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Abstract: To process data from IoTs and wearable devices, analysis tasks are often offloaded to the
cloud. As the amount of sensing data ever increases, optimizing the data analytics frameworks is
critical to the performance of processing sensed data. A key approach to speed up the performance
of data analytics frameworks in the cloud is caching intermediate data, which is used repeatedly
in iterative computations. Existing analytics engines implement caching with various approaches.
Some use run-time mechanisms with dynamic profiling and others rely on programmers to decide
data to cache. Even though caching discipline has been investigated long enough in computer
system research, recent data analytics frameworks still leave a room to optimize. As sophisticated
caching should consider complex execution contexts such as cache capacity, size of data to cache,
victims to evict, etc., no general solution often exists for data analytics frameworks. In this paper, we
propose an application-specific cost-capacity-aware caching scheme for in-memory data analytics
frameworks. We use a cost model, built from multiple representative inputs, and an execution flow
analysis, extracted from DAG schedule, to select primary candidates to cache among intermediate
data. After the caching candidate is determined, the optimal caching is automatically selected during
execution even if the programmers no longer manually determine the caching for the intermediate
data. We implemented our scheme in Apache Spark and experimentally evaluated our scheme on
HiBench benchmarks. Compared to the caching decisions in the original benchmarks, our scheme
increases the performance by 27% on sufficient cache memory and by 11% on insufficient cache
memory, respectively.

Keywords: big data analytics frameworks; caching optimization; in-memory data

1. Introduction

A huge amount of sensed data is generated in real-time from IoTs and wearable
devices and transmitted to the cloud for processing. As those devices are manufactured
in lightweight forms, computing on large-scale data directly on them is often impractical.
To this end, edge computing frequently utilizes serverless computing on the cloud, which
is gaining popularity in cloud computing paradigms. The data collected from IoTs and
wearables vary in their types and formats. Thus, additional data processing is required
such as integration and classification [1]. Distributed data analytics frameworks are widely
adopted for such data processing in the cloud. As processing large-scale data is a major
challenge to big data analysis, many data analytics frameworks have emerged rapidly. Re-
cently, in-memory data analytics frameworks have received the spotlight [2–5]. Providing
machine learning libraries, these frameworks are adopted for application acceleration in
the field of machine learning. They store intermediate results in memory and use them
in iterative tasks, which greatly improves the performance over traditional storage-based
processing frameworks. Apache Spark, currently the most popular in-memory data analyt-
ics framework, provides cache-related APIs for programmers to determine data to cache
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manually. Spark programmers may be able to utilize the cache more effectively with better
knowledge of application logic, but the cache optimization can be additional overheads for
programmers who want to focus on application logic.

For in-memory data analytics frameworks, many policies on cache eviction have been
investigated to overcome the shortcomings in traditional policies, such as LRU, LFU, and
FIFO. However, the execution times are easily affected due to garbage collection (GC)
overhead. Even with excellent eviction policies, limitations exist to achieve the optimal
performance. In our study, we found caching the adequate amount of data is equally
important to performance. As most data analytics frameworks operate with the directed
acyclic graph (DAG), which is the lineage information of the data processing, deciding
which data to cache from the execution flow specified in the DAG is an appropriate ap-
proach but still not trivial [6,7]. A naive approach is to cache all data that are used multiple
times. However, caching without considering execution context on cache capacity may
increase the cache usage, which may incur GC overhead due to excessive memory demand.
In addition, naive approaches may evict the important data for later computations and
incur heavy data recomputation. Sophisticated approaches take into account the caching
benefits of individual data. The benefits can be estimated by analyzing the execution flow
and the cost of recomputation. On existing data analytics frameworks, the cost metrics
for individual operators are rarely provided. Thus, programmers often find difficulties to
figure out the benefits and cost overheads at the application development stage. Moreover,
the caching decision from programmers may not be optimal. As the execution contexts
on available cache amount is dynamically determined at run time, programmers cannot
incorporate the run-time knowledge into statically written programs. When the cache
memory is insufficient to store additional data, existing blocks are evicted from the cache.
When the evicted blocks are referenced again, they are recomputed and re-stored in the
cache. If this situation occurs repeatedly, it would be better to keep the data which require
heavier recomputation cost than the other data. Meanwhile, when the cache capacity
is sufficient to hold both, keeping both would result in the best performance. A proper
caching decision for an execution context cannot guarantee optimal performance for the
other execution contexts. Thus, accurately analyzing the execution flows and adapting to
various execution contexts is necessary to achieve optimal caching decisions and this is not
suitable for programmers.

In this paper, we propose a cost-capacity-aware caching (CCA) for in-memory data
analytics frameworks. Our approach can be applied to the frameworks where the execution
of jobs is described in a DAG. CCA makes caching decisions to maximize the predicted
performance benefit based on the computing cost model. To this end, we established
the operator-level metrics to represent the cost of individual operators in the distributed
environment and built a computing cost model that predicts the cost of operators in terms
of the size of input data. In addition to computing cost, caching decision in CCA depends
on execution contexts, such as cache capacity, input data size, and execution stage progress.
Using execution contexts, CCA dynamically updates the caching decision each time before
running a job. Unnecessary data in the cache after finishing a job are continuously marked
and those spaces are used for caching new data for the next jobs.

