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Abstract: To overcome the drawbacks of pairwise registration for mobile laser scanner (MLS) point
clouds, such as difficulty in searching the corresponding points and inaccuracy registration matrix, a
robust coarse-to-fine registration method is proposed to align different frames of MLS point clouds
into a common coordinate system. The method identifies the correct corresponding point pairs from
the source and target point clouds, and then calculates the transform matrix. First, the performance
of a multiscale eigenvalue statistic-based descriptor with different combinations of parameters is
evaluated to identify the optimal combination. Second, based on the geometric distribution of points
in the neighborhood of the keypoint, a weighted covariance matrix is constructed, by which the
multiscale eigenvalues are calculated as the feature description language. Third, the corresponding
points between the source and target point clouds are estimated in the feature space, and the incorrect
ones are eliminated via a geometric consistency constraint. Finally, the estimated corresponding point
pairs are used for coarse registration. The value of coarse registration is regarded as the initial value
for the iterative closest point algorithm. Subsequently, the final fine registration result is obtained.
The results of the registration experiments with Autonomous Systems Lab (ASL) Datasets show that
the proposed method can accurately align MLS point clouds in different frames and outperform the
comparative methods.

Keywords: MLS point clouds; pairwise registration; weighted covariance matrix; multiscale eigenvalues

1. Introduction

Point clouds obtained with modern three-dimensional (3D) sensors, such as mobile
laser scanner (MLS), have played an important role in civil and transportation engineer-
ing [1–3], forest structure monitoring [4,5], and spatial deformation monitoring [6,7]. How-
ever, due to errors in the calibration and positioning of sensors, MLS point clouds obtained
from different frames or periods suffer deviations, several tens of centimeters and even to
meters [8]. This impedes the application of MLS point clouds, such as in change detection
and deformation monitoring. Therefore, the point clouds in multiple frames or periods
must be registered before using them in the application of deformation monitoring, urban
management, and similar processes.

Numerous studies have been carried out on point clouds registration [9–11], which can
be divided into two groups comprising pairwise and multiview registration, depending on
the amount of input point clouds. Most pairwise and multiview point cloud registration
methods employ a coarse-to-fine strategy [12]. In particular, coarse registration algorithms
can be further divided into four categories [13], hand-crafted feature-based registration
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methods, deep learning-based registration methods, four-points congruent set (4PCS)-
based registration method, and probabilistic registration methods. And the fine registration
methods mainly include iterative closest point (ICP) [14–16] and normal distribution
transform (NDT)-based algorithms [17–19].

In the process of hand-crafted feature-based registration, coarse registration algo-
rithms, such as random sample consensus (RANSAC) [20], are first applied to estimate the
initial transformation between two adjacent point clouds. Next, fine registration algorithms,
such as ICP, are utilized to refine the approximate rotation matrix and translation vector.
The core of hand-crafted feature-based registration is the correspondence estimation in
coarse registration, which is usually matched by the 3D surface feature descriptor. The
traditional descriptors include 3D shape context (3DSC) [21], point feature histogram
(PFH) [22], fast point feature histogram (FPFH) [23], signature of histogram of orientations
(SHOT) [24], and binary shape context (BSC) [25]. Although these feature description
languages are sufficiently descriptive, they also consume a lot of time during generation
and matching owing to their higher dimensionality, i.e., 3DSC (1980 dimensions), SHOT
(352 dimensions), and PFH (125 dimensions).

Compared with traditional descriptors, deep learning-based methods [26,27] can
directly learn deep-level feature representations from a mass of data to achieve appropriate
performance in terms of descriptiveness and robustness. This type of method has proven
effective for the registration of indoor and small-scale point clouds; however, it is difficult
to apply it to the registration of large-scale MLS and terrestrial laser scanner (TLS) point
clouds because of the limitations related to the amount of data and complexity [13].

4PCS-based methods [28–31] achieve registration by repeating the following process
to obtain the optimal solution: (1) randomly selecting geometrically consistent point pairs;
(2) computing the registration matrix and the root mean square error (RMSE) between
two-point clouds. The 4PCS scheme works well for datasets with small overlaps, and it
requires no assumptions regarding the initial positions. However, the iterative procedure
of matching the correspondences and rejecting the mismatched ones is time-consuming.

