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Abstract: In this paper, a manipulation planning method for object re-orientation based on semantic
segmentation keypoint detection is proposed for robot manipulator which is able to detect and
re-orientate the randomly placed objects to a specified position and pose. There are two main parts:
(1) 3D keypoint detection system; and (2) manipulation planning system for object re-orientation. In
the 3D keypoint detection system, an RGB-D camera is used to obtain the information of the envi-
ronment and can generate 3D keypoints of the target object as inputs to represent its corresponding
position and pose. This process simplifies the 3D model representation so that the manipulation
planning for object re-orientation can be executed in a category-level manner by adding various
training data of the object in the training phase. In addition, 3D suction points in both the object’s
current and expected poses are also generated as the inputs of the next operation stage. During
the next stage, Mask Region-Convolutional Neural Network (Mask R-CNN) algorithm is used for
preliminary object detection and object image. The highest confidence index image is selected as
the input of the semantic segmentation system in order to classify each pixel in the picture for the
corresponding pack unit of the object. In addition, after using a convolutional neural network for
semantic segmentation, the Conditional Random Fields (CRFs) method is used to perform several
iterations to obtain a more accurate result of object recognition. When the target object is segmented
into the pack units of image process, the center position of each pack unit can be obtained. Then, a
normal vector of each pack unit’s center points is generated by the depth image information and
pose of the object, which can be obtained by connecting the center points of each pack unit. In the
manipulation planning system for object re-orientation, the pose of the object and the normal vector
of each pack unit are first converted into the working coordinate system of the robot manipulator.
Then, according to the current and expected pose of the object, the spherical linear interpolation
(Slerp) algorithm is used to generate a series of movements in the workspace for object re-orientation
on the robot manipulator. In addition, the pose of the object is adjusted on the z-axis of the object’s
geodetic coordinate system based on the image features on the surface of the object, so that the
pose of the placed object can approach the desired pose. Finally, a robot manipulator and a vacuum
suction cup made by the laboratory are used to verify that the proposed system can indeed complete
the planned task of object re-orientation.

Keywords: object re-orientation; pick-and-place; Mask R-CNN; semantic segmentation; 3D keypoint
detection

1. Introduction

With the development of intelligent automation and artificial intelligence technologies
such as deep learning, applications and development of intelligent robots have gradually
attracted attention in the academic and industrial fields. Among the application require-
ments of many robots, the development of service robots has become one of the important
projects. For example, for a service robot used in stores, if the robot is used to assist
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service personnel in placing and sorting goods on shelves, key technologies such as image
recognition, object picking strategies, and collision avoidance are needed for the robot. The
appearance, weight, size, and placement relationship of each product directly affect the
complexity of image recognition, picking strategies, and mechanisms design. Therefore,
how to determine the object’s pick-and-place method for robot manipulators is worthy
of discussion.

The pick-and-place tasks in robotics have been extensively developed and researched
not only in industrial manufacturing but also in academia. In recent years, according to
the rise of deep neural networks, in addition to classify and logistic regression [1,2], deep
learning has also been widely used in the pick-and-place tasks for robot manipulators. It
can be roughly divided into four topics: (i) object detection; (ii) object pose estimation;
(iii) object picking planning; and (iv) robot motion planning. Regarding object detection,
there has some research on the architecture of neural network used for object detection
in recent years, such as Region-based Convolutional Neural Networks (R-CNN) related
series [3—6], You Only Look Once (YOLO) series [7-9], and Single Shot MultiBox Detector
(SSD) [10]. The R-CNN series use a two-stage method to first extract candidate Region
Of Interest (ROI) and then classify each ROI so that they can achieve very high accuracy.
YOLO series and SSD are one-stage methods, using deep neural network to simultaneously
classify objects and detect object positions. The one-stage methods are usually faster and
suitable for real-time applications, but the overall recognition accuracy may be lower than
the two-stage methods. Object pose estimation is commonly based on RGB-D image [11]
or 3D model [12,13] to calculate the 3D pose of object. Manuelli et al. [14] proposed
the keypoint [15] method, which is used to detect human skeleton and find the relative
keypoints, and combined it with local dense geometric information from a point cloud. In
this way, a simpler pose vector can be used to represent the object pose in the environment
and facilitate subsequent object picking operations. Semochkin et al. [16] proposed a
keypoint detection method for different camera perspectives based on a trained CNN and
used keypoints as the representation of object in the task of grasping task. Vecerik et al. [17]
proposed a self-supervised training system to detect 2D keypoints for all individual scene
views and used CNN to estimate the possible depth of objects, so as to estimate the 3D
location of each keypoint.