We evaluate the performance of CCA with Spark benchmarks from HiBench. Ac-
cording to our experiments, CCA never aggravates the performance of original caching
decision in the benchmark programs, but finds the opportunities to improve the perfor-
mance significantly in nine benchmarks out of 14 benchmarks. Compared to the original
caching decision in benchmarks, our experimental evaluation shows that CCA achieves
27% speedup for application performance, when the cache memory is sufficient. On in-
sufficient cache memory, CCA achieves 11% performance gains, where dynamic caching
decision per job should be much more effective to draw the performance improvement. The
rest of the paper is organized as follows. Section 2 provides background and motivation
for our work. Section 3 describes the architecture and algorithm of CCA. Sections 4 and 5
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present our evaluation methodology and results. Section 6 discusses the related works,
and Section 7 concludes our work.

2. Motivation

In this section, we analyze the application source code of a representative in-memory
data analytics framework and explain the execution flow on the analytics engine described
in DAG. Then, we discuss the limitation of fine-grained computing time metrics of the
existing analytics frameworks. Finally, we present a motivating example to understand the
impact of memory pressure.

2.1. Application Code Analysis of In-Memory Data Analytics Framework

Figure 1 shows the partial source code of logistic regression on Spark. As the interme-
diate data, training, are repeatedly used inside the model run in line 10, caching split(0)
and copying its reference to training in line 4 will result in performance benefit. Another
intermediate data, data, which are created in line 1, are reused to generate splits in line 3.
These data could have been selected to cache, but not cached. Thus, when splits(1) is
copied to test in line 5 and used in line 13, all the operators in its RDD lineage should be
executed. This includes a repeated file read of an input file in inputPath. Caching both
data and training can avoid repeated file reads, but it may cause performance degra-
dation due to insufficient memory. The original benchmark makes an empirical decision
to cache training, as it is repeatedly used in the model run. However, it is not always
optimal under different execution contexts.

1 val data : RDD[ LabeledPoint ] = sc . o b j e c t F i l e ( inputPath )
2

3 val s p l i t s = data . randomSplit ( Array ( 0 . 6 , 0 . 4 ) , seed = 11L )
4 val t r a i n i n g = s p l i t s ( 0 ) . cache ( )
5 val t e s t = s p l i t s ( 1 )
6

7 val model = new LogisticRegressionWithLBFGS ( )
8

9 // repeatedly used part of ’ t r a i n i n g ’
10 model . run ( t r a i n i n g )
11

12 // reused part of ’ t e s t ’
13 val predictionAndLabels = t e s t . map { . . . }

Figure 1. Source code of logistic regression on Spark.

2.2. Execution Flow and Cached Dataset

Execution flow of data analytics frameworks such as Spark [2], Hadoop [8], and
Dryad [9] can be represented by a directed acyclic graph (DAG) [10]. Each edge represents
dependencies between intermediate results in the execution flow. Each node of DAG
represents the dataset generated by the operator. An operator transforms the input dataset
into an output dataset. The whole execution flow of an application consists of multiple
jobs. A job is composed of stages. A stage has a boundary around operators that have wide
dependencies. DAGs in the analytics framework can have two types of data dependencies:
narrow dependencies and wide dependencies. In narrow dependencies, each block of
dataset depends on one block of the previous dataset. Meanwhile, wide dependencies
appear when each block of the dataset may be dependent on multiple blocks of the previous
dataset. A stage is executed on a set of tasks and each task takes blocks of the dataset. In
data analytics frameworks, the first dataset usually consists of data blocks generated by raw
input data from the storage system (e.g., HDFS [11], Amazon S3 [12], and Tachyon [13]),
and the number of tasks is determined by the amount of data blocks. The final output of
the stage is delivered to the input of the next stage.

Figure 2a shows an internal representation of execution flow in Spark. The operator is
invoked on a resilient distributed dataset (RDD) , which is an abstraction of a dataset [14].
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In the example in Figure 2a, each RDD is partitioned to four blocks, and a new block is
created as a result of operator execution. Figure 2b shows a task assignment in executors.
Among the assigned tasks in executors, runnable tasks are executed in parallel. As a
dataset in a stage is composed of four blocks in the example, four tasks are created and
evenly assigned to available executors. Execution plan of a task is internally represented as
[0_y→ 1_y→ 2_y]. If RDD1 in the example is cached, four blocks from RDD1 (consisting
of 1_0, 1_1, 1_2, and 1_3 blocks) will be stored in the Spark cache memory. When a task is
ready to execute, its DAG is traversed with depth-first search, and operators are started
from the deepest cached node. Assuming RDD1 is cached in the example, the operators to
generate the blocks of RDD2 from the blocks of RDD1 will start to execute in all tasks. As
such, it is possible to distinguish intermediate data that is highly reusable through the DAG
information of the application, and it can be selected as an appropriate caching candidate.