Coherent point drift (CPD)-based methods [32–34], which represents the probabilistic
registration method, consider registration as a probability density estimation problem.
They first use the Gaussian mixture models (GMM) centroids to describe the source point
cloud, and then fit the GMM to the target point cloud by maximizing the likelihood of the
objective function. These methods exhibit generality, accuracy, and robustness to noise
and outliers. However, because the registration result depends on the sampling result, the
method cannot simultaneously deal with large volume points.

The representative fine registration method is the ICP and the NDT algorithm. This
type of method can achieve high-quality and high-precision registration by repeating point
matching and transformation calculations. However, both ICP and NDT-based methods
require a better initial transformation matrix to avoid congregation of points at a local
optimum.

In this study, we defined a 3D surface feature descriptor using multiscale eigenvalue
statistic to estimate the corresponding points between the MLS point clouds obtained from
different frames. With these estimated correspondences, we performed coarse registra-
tion. Then, the result of the coarse registration was used as the initial value for the fine
registration, such as ICP, to obtain a better result. The major contributions of this study are
summarized as follows:

1. A new 3D local descriptor with fewer dimensions (21 dimensions) was proposed to
describe the keypoint under multiscale support radii.

2. The proposed descriptor was further used to identify the corresponding points from
the different frames of MLS point clouds.

The remainder of this manuscript is organized as follows: The proposed MEVS
descriptor is defined in Section 2; Section 3 describes the coarse-to-fine registration scheme;
and Section 4 introduces the experiments. The study is concluded in Section 5.
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2. Multiscale Eigenvalues Statistic-Based Descriptor

In this section, we defined a novel 3D local feature descriptor, named the multiscale
eigenvalue statistic (MEVS), to describe the keypoint using multiple eigenvalues obtained
under multiscale support radii. The procedure has three main steps: (1) computing point-
density and Euclidean-distance-related weights, (2) constructing the weighted covariance
matrix, and (3) constructing the MEVS descriptor.

The keypoint and its neighbors are regarded as N = {q0, q1, q2, · · · qm}, where q0
represents the keypoint, qj(j = 1, 2, . . . m) represents the j-th nearest neighbor, and m is the
number of neighboring points. The covariance matrix constructed for q0 using N is denoted
by C, and the support radius for neighboring points searching is expressed as rscale.

2.1. Weight Assignment

First, we estimated the point-density-related weight wdensity
j by Equation (1), the aim

is to describe the surface shape of the point better

wdensity
j =

1
#
{

pn :
∥∥pn − qj

∥∥ < rdensity
} , (1)

where rdensity represents the radius for point-density estimation, pn is the neighboring point
of qj,

∥∥pn − qj
∥∥ represents the 3D Euclidean distance between qj and pn, and

#
{

pn :
∥∥pn − qj

∥∥ < rdensity} represents the number of points within rdensity, if it is equal to

zero, then we just set wdensity
j =1. By varying rdensity from 0.1rscale to rscale in intervals of

0.1rscale, we found that the MEVS descriptor performed best at an rdensity of 0.5rscale by
testing. Thus, we set rdensity = 0.5rscale. The weight wdensity

j was used to compensate for
varying point density; thus, the points in regions with low point density contribute more
than those in the dense regions.

Next, the Euclidean-distance-related weight wdistance
j was calculated by Equation (2)

wdistance
j =

rscale −
∥∥q0 − qj

∥∥
rscale . (2)

The weight wdistance
j is expected to improve the robustness of the MEVS descriptor, for

the distant points contribute less to the overall covariance matrix.

