESPCN (f) RDN (g) SRGAN (h) SAA-WGAN
Figure 8. PAN image SR from GEO (scale = 4).

(a) GT (b) CGAN (¢) DRCN (d) ESPCN

Figure 9. SR results from DOTA datasets (scale = 4).
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Table 2. SR results of benchmark.
Set5 Set14 BSD100 Urban100

Image Index Scale
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Bicubic X2 33.66 0.9299 30.24 0.8688 29.56 0.8431 26.88 0.8403
SRCNN x2 36.66 0.9542 32.45 0.9067 31.36 0.8879 29.50 0.8946
SCN x2 37.05 0.9576 33.17 0.9120 31.56 0.8923 30.32 0.9021
RDN X2 38.24 0.9614 34.01 0.9212 32.34 0.9017 32.89 09353
VDSR x2 37.53 0.9590 33.05 0.9130 31.90 0.8960 30.77 0.9140
EDSR x2 38.11 0.9602 33.92 0.9195 32.32 0.9013 32.93 0.9351
LapSRN x2 37.52 0.9591 33.08 0.9130 31.05 0.8950 30.41 0.9101
RCAN X2 38.27 0.9614 34.12 0.9216 3241 0.9027 33.34 0.9384
SAA-WGAN x2 38.34 0.9733 34.71 0.9310 33.91 0.9130 34.53 0.9453
Bicubic x4 28.42 0.8104 26.00 0.7027 25.96 0.6675 23.14 0.6577
SRCNN x4 30.48 0.8628 27.50 0.7513 26.90 0.7101 24.52 0.7221
DRCN x4 31.45 0.8714 28.00 0.7677 27.14 0.7312 25.67 0.7556
RDN x4 32.47 0.8990 28.81 0.7871 27.72 0.7419 26.61 0.8028
VDSR x4 31.35 0.8830 28.02 0.7680 27.29 0.7260 25.18 0.7540
EDSR x4 32.46 0.8968 28.80 0.7876 27.71 0.7420 26.64 0.8033
LapSRN x4 31.45 0.8850 28.19 0.7720 27.32 0.7270 25.21 0.7560
RCAN x4 32.73 0.9013 28.98 0.7910 27.85 0.7455 27.10 0.8142
SAA-WGAN x4 33.03 0.9115 29.45 0.8110 29.65 0.9101 28.53 0.8372
Bicubic x8 24.40 0.6580 23.10 0.5660 23.67 0.5480 20.74 0.5167
SRCNN x8 25.33 0.6900 24.13 0.5660 21.29 0.5440 22.46 0.6950
SCN x8 25.59 0.7071 24.02 0.6028 24.30 0.5698 21.52 0.5571
VDSR x8 25.93 0.7240 24.26 0.6140 24.49 0.5830 21.70 0.5710
EDSR x8 26.96 0.7762 2491 0.6420 24.81 0.5985 22.51 0.6221
LapSRN x8 26.15 0.7380 24.35 0.6200 24.54 0.5860 21.81 0.5810
DRRN x8 24.87 0.8290 24.81 0.7734 20.79 0.7968 21.84 0.7896
RCAN x8 27.31 0.7878 25.23 0.6511 24.98 0.6058 23.00 0.6452
SAA-WGAN x8 26.17 0.8338 25.33 0.7742 27.97 0.8816 24.97 0.8224

Figure 10 is the objective evaluation on image patches of Figure 8. In comparison
algorithms, the performance curves of the SRGAN and ESPCN are significantly higher than
the other five algorithms. Although SRGAN uses discriminative network that can extract
the semantic information to get more useful features, ESPCN adopts a reconstruction
strategy of concentrating multiple channel features to form a fused feature map which
uses the relationship across channels. However, the evaluation indicators of SRGAN and
ESPCN cannot exceed the proposed method. The PSNR of SAA-WGAN reaches 32 dB, and
the SSIM curve fluctuates around 0.92; it is achieved by its ability of extracting attention
feature from hidden units using SAA and CBAM, which is superior to other comparison
algorithms in subjective vision and objective evaluation.
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Figure 10. The metrics of GEO image (The proposed SAA-WGAN is the purple curve.).

5. Conclusions

We propose a self attention-augmented network SAA-WGAN for PAN image SR. SAA-
WGAN uses the EDM to extract multi-scale information and utilizes FCN to reconstruct
HR images. The CBAM and the SAA are rubbed into the SAA-WGAN to enhance multi-
scale feature representation and make use of the relationship in both spatial and channel
subspaces. Further, the pixel loss, perceptual loss and gradient loss are combined to
supervise the training process. Extensive experiments on benchmark datasets and PAN
images demonstrate the effectiveness of our proposed SAA-WGAN.
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