RDD0

0_0

Stage 0 Stage 1

0_1

0_2

0_3

RDD1

1_0

1_1

1_2

1_3

RDD2

2_0

2_1

2_2

2_3

RDD3

3_0

3_1

3_2

3_3

(a) Internal execution flow of a job

Executor 0

Task 0

0_0

1_0

2_0

Task 1

0_1

1_1

2_1

Executor 1

Task 2

0_2

1_2

2_2

Task 3

0_3

1_3

2_3

(b) Task assignment to executors

Figure 2. Internal representation of execution flow and task execution for blocks in Spark: x_y in
blocks denotes dataset id (x) and partition id (y).

In many applications, some datasets from operators are reused on iterative jobs. To
improve the performance of the application, caching for iterative jobs is beneficial. If
datasets generated by reused operators are not cached, recomputation of the iterative
operators is required, which degrades the performance. Most existing frameworks do not
provide sophisticated caching for repeatedly performed operators. Although Spark sup-
ports APIs to cache the dataset specified by the programmer, it rather causes development
overhead. Our goal is to provide a caching mechanism in consideration of execution flow
and potential performance increase for repetitive jobs.

2.3. Task-Level vs. Operator-Level Timing Metrics

It was confirmed that intermediate data to be reused can be selected through the above
source code analysis (Section 2.1) or execution flow analysis (Section 2.2). In addition to
data reuse times, for optimal performance, it is necessary to compare execution cost through
recomputing for recovery and performance gain due to caching. There is a study verified
that the execution cost of each operator can be an important feature for cache memory
management, through a cost-aware eviction policy to replace LRU which is the default of
Spark [15,16]. In order to measure the recomputing time of intermediate data, the cost of
the ancestor operators of the data must be measured. Unfortunately, existing data analytics
frameworks only provide the task-level computing time metrics [2,8]. The executor only
records times when a task starts and finishes. Inferring the performance benefit of caching
has two limitations with the existing task-level metrics: First, task-level timing is a local
metric measured on an individual executor. Blocks in a dataset are distributed across
multiple tasks and processed on multiple executors in a distributed environment. Second,
the task-level timing is too coarse to calculate the performance benefits from operator-
level computing. To estimate the benefit of caching, skipped block processing times in a
task should be measured. In our work, new operator-level timings are integrated over
the distributed environment and proportionally matched with stage timings to build a
computing cost model.
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2.4. Memory Pressure and Performance

In-memory analytics frameworks store intermediate data in the cache memory to
improve the performance of iterative operations. If the size of the dataset to cache is larger
than the capacity of the cache memory, the performance of the framework may degrade [17].
RDDs used with cache() are stored in the cache memory when the corresponding operators
are processed. They evict data according to LRU policy if they cannot keep all datasets to
the cache. When evicted RDDs are referenced again, they are recomputed and stored in the
cache memory. As recomputed RDDs move back to the cache memory, other existing RDDs
in the cache memory can be evicted again. The process of recomputation and eviction due
to the lack of cache memory degrades the performance of frameworks. To alleviate the
situation, adjustment to the current caching decision is necessary, if the cache memory
cannot keep all the cached data.

Figure 3 plots the execution times on various capacities of the cache memory for
logistic regression on Spark. Each line represents the caching decision for the dataset in
example code of Figure 1. It shows all seven combinations that can be cached for the
three intermediate data: data, training, and test. When the cache memory is smaller
than input data size (7.5 GB), the execution times for two caching decisions—all and
data+training—take much longer than the other caching decisions. As the lack of cache
memory causes the recomputation of the data block, the performance degrades for caching
decisions to hold larger data than the capacity. In the case of caching test only, the number
of reuses is very small, so performance tends to be the worst when cache capacity is
sufficient. On the contrary, in a situation where the cache capacity is extremely small, the
caching test reduces the burden on the cache and shows the fastest performance. When
the capacity of cache memory is sufficient more than 15 GB, caching all achieves the best
performance. From this experiment, we verify that one caching decision cannot be optimal
for all execution contexts. Thus, the caching decisions should be changed depending on
the execution context to achieve best performance.
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Figure 3. Execution time of logistic regression on 7 different caching decisions.

3. Design Decisions

In this section, we present the system design of CCA, which makes the caching decision
based on the computing cost model in consideration of execution contexts. We describe
our elaborate implementation in Spark. Additionally, we describe detailed methodologies
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to make the caching decision through two algorithms. Table 1 is the glossary of notations
used in this paper.

Table 1. Glossary of the notations.

Notation Meaning

n Number of blocks in the dataset
m Number of operators used in the stage
a Ancestor which is the nearest cached in DAG
S Stage execution time
Oi ith operator
Di Dataset generated by Oi
Dij Data block of Di
Tij Computing time of Dij

Ti Total computing time of blocks on dataset Di
Ci Estimated computing cost of Oi
Ii Number of iterations for Oi
Bi Benefit from caching Di

3.1. Cost Model and Caching Benefit

In the previous section, we noted the limitation of existing task-level computing time
metrics to build the computing cost model [18]. Existing frameworks do not measure
the individual block computing time and local task-level metrics cannot represent the
computing time from the perspective of the distributed environment. We establish an
operator-level metric by integrating operator times on all tasks to determine the computing
cost of the operator in the execution flow. We split the task into individual block computing
and measure the computing time of each block. Initially, we tried to estimate the operator
computing cost as the maximum value of the computing time of blocks in the dataset.
However, one major challenge we faced with the initial estimation is that multiple tasks
can be assigned per executor core. The executor can perform tasks in parallel as many
as the number of cores. If the number of tasks is greater than the number of available
cores, the number of tasks processed by one core can be multiple. In this case, the cost
of computing the dataset by the operator cannot be determined by the maximum block
computing time. Our approach to addressing this challenge is matching the sum of the
dataset’s block computing time proportionally to the stage duration. Assuming that the
stage contains n tasks. In Equation (1), Ti is the total computing time of blocks generated
by Oi, where Tij is the computing time of Dij .