2.2. Weighted Covariance Matrix

By using the point set N = {q0, q1, q2, · · · qm} and the corresponding weights for qj,
we calculated the weighted covariance matrix C as follows

C =
1

∑
qj∈N

wdensity
j ·wdistance

j
∑

qj∈N

wdensity
j ·wdistance

j
(
q0 − qj

)(
q0 − qj

)T. (3)

2.3. MEVS Descriptor

Eigenvalues {λ1, λ2, λ3} in the decreasing order of magnitude were obtained by
decomposing the weighted covariance matrix C and further normalized by Equation (4)

λC
i = λi

/
3

∑
i=1

λi . (4)

It is assumed that the initial support radius is R, by varying R′ = R + j·mr
(j = 1, 2, · · · k), where k represents the multiscale dimensions and mr represents the mean
resolution of the point cloud (in this paper, its unit is meter), we calculated a set of
weighted covariance matrices Cj and consequently obtain various combinations of eigen-
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values. Through normalization, we set EVj =
(

λ
Cj
1 , λ

Cj
2 , λ

Cj
3

)
. Then, the MEVS descriptor

was defined by Equation (5)

MEVS = {EV1, EV2, · · ·EVk}. (5)

The MEVS descriptor is expected to be highly viewpoint invariant, because each
covariance matrix Cj is real and symmetric, so that its eigenvalues do not change when
the point set Nj is rotated, and each covariance matrix Cj remains the same when the point
set Nj is translated. Because Cj is computed from data points, which change and also the
density of which changes when the same area is scanned from different viewpoints, the
MEVS descriptor is not perfectly viewpoint invariant, but the density-based weighting can
improve the viewpoint invariance.

2.4. MEVS Generation Parameters

The MEVS feature descriptor had two important parameters: (1) initial support radius
R and (2) multiscale dimensions k. The performance of the MEVS descriptor under different
settings of the two parameters was tested on the tuning datasets using a precision versus
recall curve (PR curve) [35].

2.4.1. PR Curve Generation

Given a model point cloud, a scene point cloud, and the ground-truth transformation
T between them, the PR curve was calculated as follows:

1. A number of keypoints were detected from both the model and scene point clouds
using the keypoint detector.

2. The proposed MEVS feature descriptor for each keypoint was computed using the
proposed method.

3. The nearest neighbor distance ratio (NNDR) technique was used to match the fea-
ture descriptors.

Specifically, the nearest and second nearest neighbors for each MEVS descriptor
MEVS

(
pmodel

i
)

in the model point cloud were selected from the scene point cloud,

which are denoted by MEVS
(

pscene
j

)
and MEVS

(
pscene

j′

)
, respectively. Then, the

ratio between the two distances was calculated as
∥∥∥MEVS

(
pmodel

i
)
−MEVS

(
pscene

j

)∥∥∥/∥∥∥MEVS
(
pmodel

i
)
−MEVS

(
pscene

j′

)∥∥∥. If the distance ratio was less than a threshold τ, the

two feature descriptors MEVS
(
pmodel

i
)

and MEVS
(

pscene
j

)
were considered an estimated

match, and their corresponding points pmodel
i and pscene

j were considered a corresponding
point pair. Furthermore, the correspondence was assumed a correct match, if the distance∥∥∥pmodel

i − T·pscene
j

∥∥∥ was less than a predefined threshold (i.e., half of the initial support

radius of keypoint pmodel
i in this study). Otherwise, it was assigned a false match. Finally,

the precision of match assignment was calculated as the number of correct matches with
respect to the total number of estimated matches, as in Equation (6)

Precision =
The number of correct matches

The number of estimated mathces
. (6)

Recall was calculated as the number of correct matches with respect to the number of
ground-truth corresponding points between the given scene and model point cloud, as in
Equation (7)

Recall =
The number of correct matches

The number of ground− truth corresponding points
. (7)
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The PR curve can be obtained by varying the threshold τ from 0 to 1. Ideally, the PR
curve should be located on the top-right corner of the precision-recall coordinate system,
and the larger the area under the PR curve, the more descriptive the descriptor. We tested
the performance of the descriptor by examining the different combinations of the two main
parameters. By calculating the area under the PR curve, as shown in Table 1, we found that
the optimal value of the initial support radius R was 12 mr, and the optimal value of the
multiscale dimension k was 7.

Table 1. The area under the precision versus recall (PR) curve generated by different combinations of
R and k.