Research in robotic manipulation over the past decades has mostly focused on how to
pick up objects [18], but it has seldom discussed how to manipulate objects or the process
of placing objects after being grasped. In fact, in the research about robot pick-and-place
planning, most of the scenarios are drop the object down from a height to the box or
table without considering the consequences [19-21]. There has not yet been a state-of-
mind research for the object placement task, so it has been deriving the issue of multiple
regrasp [22-24] to achieve the issue of specific placement or the issue of re-orientation [25]
of the object. In recent years, there have been related studies on generating grasping
strategies based on how to use the grasped objects [18]. For example, Do et al. [26] used the
affordance of object for task-oriented grasping, while Lai et al. [27] and Qin et at. [28] used
the grasped objects as the robot manipulator’s tool to achieve operation control according
to the specific objectives.

The purpose of this paper is to combine object detection, object pose estimation, and
motion planning for the robot manipulator to achieve the function of object re-orientation.
However, since the method of directly segmenting the target object in the 3D point cloud
needs to build a 3D model for each target object independently, it also cannot achieve
the characteristics that are widely used in the same type of object. As a result, this paper
starts from 2D image recognition which is based on the deep learning method, combined
with the depth image, and converts the pixel coordinates of the segmented area into 3D
coordinates to complete the task of object pose estimation. It also integrates functions
such as coordinate conversion, grasp planning, and trajectory planning, so that the robot
manipulator can complete the object re-orientation.
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The rest of this paper is organized as follows. In Section 2, the system structure of the
proposed object re-orientation manipulation planning method is described. In Section 3,
five main parts of the proposed 3D keypoint detection system are described. In Section 4,
the object pose comparison and robot operation of the proposed manipulation planning
system are described. In Section 5, some experimental results are presented to illustrate
the proposed method and a laboratory-made robot manipulator is used to verify that
the proposed method can indeed run on the actual robot. Finally, the conclusions are
summarized in Section 6.

2. System Structure

The system architecture of the proposed manipulation planning method for object
re-orientation in a category-level manner is shown in Figure 1. There are two main modules:
3D keypoint detection and manipulation planning. In the 3D keypoint detection module,
since this paper uses Deep Convolutional Neural Network (DCNN) to detect the target
object and each pack unit of the object, it usually requires plenty of time to build such
a large training dataset to optimize the DCNN model. To solve this problem, a data
augmentation module is added in the system and is used off-line to construct training
dataset, which creates ample training data by superimposing a small number of manually
marked datasets on different backgrounds. As a result, the database can be efficiently used
to optimize the DCNN model and fine-tune a pre-train model. The data augmentation
system process is introduced in detail in Section 3.5.

Offline Process

Augmenting

Training Data in
Complex Scene

L.

Labeling Image Training Data in

Simple Scene

Data

Online Process

Training Models
for Mask R-CNN

Trainning CNNs

Mask R-CNN

Training Models
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| l |_ Manipulation Planning System 1
| CRFs-Based LNN-Ba.sed | |
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Figure 1. System architecture of the proposed manipulation planning method for object re-orientation.