Ti =
n

∑
j=1

Tij (1)

In frameworks that adopt BSP model [19], such as Spark or Hadoop, a stage finishes
only when the last task is completed. Stage duration can be obtained as the time from the
start of the first task to the end of the last task. In Equation (2), Ci, the estimated computing
cost of Oi, is defined by matching the ratio of Ti to the sum of the Tx of all m operators
in the stage to the stage execution time S. For the computing costs of reused operators at
multiple stages, the averages of the measured computing costs are used.

Ci =
Ti

m
∑

x=1
Tx

× S (2)

Measured computing cost by operator-level metric depends on the size of the input
file and is not generally applicable to the different size input files. We build a computing
cost model based on the measured operator-level metrics in terms of the input file sizes. We
measure the operator-level metrics for three representative sizes of input data and calculate
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the linear trend model by using three computing costs from different input sizes. Our cost
model predicts the costs of operators on a given size of input data through the linear trend
cost model.

Based on the computing cost model, we define caching benefit as the reduced exe-
cution time which is decreased by caching the dataset. The caching benefit changes as
iteration is performed, so the benefit must be recalculated for each job. The a stands for the
nearest cached ancestor in DAG. The Ii is a number of iterations for Oi. The benefit from
caching the dataset generated by Oi is calculated in Equation (3) as follows:

Bi = (
a

∑
x=i

Cx × (Ii − 1)) (3)

Most applications that running in the distributed environment are recurring applica-
tions [20]. Our approach obtains the block computing time and the size of the dataset from
the previous run.

To make a caching decision that maximizes caching benefit, all possible decision’s
caching benefits should be compared. The number of possible caching decisions with k
operators in the execution flow is 2k. As k increases, the cost of comparing all possible
caching decisions increases exponentially. Even if the caching decision selected from our
approach shows sub-optimal performance, the completeness of making a caching decision
must be guaranteed. To address this problem, we propose a DAG clustering method, which
clusters nodes with the same iteration count from the job DAG. Each node represents the
dataset in the execution flow of an application. The iteration count of the dataset is defined
as the number of job DAG that records the dataset. The operator that creates the dataset in
the execution flow is used as much as the iteration count.

Considering the execution process of the analytics framework, only one dataset in
the cluster needs to be cached. When two nodes in the job DAG are adjacent, the child
node is always created from the parent node. If both nodes have the same iteration count,
both nodes are referenced in the same job DAGs. Therefore, datasets in the cluster will
be referenced in the same job DAGs. If the cluster contains cached nodes, only the child
nodes of the cached nodes in the cluster need computation. Considering the characteristics
of DAG, only the bottom of the nearest cached node is referenced, so only one node in
the cluster needs to be cached. Caching can be specified based on the cluster in which the
entire DAG is divided into subgroups. Thus, DAG clustering narrows down candidates
for caching decisions and reduces the cost of selecting the caching decision. The dataset
with the highest caching benefit in the cluster is selected as the dataset to be cached. The
caching benefit of the cluster is defined as the caching benefit of the selected dataset.

Figure 4 shows part of KMeans workload’s job DAGs. Our clustering method starts
the clustering from DAG’s root node and nodes with the same iteration count are sep-
arated. Sequence [sequenceFile → map] is used from job 0 to job 2, and the dataset
generated by sequence [sequenceFile → map] is referenced three times in the example.
Sequence [map → zip → map] is used from job 1 to job 2, and the dataset generated by
sequence [map → zip → map] is referenced two times in the example. Sequence [map] is
only used in job 2. Datasets in all job DAGs are clustered into [sequenceFile → map],
[map→ zip→ map], and [map] according to the number of using.
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Job 0 Job 1 Job 2
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map
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map

sequenceFile
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sequenceFile

map

…

opreator dataset cluster

Figure 4. Part of KMeans’s job directed acyclic graphs (DAGs) and example of DAG clustering.

3.2. Spark Implementation

Figure 5 gives an overall architecture of CCA. We have implemented CCA in Spark,
and shaded components are the main implementations in Figure 5. AppProfiler and CCA-
CachingManager are implemented on a master node of distributed Spark. TaskMonitor is
implemented on each worker node of distributed Spark. The other components, DAGSched-
uler, SparkContext, BlockManagerMaster, and BlockManager, are default components
of Spark.

Apache Spark

Master

Worker

Cost profile

Worker

Executor

TaskMonitor

BlockManager

Task Task

Block 
computing 

time

Cost profile

Cost model

Job DAG Spark Conf

DAGScheduler SparkContext

AppProfiler

BlockManagerMaster

Executor

TaskMonitor

BlockManager

Task Task

Cache

Block 
computing 

time

CCA-CachingManager

User Client

HDFS

NameNode

DataNode DataNode

Metadata

Data blocks Data blocks

Spark Application

Cache

Original communication path

Extra path implemented for CCA

Figure 5. Architecture of cost-capacity-aware caching (CCA).