R = 5 mr R = 8 mr R = 10 mr R = 12 mr R = 15 mr

k = 3 0.516 0.587 0.583 0.583 0.560
k = 5 0.632 0.726 0.696 0.758 0.685
k = 7 0.714 0.738 0.714 0.778 0.630
k = 9 0.736 0.750 0.670 0.762 0.599
k = 11 0.776 0.723 0.625 0.701 0.449
k = 13 0.765 0.691 0.512 0.692 0.288
k = 15 0.756 0.660 0.377 0.637 0.156

2.4.2. Initial Support Radius

The initial support radius is an important parameter for the generation of the MEVS
feature descriptor because it determines both the descriptiveness and robustness of the
descriptor. We tested the performance of the MEVS descriptor with respect to varying
initial support radii, with the multiscale dimension set at k = 7. Figure 1 illustrates the
generated PR curves under the initial support radius R ranging from 5 mr to 15 mr.

Figure 1. PR curves generated under different initial support radii R with the multiscale dimension k = 7.
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As shown in Figure 1, the MEVS local feature descriptor generated with a small initial
support radius R (e.g., R = 5 mr) cannot eliminate the effect of noise. Hence, the descriptor
generated with a small R is less robust. Moreover, a small initial support radius allowed
the generator to consider less local information, leading to its low descriptiveness. A large
initial support radius R (e.g., R = 15 mr) is more sensitive to occlusion, thereby reducing
the descriptiveness of the generated descriptor. We found that the MEVS generated with
R = 12 mr can optimize local surface shape information and robustness. Therefore, in
practice, we used R = 12 mr as the initial support radius.

2.4.3. Multiscale Dimension

The multiscale dimension, which determines the maximum search region and dimen-
sion of the MEVS descriptor, is another important parameter determining the robustness
and descriptiveness of the descriptor. We tested the performance of the descriptor by vary-
ing the values of the multiscale dimension, with the initial support radius set to R = 12 mr.
Figure 2 illustrates the PR curves generated under different multiscale dimensions k.

Figure 2. PR curves generated under different multiscale dimension k with an initial support radius of R = 12 mr.

As shown in Figure 2, the descriptiveness and robustness of the generated MEVS
feature descriptor first increase with an increase in the multiscale dimension k (e.g., from
3 to 7), and then weaken with the further increase of k (e.g., from 7 to 15). This phenomenon
occurs because k determines the maximum range of the neighborhood search, which
directly affects the descriptiveness and robustness of the local descriptor. To improve the
descriptiveness, a smaller support radius should be used. Meanwhile, to enhance the
robustness of the MEVS descriptor, the support radius should be increased appropriately,
but not so much that it increases the sensitivity of the descriptor to occlusion and confusion.
Therefore, we used k = 7 as the multiscale dimension.

3. Coarse-to-Fine Pairwise Registration

The proposed coarse-to-fine pairwise registration scheme primarily included the fol-
lowing steps: (1) correspondences estimation, (2) mismatches rejection, and (3) registration
calculation. Figure 3 demonstrates the specific process of the proposed algorithm.
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Figure 3. Flowchart of the proposed coarse-to-fine registration algorithm.

3.1. Correspondences Estimation

To improve the efficiency, some keypoints were extracted from the original point
cloud using a keypoint detector, such as 2.5D SIFT [36,37], 3D Harris [38], NARF [39], and
intrinsic shape signatures (ISS) [40]. As shown in [41] that the ISS detector performed the
best, we adopted the ISS algorithm to detect the keypoints.

A bidirectional matching strategy [42] was applied in which the keypoints extracted
from the source and target point clouds were regarded as KPS =

{
ps

1, ps
2, · · · ps

Ts
}

and
KPT =

{
pt

1, pt
2, · · · pt

Tt
}

, respectively. The corresponding MEVS was MS =
{

ms
1, ms

2, · · ·ms
Ts
}

and MT =
{

mt
1, mt

2, · · ·mt
Tt
}

. For each ms
k from MS, if there exists an element mt

h in MT that
satisfies the constraint as in Equation (8), then ms

k and mt
h together were considered matched

descriptors. In other words, only when mt
h is the nearest descriptor to ms

k in MT, and ms
k

to mt
h in MS, then ms

k and mt
h were the corresponding descriptors, and the corresponding

points were regarded the matched point pair{
h = argmin

∥∥ms
k −mt

n
∥∥(n = 1, 2, · · ·Nt)

k = argmin
∥∥mt

h −ms
n
∥∥(n = 1, 2, · · ·Ns)

, (8)

where the norm is the 21D Euclidean distance.
All the matched point pairs calculated by the above procedure were set as

FC =
{

c1, · · · cm, · · · cMFC

}
, where cm =

{
ms

m, mt
m
}

represents the m-th corresponding point
pair, and MFC is the length of FC.