In the on-line process, this paper uses a trained Mask R-CNN and a CNN-based
semantic segmentation for object detection. First, Mask R-CNN is used to segment the
pixel level of a target object. After gaining the segmented object picture, it is input into the
semantic segmentation network to segment each pack unit of the object. After obtaining
the position of each pack unit of object, the centroid position of each pack unit is used as
the keypoint of the object, and the 3D pose of the object is estimated through the normal
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vector of the keypoint. The detailed operation process is presented in Section 3 and the
operating time of the real robot is described in Section 5.3.

In the manipulation planning module, the pose of the object and the normal vector
of each pack unit are first converted into the working coordinate system of the robot
manipulator. Then, according to the current pose and the expected pose of the object,
the Slerp [29] algorithm is used to enable the robot manipulator to perform a series of
movements in the workspace to re-orientate the object. Finally, the object is repositioned
through the laboratory-made 7-DoF robot manipulator and vacuum suction cup. The
detailed operation process is presented in Section 4.

3. 3D Keypoint Detection System

The main purpose of this section is to introduce how to establish the 3D keypoint
detection system and explain how to integrate multiple object detection algorithms to
achieve the purpose of estimating pose of the object. There are five main parts: (a) Mask
R-CNN; (b) CNN-based semantic segmentation; (c) CRFs-based refinement; (d) keypoint
annotation and object average normal vector; and (e) data augmentation for training dataset
generation. They are described as follows.

3.1. Mask R-CNN

Mask R-CNN, a two-stage object detection algorithm which can achieve category-level
detection and a mask that delimits the pixels constituting each object, enables the complete
contour pixel position of the object to be accurately segmented while maintaining the
operating speed. This algorithm is a deep learning algorithm based on Faster R-CNN [5]
proposed by He et al. [6] for object detection and instance segmentation. The two-stage
structure of Faster R-CNN model is used for object detection. In the first stage, Feature
Pyramid Network (FPN) is used to generate a set of regions of interest as potential bounding
box candidates to improve the robustness of detecting objects of different sizes. In the
second stage, the candidate regions of interest are classified, and then the pixel position of
the object is predicted by deconvolution, which provides three outputs for each object: a
class label, a bounding box that delimits the object, and a mask that delimits the pixels that
constitute. The mask image with the highest confidence index is selected as the input of
the semantic segmentation system. Figure 2 shows the detailed two-stage architecture of

Mask R-CNN.
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Figure 2. Detailed two-stage structure of Mask R-CNN architecture [6].
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3.2. CNN-Based Semantic Segmentation

This paper uses the semantic segmentation method based on convolutional neural
network (CNN-based semantic segmentation) to perform secondary segmentation on the
complete object mask image output in the previous section. The purpose is to segment
the precise position of each pack unit of the object. For example, the PET bottle can
split into two pack units: the body and the cap. In this paper, the existing DeepLab-
ResNet [30] is employed as the network architecture at this stage, which is characterized
by the use of atrous convolution shown in Figure 3 for convolution processing. The benefit
is that it can maintain a larger Field-of-View (FOV) after processing with the convolution
layer while maintaining the resolution of the feature map and the size of the convolution
kernel, to ensure that more features are stored when the image size is equal during the
convolution process.

Convolution Kernel: 3x3 Convolution Kernel: 3x3 Convolution Kernel: 3x3

Rate: 1 Rate: 6 Rate: 24
o o (@

000

oleje o (o @

LI
o o @

Feature map Feature map Feature map
(a) (b) (0)

Figure 3. Examples of atrous convolution [30].

3.3. CRFs-Based Refinement

After the CNN-based semantic segmentation process described in Section 3.2, an ap-
proximate object result can be found, which may affect the subsequent centroid calculation.
To overcome this problem, a fully connected CRFs layer [31] is used to refine the CNN
output, produce accurate semantic segmentation results, and recover object boundaries at
a level of detail. The CRFs are a type of discriminative undirected probabilistic graphical
model, which represents the Markov random field that outputs another set of random
variables under the condition of a given set of random input variables x. The energy
function of the model is described by