Before running the application for the first time, the AppProfiler collects the necessary
information of application for building computing cost model. It collects DAGs, the itera-
tion count of a dataset, the size of a dataset, and computing cost of blocks. Iteration count
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and DAG information are obtained from the DAGScheduler. Distributed TaskMonitor
collects the computing time of data block for each task from the BlockManager and sends
it to the BlockManagerMaster. The BlockManagerMaster uses the collected information
to determine the computing costs of the operator and sends it to the AppProfiler. After
profiling, the AppProfiler sends the cost model of an application to CCA-CachingManager.

The main algorithm to make a caching decision is implemented in CCA-CachingMan-
ager. When an application is submitted through spark-submit scripts, Spark launches
the driver with an object called SparkContext. SparkContext provides access to the
various components on the distributed Spark. One component of the distributed Spark
is SparkConf, which gives the information such as a number of executors and executor’s
capacity of the memory. CCA-CachingManager makes a caching decision by using the
profiled results received from AppProfiler and configuration information from SparkConf.

3.3. Caching Decision Algorithm

In the previous section, we proposed a clustering method for the caching decision. The
pseudocode for the DAG clustering and caching decision in CCA is described in Algorithm 1
and Algorithm 2. Two algorithms are implemented in CCA-CachingManager component.

We formalize the procedure of clustering the DAG in Algorithm 1. As briefly described
above, nodes with the same iteration count will be clustered. The clustering method
recursively traverses nodes of the DAG starting from root. The clusters is a set of a cluster
that partially grouped from the DAG. The descs is a queue in which nodes whose iteration
count should be compared to the nodes stored in cluster are stored. Empty descs means that
all nodes in the job DAG are clustered, meaning there are no more nodes to traverse. If
descs is not empty, consider whether to include desc in cluster. A iter stores the iteration
count of all nodes, and the cluster’s iteration count is the same as the node in the cluster. If
the iteration count of desc and the iteration count of cluster are the same, add child nodes of
desc to descs and include the desc in the cluster. If they are not the same, start the clustering
recursively with a sub-graph where desc is the root node. Finally, clustering results from all
job DAGs are integrated to obtain a cluster set of the entire execution flow. The procedure
of clustering is performed once after the application is launched.

We describe the procedure of making a caching decision in Algorithm 2. The procedure
of clustering nodes of the DAG and extracting the cluster set of the application is involved
in making a cache decision before the start of the first job. The benefit stores caching benefits
of all clusters. The cluster.dataset, the dataset to be cached in the cluster, is the dataset with
the highest caching benefit in the cluster. The caching benefit of the cluster is defined as
the caching benefit of cluster.dataset. Initially, the algorithm updates the benefit according
to the cost of the model and the remaining iteration count of the dataset. All clusters are
candidates for caching and a cluster to be included in the caching decision is determined
in order of the cluster’s caching benefit. If there is enough space in memory to store the
selected dataset, include the dataset in caches. If the new dataset is added to caches, the
caching benefit of clusters is updated.

CCA updates the remaining iteration count of the dataset and performs the procedure
of making a caching decision each time before every job starts. The dataset included in
caches is stored in the cache when used for the first time in the job. The dataset not included
in caches is removed from the cache. Caching decision is made on the master node of the
distributed Spark at the job running time of worker nodes. Required decision time for the
next job is overlapped at the running time of the previous job. The decision time for the
first job is overlapped at the time after the application launches and before the first job
is submitted.
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Algorithm 1 A recursive algorithm for DAG clustering

Input : iter—map that stores the iteration count of the corresponding dataset or cluster
root—top node in DAG

Output: clusters—a set of clustered nodes
1: function CLUSTERING
2: . Recursively traverse all nodes in DAG
3: cluster← {root}
4: descs← {root}
5: while descs 6= ∅ do
6: desc = descs.pop
7: if iter[desc] == iter[cluster] then
8: descs← descs∪ desc.children
9: cluster← cluster∪ {desc}

10: else
11: clusters← clusters∪ {cluster}
12: clusters← clusters∪ CLUSTERING(desc)
13: cluster← ∅
14: end if
15: end while
16: return clusters
17: end function

Algorithm 2 A baseline algorithm for making a caching decision.

Input : M—size of total cache memory
U—size of used cache memory
benefit—map that stores caching benefit of the corresponding cluster
clusters—a set of clustered nodes

Output: caches—a set of candidates to cache
1: function MAKE_DECISION
2: UPDATE(benefit)
3: caches← ∅
4: for all cluster in clusters do
5: if U ≤M then
6: caches← caches∪ {cluster.dataset}
7: UPDATE(benefit)
8: end if
9: end for

10: return caches
11: end function

4. Evaluation Methodology

In this section, we demonstrate a methodology for evaluating CCA with 14 workloads
in the Intel HiBench [21,22] benchmark suite. Among the 17 Spark workloads in HiBench,
14 workloads which provide a reused operator are used for the experiment. We use machine
learning [23], graph computation [24], and other workloads to measure the performance of
CCA. We measure the prediction accuracy of the caching benefit based on the measured
operator-level metric and the prediction accuracy of the computing cost model. Then,
we evaluate the performance of CCA on sufficient cache memory and reduced cache
memory. To verify the efficiency of our proposed CCA, we compared it with cost-aware-
only and best-combination. Cost-capacity-aware (CCA) selects caching candidates based
on heuristics through DAG clustering, and corrects the candidates according to cache
usage during execution. Cost-aware-only does not consider cache capacity and statically
selects a cluster predicted with optimal performance through DAG clustering as a caching
candidate. Best-combination is the fastest case among the execution results according to
the combination of caching or not for all datasets.