3.2. Mismatches Rejection

In principle, after obtaining FC, the transformation from the source to target point
clouds can be directly calculated; however, there were some mismatches in FC, which
lowed the accuracy of registration, even leading to incorrect result. Therefore, we intro-
duced geomatic consistency constraint [43] to remove the mismatches from FC. If two
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correspondences in FC, named cm =
{

ms
m, mt

m
}

and cn =
{

ms
n, mt

n
}

, satisfy Equation (9),
then they are regarded as the right corresponding point pairs

abs
(
‖ps

m − ps
n‖ −

∥∥pt
m − pt

n
∥∥) < ε, (9)

where ps
m, pt

m, ps
n, and pt

n are the points corresponding to the descriptors ms
m, mt

m, ms
n, and

mt
n, respectively. ε is a threshold, which, in this study, was set as 5 mr. abs(·) represents the

absolute value and ‖ ‖ is the 3D Euclidean distance between the two points.
For each cm =

{
ms

m, mt
m
}

in FC, we traverse FC to determine the correspondences
that satisfy Equation (9), and the results combined with cm =

{
ms

m, mt
m
}

are regarded as a
group. Finally, we obtained MFC groups. The more elements in a group, the more right
corresponding point pairs it may contain. Thus, we chose the largest group as the final
matched point pairs GC =

{
c1, · · · cm, · · · cMGC

}
.

3.3. Registration Calculation

The registration adopts a coarse-to-fine strategy. First, coarse registration is performed
using the point set GC. Second, the transformation obtained by coarse registration is further
refined by the ICP algorithm. The coarse registration uses the corresponding points to
estimate roughly yet quickly the transformation between the source and target point clouds.
By iteratively random sampling GC, we can get a series δm according to Equation (10),
when δm is less than a threshold, the coarse registration matrix TC

s,t is obtained

δm =
Lm

∑
j=1

∥∥∥TC
s,t·ps

j − pt
j

∥∥∥2
, (10)

where ps
j and pt

j are the j-th corresponding points in GC, TC
s,t is the coarse registration matrix,

Lm is the length of a sample of GC, and δm is the sum of squares of the Euclidean distance
between the corresponding points after transformed to the same coordinate system.

The goal here is not pairwise coarse registration itself but to provide a robust, reliable
initial transformation for fine registration [44]. Therefore, TC

s,t was further refined by the
ICP algorithm to obtain a better registration matrix TF

s,t, which is regarded as the final
transformation between source and target point clouds.

4. Experiments and Analysis

In this section, we test the performance of the proposed coarse-to-fine registration
method by evaluating the effectiveness of the keypoint matching using MEVS for registra-
tion. Accordingly, we design Method1, in which we use the RANSAC algorithm to directly
address the extracted keypoints to behave the coarse registration with the unit matrix as
the initial value. This value initialized the ICP algorithm to address the source and target
point clouds and obtain the fine registration matrix.

Test the advantages and disadvantages of keypoint matching using MEVS for registra-
tion, we design Method2 and Method3. In Method2, we used the sample consensus initial
alignment (SAC-IA) [23] algorithm with the FPFH descriptor to address keypoints to obtain
the coarse registration; In Method3, we used the corresponding points from the source and
target point clouds identified by the SHOT descriptors to obtain the coarse registration
with RANSAC algorithm; And the coarse registration was further refined using the ICP
algorithm. As suggested by [12], we set the parameter of the support radius for FPFH and
SHOT as 15 mr.

All the experiments were implemented on a ThinkPad X1 Extreme laptop with an
Intel Core i7-9750h CUP @ 2.6 GHz clock speed and 16 GB RAM.