E(x) =}, 0:(xi) + ) 04(xi, x)) €))

where x is the label assignment for pixels, 6;(x;) = —log P(x;) is the unary potential, and
P(x;) is the corresponding label assignment probability at pixel i obtained from the CNN
output. The following expression can be used to connect all pairs of image pixels, where i,
j is the pairwise potential for each pair

SN N A 0 0 W A T Y R
g Ak 202 203 202

In Equation (2), p(x;, xj) = 1if x; # x;, while the rest are all 0, which means that only
nodes with distinct labels are penalized. The two Gaussian kernels are used to express in
different feature spaces. The first Gaussian kernel depends on the penalty between two
pixel positions (denoted as p; and p;) and between their RGB values (denoted as [; and
I;). The second kernel considers spatial proximity when enforcing smoothness and only
depends on the pixel position.
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3.4. Keypoint Annotation and Object Average Normal Vector

After the output of the above process, the complete contour of pack unit is marked
with different colors, so that the centroid position of each part can be calculated separately.
Take the bottle cap as an example. The centroid calculation method is described as follows.

Step 1: Convert the pack unit mask into grayscale, and define the points on the mask
image by

cap = [pointl, point2,- - - , pointk] 3)

where k is the length of pixel of the bottle cap mask.
Step 2: Define the maximum and minimum coordinate values in x-axis and y-axis by

imin = Min(pointl.x, point2.x, . .. pointk.x)
imax = Max(pointl.x, point2.x, ... pointk.x) @
Jmin = Min(pointl.y, point2.y, ... pointk.y)

jmax = Max(pointl.y, point2.y, ... pointk.y)

Step 3: Calculate the moment of order (p + q) of an image in the interval range x, y
for a 2D continuous function f(x,y) by

mpg =YY Pyl (x,y) (5)
T

where p,g =0,1,2,....
Step 4: Calculate the zero-order moment g of the function f(x,y), which represents
the total of mass of the given image and is defined as

imux Jmax

mo= ), 3, f(ij) ©6)

=lmin ]=]min

Step 5: Calculate the two first-order moments 11y and mg;, which represent the centre
of mass of the given image and are defined as

imax jnmx
mig= Y, Y, ixf(ij) 7)

=lmin ]=]min

imax jmax
moy= 3, Y}, jixf(ij) ®)
i=imin j=Jmin
Step 6: Calculate the centroid ¥ and 7 by dividing mjpand mg; by mgp, which can be
expressed as
—=_ My _ _ Mol
X=—, Y=— )
moo Y moo
Set the calculated centroid position to a depth of range d ), calculate the vector of
each pixel in the range through the point cloud image, and calculate the average normal
vector of the object surface. The average normal vector calculation process is shown in
Algorithm 1.

3.5. Data Augmentation for Training Dataset Generation

This subsection introduces the data augmentation module for deep learning proposed
in this paper. In the preparation of training data, since this paper uses the Mask R-CNN to
perform the first stage of object detection, its main purpose is to segment the complete object
contour. As a result, the ground truth data are marked with the type of individual objects,
as shown in the left picture of Figure 4. In the second stage of semantic segmentation,
the main purpose is to use the complete object contour image in the output of previous
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stage to detect each pack unit of the object, so as to annotate the keypoints of the object in
Section 3.4. The corresponding ground truth is shown in the right picture of Figure 4, each
color pixel representing each pack unit of objects classified from the input image.

Algorithm 1: Get average normal vector from point clouds.

1 while Get the center position of object do

Get the point clouds maps from depth image;

Extract the point clouds of the keypoint;

Set the depth range d,,; and extract area;

if Not enough to calculate the average normal vector then
| Readjust the distance d

else
| Calculate the average normal vector;
9 end

10 end

pcl

@ N o Ul e W N

. 0:_background_
I 1:Bottle Body
I 2:Bottle Cap
3:Carton Body
I 4:Carton Cap

I 0:_background_
I 1:Bottle
N 2:Carton

Figure 4. An example of training sample.