In addition, CCA is compared with other cache memory management techniques
that have proven to be more efficient than LRU. We implemented and evaluated CCA
in Apache Spark. Table 2 provides information about the distributed environment that
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CCA is tested. We used NVMe storage and high-bandwidth Ethernet to configure the
system for modern distributed environments. Our distributed Spark consists of one master
node and two worker nodes and contains a total of 10 executors and 50 cores. For other
configurations [25], default parameters are used. Our evaluation is measured on Ubuntu
14.04, Spark 2.1.0 standalone mode, and HDFS with Hadoop 2.7.2.

Table 2. Distributed server hardware specification and Spark configuration.

Hardware (Node Specification)

CPU Intel Xeon E5-2640 v3 * 2
RAM 128 GB
Storage 1.5 TB NVMe SSD
Network Mellanox MT27520 56GbE

Spark Configuration

#nodes 1 master, 2 workers
#executors 10 executors
#executor cores 50 cores

5. Results

The main results of this study relate to two aspects: prediction accuracy and per-
formance evaluation. In summary, the proposed CCA generally showed high prediction
accuracy, and the performance was also close to optimal.

5.1. Prediction Accuracy of Caching Benefit

We compare the predicted benefit with the actual benefit from caching the dataset in
the reused cluster. The predicted caching benefit is calculated by Equation (3) based on the
measured operator-level metric. The actual caching benefit is actual reduced execution time
due to caching. In this evaluation, the operator-level metric is measured from three sizes
of input data, 1x, 3x, and 5x. 1x, 3x, and 5x are 10%, 30%, and 50% of the size described
in Table 3, respectively. The predicted caching benefit normalized to the actual caching
benefit is used as the prediction accuracy for evaluation. Prediction accuracy for all reused
clusters is plotted in Figure 6. In the case of SVD, PR, and TS, only one plot is plotted per
input data because only one reused cluster exists in each workload’s DAG.
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Figure 6. Predicted caching benefit normalized to actual caching benefit from the cluster measured on three sizes of
input data.

The predicted caching benefit for all reused clusters are within 26% of the actual
caching benefit when measured in 5x, within 29% of the actual caching benefit when
measured in 3x, and within 34% of the actual caching benefit when measured in 1x. The
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relative error tends to increase as the size of the input data decreases. The maximum error
is relatively higher than the average error due to operators that take less time. On average,
the predicted caching benefit of all reused cluster is 7% different from the actual caching
benefit when measured in 5x, 9% different from the actual caching benefit when measured
in 3x, and 12% different from the actual caching benefit when measured in 1x. For most
operators used in ALS and GBT, the measured computing time is low: most have a cost of
less than 1 s.

Exceptionally, the predicted caching benefit for LDA is within 13% of the actual
caching benefit when measured in 5x, 23% of the actual caching benefit when measured in
3x, and 29% of the actual caching benefit when measured in 1x, despite the high operator
computing time is measured. This is because the randomSplit() operator is mostly used
for LDA, and deviation occurs whenever computing cost is measured.

5.2. Prediction Accuracy of Cost Model

We compare the cost of the operator on the model with the cost measured by the
operator-level metric. This comparison indicates how well the cost model predicts com-
puting costs at various input data size. The cost on the model normalized to the cost
measured by our metric is measured as the prediction accuracy of the model. In this
experiment, the cost model trended with measured metric on 1x, 3x, and 5x is compared
with the cost model trended with measured metric on 3x and 5x. The accuracy is measured
within (interpolation) and beyond (extrapolation) the sequence of value used for trend line
fitting. The input data 4x used for interpolation are 40% of the size described in Table 3,
and the input data 10x used for extrapolation are the same as the size described in Table 3.
The accuracy is measured for all reused operators, and the average and deviation of the
accuracy for each model are shown in Figure 7.

ALS KM SVM LR Bayes LinR RF LDA PCA GBT SVD PR NW TS
Workloads
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4x   - 3x,5x model
10x - 1x,3x,5x model
10x - 3x,5x model

Figure 7. Prediction accuracy of two models according to the input data size for evaluation.

Predictions of the cost model trended with three data are within 19% of the actual
execution time when using interpolation, and within 23% of the actual execution time
when using extrapolation. Predictions of the cost model trended with two data are within
19% of the actual execution time when using interpolation, and within 38% of the actual ex-
ecution time when using extrapolation. In the case of interpolation, there is little difference
between the prediction accuracy of the two models. However, in the case of extrapolation,
predictions of the two models are noticeably different. It can be seen that the trend line
equation obtained from the two data has limitations as the size of input data goes out from
the range of the data. The accuracy of the cost model trended with two data indicates that
the model could not be used to predict caching benefit for some workloads, such as GBT.
Thus, CCA’s cost model is built using values measured from three sizes of data.
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Table 3. Summary of caching on 14 workloads.