4.1. Data Description

Four datasets from the ASL Datasets Repository [45] were used to test and evaluate
the performance of the proposed and existing methods. These data sets were collected
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to verify registration algorithms for point clouds obtained in specific environments and
conditions. The different point clouds are characterized by diverse environments and
geometric primitives. And the data were collected used a custom-made rotating scanner
(Hokuyo UTM-30LX), and its precision is about± 3 cm, and the ground-truth was obtained
by TS15, a theodolite from Leica Geosystems, as shown in Figure 4. Figure 5 shows the
original four datasets used in this study. Figure 6 summarizes the registration results by the
ground-truth (the ground-truth are listed in Table 2), in which the different color represents
the point clouds in different frames. Table 3 details the information about the four datasets.

Figure 4. The illustration of obtaining the ground-truth. (https://projects.asl.ethz.ch/datasets/doku.
php?id=hardware:tiltinglaser, accessed on 8 March 2021).

4.2. Evaluation Criteria

The criteria followed to evaluate for the performance of the proposed and comparative
methods are the measurements of rotation error, translation error, and registration efficiency,
which are commonly used for the evaluation of point cloud registration [46,47].

Given a source point cloud Ps, the transformation Ts,t from Ps to the target point
cloud Pt can be calculated using the proposed and comparative methods. The residual
transformation is ∆Ts,t, defined as

∆Ts,t = Ts,t(TG
s,t)
−1

=

[
∆Rs,t ∆ts,t

0 1

]
, (11)

where Ts,t is the estimated transformation from Ps to Pt, and TG
s,t is the corresponding

ground-truth transformation.
Then, the rotation error er

s,t and translation error et
s,t form Ps to Pt were calculated

based on their corresponding rotation component ∆Rs,t and translation component ∆ts,t,
as follows {

er
s,t = arccos

(
tr(∆Rs,t)−1

2

)
et

s,t = ‖∆ts,t‖
, (12)

where tr(∆Rs,t) denotes the trace of ∆Rs,t, and the rotation error er
s,t corresponds to the

angle of rotation in the axis-angle representation.

4.3. Results and Discussion
4.3.1. Keypoints Processing

To improve the efficiency of registration, some keypoints were first extracted from
the source and target point clouds using the ISS [40] algorithm. Figure 7 illustrates the
results of the keypoint extraction. The matching correspondences estimated by the method
proposed in Section 3 are shown in Figure 8. Further details on keypoint processing are
listed in Table 4.

https://projects.asl.ethz.ch/datasets/doku.php?id=hardware:tiltinglaser
https://projects.asl.ethz.ch/datasets/doku.php?id=hardware:tiltinglaser
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Figure 5. Original point clouds. (a–d) is the dataset of Apartment, Stairs, Wood in Summer, and Wood in Autumn,
respectively. The red and green points represent the source and target point clouds, respectively.
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Figure 6. Results of point cloud registration by the ground-truth. (a–d) is the registration results of Apartment, Stairs,
Wood in Summer, and Wood in Autumn, respectively. The red and green points represent the source and target point
clouds, respectively.
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Table 2. The ground-truth of the datasets used in this study.

Ground-
Truth Apartment Stairs Wood in Summer Wood in Autumn

Rotation
matrix

0.9931 −0.1164 0.0058 0.9883 0.1524 0.0043 0.9843 −0.1727 −0.0361 0.9895 −0.1438 −0.1438
0.1164 0.9931 0.0034 −0.1522 0.9878 −0.0301 0.1726 0.9849 −0.0035 0.1440 0.9891 −0.0280
−0.0062 −0.0027 0.9999 −0.0088 0.0291 0.9995 0.0362 −0.0027 0.9993 −0.0049 0.0290 0.9995

Translation
vector 0.6148 −0.0142 0.0085 0.4232 −0.0508 0.0670 0.6057 0.0407 0.0269 0.4946 0.0496 0.0150

Table 3. Details of the four datasets.