The procedure of proposed data augmentation system is shown in Figure 5. This
paper uses a variety of background pictures and manually marked images to randomly
superimpose and related image processes to geometrically transform the ground truth,
which includes rotation, zoom, shift, random stack, etc., so that the object can be combined
with the background to synthesize a random training dataset while retaining the original
features for training in DCNNSs.

Randomly Select Dataset
Object and &
Background 4

A 4

Rotation, Zoom,
Shift the Object
on Background

Figure 5. Procedure of the proposed data augmentation method.

In the training process, this paper uses the data augmentation system to build indi-
vidual datasets to train Mask R-CNN and CNN-based semantic segmentation network.
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Table 1 shows the information of data augmentation and network training, which includes
the backbone network, the number of objects, the number of random scenes, the manually
label photos, the number of individually generated training photos, and the resolution of
the photos.

Table 1. Information of data augmentation and network training of Mask R-CNN and CNN-based
semantic segmentation.

Item Mask R-CNN CNN-Based Semantic Segmentation
Backbone network ResNet-101 ResNet-101
Number of objects 3 6
Number of random scenes 10 10
Manually label photos 45 50
Automatically generate photos 4000 6000
Resolution 640 * 480 640 * 480

4. Manipulation Planning System

The main purpose of this section is to introduce how to use the keypoints of the
object combined with the robot manipulator to plan the operation of sucking the object
and explain how to compare the expected pose and current pose of object to achieve the
purpose of re-orientating the object. There are two main parts: (a) object pose comparison;
and (b) robot operation. They are described as follows.

4.1. Object Pose Comparison

After obtaining the 3D keypoints of the object in Section 3, this section mainly discusses
how to use the keypoint information of each pack unit to compare the pose difference of
the object. The task of “How to re-orientate a PET bottle on the shelf” is presented as an
example; the keypoints prarget_cap and Piarger vottie Of the pack unit are used to represent the
positions of the PET bottle cap and PET bottle body, respectively. The points piarget_pottle
and Prarget_cap are used to obtain a unit vector vygyget_axis to represent the pose of the PET
bottle, and the point Ptarget_cap is projected on the camera coordinate of the y-axis to geta
project point pygreet_car- Then, the rotation angle 6y rotation Of the PET bottle in space can
be calculated by

(10)

Ptarget_cap Ptarget_cal )

gobj_rotution =7t — | acos
Ptarget_capPtarget_bottle

After calculating the rotation angle 6yp; rotation Of the object, the position of the object
and the pose unit vector in the workspace can be obtained. Next, invert this pose unit vector
as the orientation of end-effector to suck the object by converting the coordinate system
from camera to robot so that the robot manipulator can be used to suck the target object.

Finally, by comparing the expected pose vgo_syis that is initially given by the user
with the current pose vigrget_axis, the initial and target suck position and orientation of the
end-effector of the robot manipulator can be obtained through coordinate conversion, and
the object can be sucked from the target to goal to achieve the purpose of “re-orientate a
PET bottle on the shelf”. The schematic diagram is shown in Figure 6, where the black
dashed line represents the movement trajectory of the pick-and-place action in workspace
of two keypoints.

4.2. Robot Operation

This section mainly discusses the coordinate conversion and the linear trajectory
planning in workspace, the purpose of which is to generate the trajectory of endpoint of
robot manipulator. The flowchart of robot manipulator operation planning is shown in
Figure 7. The unit vector of an object can be obtained through the 3D keypoint detection
in Section 3; through the coordinate conversion, an orientation of endpoint of robot to
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suck the object can be obtained. Finally, the operation of the robot manipulator is planned
through the kinematics [32].

pgoﬂl_cap |_ |_

v - .
goal axis \
—_ T

Pgoal bottle ~

= [

[ pmrgeticap
ptm'get_bott[e Umrgﬁ,ﬂxil z
/' y
Goal Target .

Figure 6. The schematic diagram of object reorientation.

Target
object

Section 3

3D Keypoint || _camera | Coordinate

Image input

detection conversion
Unit vector
of target

Workspace

linear Coordinate

trajectory conversion Target object
lannin; \ ) posistion
_robot
Kinematics Rebof
movement
@ N =

Figure 7. Flowchart of robot manipulator operation planning.