Workload Input Size (GB) (10x)

Sufficient Cache Memory (GB) Reduced Cache Memory (GB)

Provided Cache Size (GB)
Max Required Cache Size (GB)

Provided Cache Size (GB)
Max Required Cache Size (GB)

CCA * & CAO † CCA * CAO †

Alternating Least Squares (ALS) 3.00

117.36

25.96 12.98 11.85 25.96

K-means clustering (KM) 18.70 40.22 20.11 19.74 40.22

Support Vector Machine (SVM) 18.63 40.97 20.49 11.17 40.97

Logistic Regression (LR) 22.4 49.20 24.60 22.35 49.20

Bayesian Classification (Bayes) 21.02 43.79 21.89 21.34 43.79

Linear Regression (LinR) 44.8 80.20 40.10 40.10 80.20

Random Forest (RF) 14.80 34.72 17.36 14.90 34.72

Latent Dirichlet Allocation (LDA) 2.10 4.97 2.49 2.46 4.97

Principal Components Analysis
(PCA) 0.28 0.67 0.33 0.33 0.67

Gradient Boosting Trees (GBT) 0.30 2.44 1.22 1.11 2.54

Singular Value Decomposition
(SVD) 5.00 5.00 2.50 0.00 5.00

PageRank (PR) 4.00 16.89 8.45 0.00 16.89

NWeight (NW) 0.70 3.02 1.51 1.38 3.02

TeraSort (TS) 40.00 40.00 20.00 0.00 40.00

* Cost-capacity-aware (proposed), † Cost-aware-only.
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5.3. Performance on Sufficient Cache

In this section, we evaluate the performance of CCA and compare it with other caching
methods. For the experiment, the capacity of the cache memory is configured sufficiently
so that there is no dataset evicted from the cache. The maximum required cache size and
provided cache size on sufficient cache memory for each workload are shown in Table 3. We
run each workload 10 times and we average the results of each workload. Figure 8 shows
the performance improvement of the three caching decisions compared to the default
caching decision. CCA and cost-aware-only show the same performance because the
caching candidate decision is the same when cache memory is sufficient. Best-combination
has slightly more performance gains than the other two decisions. However, if the number
of operators is k, best-combination can be obtained by running 2k times. Actually, we had
to spend a lot of time getting the best-combination, and this is distinctly limited to apply
and use in real systems. The proposed CCA shows an average (geomean) of 27% speedup
out of 14 workloads.
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Figure 8. Comparison of three methods on sufficient cache memory.

5.4. Performance on Reduced Cache

Assuming a system with insufficient memory, performance was compared by reducing
the cache memory size. As shown in Table 3, we set about half of the max required cache
size used in situations when memory is sufficient for each workload. The cache memory is
managed by the Spark default LRU policy when memory is insufficient. Figure 9 shows
the speedup of three methods to the performance of original caching on the reduced
cache size. In case of cost-aware-only, a caching candidate is statically selected and
execution context is not considered, so the max required cache size is the same as in the
sufficient case. Therefore, the lack of cache capacity causes a lot of GC and performance
degradation (geomean 15%). On the other hand, as CCA considers cache capacity as well
as cost, it never exceeds the provided cache size, and performance does not worsen than
the default in any case. CCA and best-combination improved geomean performance by
11.2% and 11.8%, respectively, and there is little difference although it takes a very large
number of runs to obtain a best-combination. Through these experiments, the proposed
CCA shown that operates efficiently in both cases of sufficient or insufficient memory. In
addition, in big data processing, operator’s cost and cache capacity are important metrics
to obtain optimal performance.
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Figure 9. Comparison of three methods on reduced cache memory.
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5.5. Comparison with LCS

Least cost strategy (LCS) [16] is a cost-aware eviction policy for efficiently managing
cache memory instead of the default LRU policy in the data analytics frameworks. CCA
and LCS were compared with the environment shown in Tables 2 and 3. LCS was able to
successfully perform five out of 14 workloads: KM, Bayes, PR, NW, and TS. Figure 10 shows
the performance of CCA and LCS, normalized to the original workload execution with
LRU. Machine learning workloads such as KM and Bayes have frequent data reuses. For
the two workloads, LCS showed a meaningful performance improvement when the cache
memory is insufficient. As for NW, which is shuffle-heavy, there was a big performance
degradation with LCS. In some workloads, the performance gain of LCS was slightly better
than our proposed CCA, but CCA did not degrade for all workloads with sufficient or
insufficient memory. As CCA is a method of finding the optimal caching decision per job,
direct comparison to eviction policies may not be closely related. However, this experiment
verified that the proposed CCA has an effect similar to adopting the efficient eviction policy,
because the proposed CCA relieves the burden of GC through optimal caching selection
even in the case of insufficient cache memory.
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Figure 10. Comparison between the proposed CCA and other cache memory management techniques.