Datasets Frames Mean Point Number Scene Spatial Scale (m) Dynamics

Apartment 45 365,000 Indoors 17 × 10 × 3 Furniture moved between scans
Stairs 31 191,000 Mixed 21 × 111 × 27 Non

Wood in Summer 37 182,000 Outdoors 30 × 53 × 20 Seasonal changes
Wood in Autumn 32 178,000 Outdoors 36 × 60 × 22 Seasonal changes

Figure 7. Results of keypoints extraction. The blue points represent the keypoints extracted by the intrinsic shape signatures
(ISS) algorithm. The red and green points represent the source and target point clouds, respectively. (a–d) present the
datasets of Apartment, Stairs, Wood in Summer, and Wood in Autumn, respectively.
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Figure 8. Results of keypoints matching by multiscale eigenvalue statistic (MEVS). The blue points represent the keypoints.
The red and green points represent the source and target point clouds, respectively. The line means the corresponding.
(a–d) present the matching results of Apartment, Stairs, Wood in Summer, and Wood in Autumn, respectively.

Table 4. Details of keypoints processing.

Datasets Original Points’
Number Keypoints’ Number Matching Keypoints’

Number

Apartment 370,260/370,277 9140/10,436 3102
Stairs 185,850/181,077 6829/7067 2280

Wood in Summer 192,802/183,179 4556/4721 1746
Wood in Autumn 190,499/189,441 4811/5130 1914

The comprehensive analyses of Figures 7 and 8 and Table 4 reveal that (1) the ISS
algorithm can extract some significant points from the original point cloud, and (2) MEVS
can determine accurate correspondences from the keypoints of the source and target
point clouds, and provide high-quality corresponding points for the subsequent rough
registration. However, the method still has the following shortcomings: (1) As shown
in Figure 7, the spatial distribution of keypoints extracted by the ISS algorithm is not
appropriate. For example, the keypoints of the Apartment dataset are concentrated in a
relatively dense house, whereas the corridor contains hardly any points; (2) As shown
in Figure 8, a few mismatches remain; and (3) As listed in Table 4, the number of final
matched keypoints is relatively small, accounting for only 30–40% of the total keypoints.
These limitations should be addressed in future studies.
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4.3.2. Coarse-to-Fine Registration

Figure 9 illustrates the results of registration for the four ASL datasets using the
proposed and comparative methods.

Figure 9. Results of registration. (a–d) are the registration results of Method1, Method2, Method3, and our method,
respectively. From left to right: registration results of Apartment, Stairs, Wood in Summer, and Wood in Autumn,
respectively. The red and green points represent the source and target point clouds, respectively.
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As shown by the qualitative testing results in Figure 9, the proposed algorithm can
obtain better registration results for the four challenging public datasets, which indicates
that it is highly feasible for the registration of datasets obtained from different scenes.

Table 5 lists the rotation and translation errors of coarse and fine registration by
different methods.

Table 5. Quantitative evaluation of the registration accuracy.

Datasets Methods

Coarse Registration Fine Registration

Rotation
Error (rad)

Translation
Error (m)

Rotation
Error (rad)

Translation
Error (m)

Apartment Method1 0.0789 0.336 0.0530 0.165
Method2 0.8244 1.094 0.2377 0.601
Method3 0.2336 0.365 0.0399 0.071

Our method 0.0483 0.145 0.0316 0.078
Stairs Method1 0.0503 0.139 0.0491 0.139

Method2 0.2246 0.726 0.0612 0.150
Method3 0.0602 0.122 0.0214 0.149

Our method 0.0124 0.084 0.0090 0.023
Wood in
Summer Method1 0.0592 0.330 0.0278 0.092

Method2 0.2476 1.225 0.0957 0.640
Method3 0.2559 0.296 0.0238 0.109

Our method 0.0682 0.132 0.0220 0.039
Wood in
Autumn Method1 0.0634 0.304 0.0503 0.240