After obtaining the position and orientation that are represented by quaternion of the
end-effector of the robot manipulator, the current pose and the target pose of the object can
be calculated by interpolating the two quaternions at a ratio to plan the movement path.
The purpose of this section is to use the Slerp algorithm to generate the trajectory points
that the robot manipulator passes through and arrange the rotation of each point, which is
expected that the trajectory of orientation to also be smooth.

To perform general linear interpolation between point p; and py, if T interpolation
points are to be generated, the interpolation points at time ¢ are calculated as

t
pr=p1+5(p2—p1) (11)

In the orientation planning part, the spherical linear interpolation of the quaternion in
the four-dimensional space can be simplified to two unit vectors vgyget_axis and Vgog)_gis ON
the two-dimensional plane to interpolate on the unit circle. The purpose is that, when two
endpoints of the robot manipulator are fixed, the orientation can be formed as a spherical
surface in the three-dimensional space, and the trajectory between the two orientation
vectors is the sphere by the approach vector of the robot manipulator. At time ¢, the angle
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between the two vectors is w, the interpolation vector v; is calculated by Equation (12), and
the schematic diagram is shown in Figure 8.

sin(1 — t)w sin tw
Slerp(vt) = ¥Utarget_axis + mvgouljxis (12)

sin w

goal _axis

rarget axis
Figure 8. Schematic diagram of two-vector linear interpolation in a two-dimensional plane [32].

5. Experimental Results

The purpose of this section is to verify the validity of the methods proposed in this
paper. The three main hardware instruments used in the experiment are shown in Figure 9.
The overall software system was implemented with Robot Operating System (ROS), which
provides a standard communication tunnel to help collaborative development. The DCNN
and normal vector were implemented with Tensorflow and Point Cloud Library (PCL),
respectively. In this section, the experimental results of the object re-orientation are divided
into three main parts: (a) image recognition results; (b) real-world demonstration; and (c)
computational eficiency. They are described as follows:

(a) (b) (©)

Figure 9. Three instruments used in the experiment: (a) laboratory-made 7-DoF manipulator;
(b) laboratory-made vacuum suction cup; and (c) Intel® RealSense™ D435 RGB-D camera.

5.1. Image Recognition Result
5.1.1. CNN-Based Object Detection

Since DCNN is used to detect the target object and each pack unit of object, it usually
requires a large training dataset to improve the accuracy of the method. To solve this
problem, the data augmentation module described in Section 3.5 was added to the system.
The information of data augmentation and network training of Mask R-CNN and CNN-
based semantic segmentation is shown in Table 1. The Intersection-over-Union (IoU)
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metric was added to quantitatively evaluate the accuracy of the proposed visual perception
algorithm. It is defined by

AreaofOverlap |ANB|

IoU(A,B) = =
oU(4,B) Areao fUnion |A| + |B| — |ANB|

x 100% (13)

Regarding to image recognition result, the original camera image was the input of
the Mask R-CNN, and a single object was extracted to be the input of the CNN-based
semantic segmentation for the pack unit detection. After that, the semantic segmentation
result was optimized by the CRFs-based refinement method. The image processing results
of three types of objects by the proposed method are described in Tables 2 and 3. From
the output results of the processes by the Mask R-CNN, object extraction, CNN-based
semantic segmentation, and CRFs-based refinement, the mean IoU of Mask R-CNN and
pack-unit segment through the comparison with ground truth data are 0.942 and 0.913,
respectively. Through the experimental results, it can be verified that the proposed method
can completely segment each position of pack-unit.

5.1.2. Object Pose Estimation

Through the pack unit image output in Section 3.3, the keypoint annotation method
described in Section 3.4 could be used to separately calculate the keypoints representing
pack unit. The experimental results to mark the keypoints in the original image are shown
in Figure 10, where the left picture is the PET bottle stand upright on the shelf and the right
picture is placed flat on the shelf. The keypoints of the cap and body of the PET bottle are
marked with red and blue, respectively.