6. Related Work

Analysis of Execution Flow. Several studies improve the performance of iterative
jobs through the analysis of execution flow. Meta-dataflows (MDFs) [26] illustrate a model
for effectively performing an exploratory workflow in a distributed analytics engine such
as Spark or Flink [27]. MDFs integrate iterative jobs to adjust the execution flow of the
application. The modified execution flow omits redundant operations. MDFs include a
cache replacement policy that takes into account reference count and data loading cost.
Our work performs caching considering not only the branch of the integrated execution
flow, but also the computing cost of all datasets.

S-CACHE [28] automatically makes a sub-optimal caching decision by analyzing the
application’s execution flow and cost model, implemented in Apache Spark. It calculates
the computational cost of individual caching decisions by considering the dataset’s compu-
tation cost, cache writes cost, and cache read cost. Then, it compares all possible caching
decisions from execution flow statically. It selects the caching decision with the lowest
cost. The performance of S-CACHE is evaluated on one specific application. It needs to
be proved whether it is generally applicable to other applications. On the other hand,
we build a computing cost model for various applications and evaluates the prediction
accuracy of them. We make the distinction from S-CACHE by considering the execution
context in addition to cost-aware caching.

LRC [15] and MRD [29] are proposed as the cache replacement policy of the analytics
framework. These studies traverse the execution flow previously and decide replacement
based on the collected information. LRC defined the reference count as the number of
times to reference the data block in the execution flow of an application. Reference count is
updated as the application runs. It is implemented so that data blocks with a low reference
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count are preferentially dropped from memory when the cache memory is insufficient.
MRD defines the interval from the current execution point to the reference of the data block
as a reference distance for the stage and job. It preferentially evicts data blocks with the
highest reference distances. It includes the prefetching of the data to be referenced soon.
No adjustment of execution flow for these studies is existing, therefore our research and
these can be compatible.

Memory Management. There have been studies to enhance the utilization of cache
memory of the analytics framework. Neutrino [30] and MemTune [31] dynamically adjust
run-time parameters considering cache memory usage. Neutrino is a memory management
system for the distributed framework, implemented in Spark. Spark provides several
ways in which data blocks are stored, such as memory only, memory and disk, and no
serialization. This study improves performance by adjusting the way of data blocks
are stored at run-time. This is based on information from previous runs. Our work is
orthogonal to this work in that it does not decide where to place the data block. Thus, this
study can potentially be applied to our study.

MemTune dynamically manages a fraction of computation/cache memory to improve
memory utilization for in-memory analytics frameworks. It monitors run-time statistics
such as garbage collection time, task execution time, and size of the dataset. It analyzes the
collected information and adjusts the cache size at run-time. It provides prefetching and
eviction of a data block, using execution flow information from the DAG. This study seeks
to overcome performance degradation due to memory pressure. Our study attempts to
minimize performance degradation due to garbage collection and recomputation. However,
this study focused on controlling memory contention, and it is different from our study to
improve the performance of overall jobs.

Comparison between CCA and other studies In Table 4, the proposed CCA is com-
pared with the existing related studies described in this section. Many other studies have
argued that the execution flow should be considered in an in-memory big data processing
framework where caching is important. In addition, it is rare that both the cost and memory
capacity of each operator are considered. As we compared our CCA and LCS in Section 5.5,
CCA directly and automatically determined the caching decision to optimize the execution
flow and showed near-optimal performance no matter what the memory situation.

Table 4. Comparison between CCA and related studies.

Execution Operator Memory Optimizing
Flow-Aware Cost-Aware Capacity-Aware Execution Flow

MDF O X X O
S-CACHE O O X O

LRC O X O X
MRD O X O X

Neutrino O X O X
MemTune X X O X

LCS O O O X
CCA(proposed) O O O O

One study confirmed that existing typical cache allocation policies are not suitable in a
cloud environment, and proposed fair and efficient cache sharing for big data analytics [32].
As such, many studies are underway to further optimize caching for big data analytics
from various perspectives, and its importance is undeniable.

7. Conclusions

To process the sheer amount of sensing data generated from IoTs and wearables
in real-time, improving the performance of distributed data analytics frameworks is a
challenging area of research. This paper proposed CCA, a cost-capacity-aware caching
optimization scheme. Our approach is generally applicable to DAG-represented in-memory
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data analytics frameworks. We devised an operator-level metric to obtain the computing
costs of operators. The cost model was built based on the measured operation-level metric
to predict the benefit from the caching dataset. Our scheme primarily selects dataset
with the highest benefit from caching. CCA adjusts the caching decision considering the
execution context, while the application is running. We implemented CCA on Apache Spark
to evaluate the performance. For 14 workloads in HiBench benchmark, CCA achieved
the performance gains of 27% on sufficient cache memory and 11% on insufficient cache
memory, respectively. In addition, compared with other cache memory eviction policy
(LCS), we found that CCA is effective in most situations. We have discovered that efficient
caching is still important in in-memory analytics frameworks, even though it is configured
with fast storage and network. In addition, it is burdensome for programmers to select
data to cache manually, because the optimal performance can be obtained only if dynamic
execution contexts are taken into account. It is often difficult to decide which data to
cache beforehand without executing the application with actual input data. We believe
our proposed CCA helps find the optimal performance, while reducing the efforts of
application tuning in big data analytics frameworks.
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