Method2 0.1861 0.545 0.0280 0.050
Method3 0.3118 0.505 0.0511 0.209

Our method 0.0503 0.240 0.0125 0.078

The following conclusions can be drawn from the analysis of Table 5: (1) The proposed
method can achieve suitable registration results between the MLS point clouds in two
frames regardless of the type of data [indoor data (Apartment), outdoor data (Wood in
Summer and Wood in Autumn), or mixed data (Stairs)]. The rotation and translation have
accuracies of more than 0.04 rad and 0.08 m, respectively. (2) The proposed algorithm has a
smaller registration error than Method1, indicating that MEVS can effectively describe the
local neighborhood information of keypoints. Moreover, it can accurately match keypoints
extracted from the source and target point clouds with one another. (3) For the Wood in
Autumn dataset, the final registration of the proposed method is slightly inferior to that
of Method2 in terms of translation error, but better in terms of the rotation error, so the
two methods perform similarly with this dataset. For the Apartment dataset, the final
registration of the proposed method is slightly inferior to that of Method3 in terms of
translation error, but better in terms of the rotation error, so they perform similarly with
Apartment. For the other datasets, the proposed method registers better than Method2 and
Method3, which indicates that the MEVS matches keypoints better than FPFH and SHOT. In
other words, MEVS is more descriptive and makes less mismatches than FPFH and SHOT,
the reason is that it uses a series of radii for the ball nearest neighbor searching, rather than
just one radius, to calculate the descriptor, so it can distinguish the correspondences much
better. (4) The proposed algorithm can accurately register the data of Wood in Summer
and Wood in Autumn, indicating that it is not affected by the change of season. (5) With
a rotation error of 0.0316 rad and a translation error of 0.078 m, the proposed method
performed the worst with the Apartment dataset, which may have been caused by the
dynamic changes during the scanning of the Apartment dataset. With a rotation error of
0.0090 rad and a translation error of 0.023 m, this method performed the best with the
Stairs dataset, the reason may be the good spatial distribution of the keypoints.
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All of the four methods use ICP for refinement, so it is necessary to consider the
efficiency of registration, which is measured in terms of time consumption. Table 6 lists the
time consumed by the four methods.

Table 6. Time consumption of the proposed and comparative methods.

Datasets Methods Coarse Registration
Time (min)

Fine Registration Total Time
(min)Time (min) Iterations

Apartment Method1 0.10 17.71 17 17.81
Method2 6.51 35.05 31 41.56
Method3 0.12 29.68 26 29.80

Our method 0.26 15.25 15 15.21
Stairs Method1 0.05 6.39 14 6.44

Method2 4.85 7.62 17 12.47
Method3 0.06 3.51 10 3.57

Our method 0.95 2.04 5 2.99
Wood in
Summer Method1 0.04 4.21 14 4.25

Method2 2.88 9.95 33 12.83
Method3 0.06 9.92 33 9.98

Our method 0.08 3.72 13 3.80
Wood in
Autumn Method1 0.04 5.02 15 5.06

Method2 2.10 16.04 48 18.14
Method3 0.05 8.49 24 8.54

Our method 0.10 3.73 11 3.83

Table 6 reveals that the proposed method required the least number of iterations
and computation time, which indicates that it can yield highly reliable coarse registration
results as input for ICP or other iterative fine-registration algorithms.

5. Conclusions

Thus far, it has been difficult to determine accurate corresponding points and achieve
reliable registration for different frames of MLS point cloud. To solve this problem, a new
3D local descriptor with fewer dimensions (21 dimensions) was proposed to describe the
keypoint under multiscale support radii, which was further used to estimate the correspon-
dences from the MLS point clouds in different frames. With these correspondences, we
proposed a coarse-to-fine registration scheme for the MLS point cloud from the pairwise
frames. First, coarse registration was conducted using the RANSAC algorithm with the
correspondences. Next, the initial value calculated in coarse registration was refined by the
ICP algorithm to obtain an optimal one. The proposed coarse-to-fine registration scheme
achieved globally optimal registration for four experimental datasets, with maximum rota-
tion and translation errors of 0.0316 rad and 0.078 m, respectively, and minimum rotation
and translation errors of 0.009 rad and 0.023 m, respectively. Besides, it has good efficiency,
coarsely aligning two-point clouds with 230,000 points (average) in each within 30 s, and
refining them within 6 min. However, the ratio of keypoint matching with this method is
slightly low, which should be the focus of future research.
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