Figure 10. Keypoint detection results of PET bottle obtained by the proposed object pose estima-
tion method.

After obtaining the keypoint information of the object, through the point cloud-based
unit vector calculation process described in Section 3.4, a unit vector could be obtained to
represent the pose information of the object in the environment. In Figure 11, the unit vector
in the workspace is described by the red arrow and the coordinate system is the coordinate
system of the camera, which is installed on top of the slide rail of robot. After obtaining
this unit vector, the inverse unit vector of this vector could be used as the orientation of the
end-effector of the robot manipulator to suck the object through coordinate conversion, so
that the robot manipulator can suck the target object.
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Table 2. Image processing results of three types of obtained by the proposed CNN-based object detection method.

PET Bottle Carton Drink Tomato Can

Origin
picture

Output
of Mask
R-CNN

Object
extraction

Output of
CNN-based
Semantic
Segmentation

CRFs-Based
refinement
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Table 3. Image processing results of three different pose of the PET bottle obtained by the proposed CNN-based object
detection method.

PET Bottle PET Bottle PET Bottle

Origin
picture

Output
of Mask
R-CNN

Object
extraction

Output of
CNN-based
Semantic
Segmentation

CRFs-Based
refinement
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Figure 11. Schematic diagram of unit vector calculation results for PET bottle.

To analyze the accuracy of the proposed 3D keypoint detection system, this study
used the Mean Absolute Error (MAE) metric to measure the pose estimation results. Using
manually marked key-points as ground truth data, the two poses of the PET bottle in
Figure 12 were detected multiple times and the position and pose were transformed into
the robot base frame. To measure pose estimation errors of the proposed method, the
position and rotation estimation errors are, respectively, defined as

0T =Ta—Ta and 6Ra = Rq — Rq (14)

where Q) = {x,y,z} represents one of the three axes of the Cartesian coordinate system. T
and Rq, represent the position and rotation of the ground truth, respectively. T and Rq
represent the position and rotation of the estimate data, respectively. Based on the above
definition, the mean absolute error metric is defined as

MAE(6Xa) = %D&an (15)

where N is the total test number and X represents one of the estimate variables T or R, and
N is the total test number. The MAE measures of the pose estimation results are described
in Table 4.

Kevpoint The Expected Replace the
D};I;:)ect —* FPose & Fesition Object by
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Figure 12. Flow chart of the experiment of the proposed manipulation planning for the object

A

Capture the
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re-orientation.



Sensors 2021, 21, 2280 15 of 18
Table 4. MAE measures of the 3D keypoint detection system results shown in Figure 10.

Position Error (cm) Rotation Error (Degree) Total Test

MAE Value Number
ST, T, ST, SR, SR, SR, N
Figure 10 (left) 0.1426 0.6438 0.7446 3.6722 5.2038 2.7232 15
Figure 10 (right) 0.1227 0.5210 0.6892 2.8746 6.1624 1.9902 15
Total average 0.1327 0.5824 0.7319 3.2734 5.6831 2.3567 30

In Table 4, the average errors of the position estimation results obtained from the
proposed method are, respectively, 0.13, 0.58, and 0.73 cm along the x-, y-, and z-axis,
and the average rotation errors are, respectively, 3.27, 5.68, and 2.36 degrees across the
x-, y-, and z-axis. This accuracy level is suitable for the robot manipulator to perform the
object picking and re-orientation task. Therefore, the experimental results validate the pose
estimation accuracy of the proposed algorithm.

5.2. Real-World Demonstration

An experiment of the proposed manipulation planning for the object re-orientation is
presented and its flow chart of the whole experiment process is described in Figure 12. First,
an RGB-D camera was used to capture environmental information, and the expected posi-
tion and pose of the object was estimated through the keypoint detection system described
in Section 3. After obtaining the expected position and pose, the object was replaced by the
user, and the keypoint detection system was used to estimate current position and pose of
the object. The keypoint detection system suspended detection during the operation of the
robot manipulator. By comparing the difference of the expected and current position and
pose, a series of movements of the robot manipulator was generated to pick the object and
re-orientate it to the expected position and pose. After completing the above process, the
camera was used to capture the current pose of the object, and the picture of the expected
object’s pose was compared with the Intersection over Union described in Equation (12).
If the similarity was greater than 0.9, the process was determined to be successful. If the
similarity was less than 0.9, the object re-orientation was performed again to achieve a
closer result. To ensure that the detection system has good accuracy in the operation of the
real robot, the checkerboard calibration method provided by realsense™ [33] was used to
calibrate the camera before the experimental process. The movement states of the robot
manipulator shown in each picture of Figure 13 are described as follows:

(@) Capture the expected position and pose of the object.
(b)  Capture the current position and pose of the object.
(c) Robot initial pose.

(d) Move to the front of the object.

(e) Suck the object.

(f) Re-orientate the object.

() Place the object to the expected pose.

(h) Return to the initial state.

5.3. Computational Efficiency

The proposed system was implemented in C++ and Python running on an Ubuntu
16.04 platform personal computer that is equipped with an Intel® Core™ i7-7700 CPU,
32 GB DDR4 system memory, and a NVIDIA GeForce GTX 1080 GPU with 8 GB frame
buffer memory. The average processing time in each phase of the proposed 3D keypoint
detection system is described in Table 5. We can see that the average total processing time
took about 1.742 s in the real operation, and the CNN-based semantic segmentation and
CRFs-based refinement spent more time in the whole process.
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Figure 13. Experimental snapshots of the experiment of the proposed manipulation planning for the

object re-orientation.

Table 5. Average processing time in each step of the proposed 3D keypoint detection system.

Function Method Processing Time Proportion of Time

Mask R-CNN 0.258 14.8%
Visual . -
P . CNN-Based Semantic Segmentation 0.429 24.6%
erception
CRFs-Based Refinement (5 iterations) 0.996 57.1%
Object Pose Keypoint Annotation 0.016 0.9%
Estimation Normal Vector from Point Cloud 0.043 2.4%
Total Processing Time (in seconds) 1.742

6. Conclusions

An object re-orientation planning method based on 3D keypoint detection is proposed
for the robot manipulator so that it can re-orientate an object from an arbitrary pose to
a specified position and pose. There are three main contributions of this research: (i) In
the object pose estimation system, the CNN-based object detection algorithm is used to
recognize the position of each object by separating them into some pack units, and the depth
image is added to estimate the object’s pose in the environment. Due to the characteristics
of the CNN-based object detection algorithm, it can be executed in a category-level manner
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by adding several relative categories of the object, without the need to relatively build
a 3D model of the object in the training phase. Compared with other 3D model-based
object detection systems, this method can simplify the procedure more effectively. (ii) In
the second stage of CNN-based pack unit detection, the mask image obtained by instance
segmentation in the first stage is used as input so that the environmental effect is reduced
and the contour of each pack unit can be accurately and completely segmented. In addition,
it can simultaneously generate fewer label categories while using CRF for individual
contour optimization. (iii) In the manipulation planning for object re-orientation, the
spherical linear interpolation method is used to effectively generate a series of movements
in the workspace for the robot manipulator by comparing the difference of the current pose
and the expected pose of the object. It can be concluded from the experimental results that
the proposed method can indeed complete the object re-orientation.
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Abbreviations

The following abbreviations are used in this paper:

CRFs Conditional Random Fields

DCNN  Deep Convolutional Neural Network

FOV Field-of-View

FPN Feature Pyramid Network

IoU Intersection over Union

MAE Mean Absolute Error

PCL Point Cloud Library

R-CNN Region-based Convolutional Neural Network

Rol Regions of Interest
Slerp Spherical Linear Interpolation
SSD Single Shot MultiBox Detector

YOLO  You Only Look Once
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