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Abstract: Data centers consume lots of energy to execute their computational workload and generate
heat that is mostly wasted. In this paper, we address this problem by considering heat reuse in the
case of a distributed data center that features IT equipment (i.e., servers) installed in residential homes
to be used as a primary source of heat. We propose a workload scheduling solution for distributed
data centers based on a constraint satisfaction model to optimally allocate workload on servers to
reach and maintain the desired home temperature setpoint by reusing residual heat. We have defined
two models to correlate the heat demand with the amount of workload to be executed by the servers:
a mathematical model derived from thermodynamic laws calibrated with monitored data and a
machine learning model able to predict the amount of workload to be executed by a server to reach a
desired ambient temperature setpoint. The proposed solution was validated using the monitored
data of an operational distributed data center. The server heat and power demand mathematical
model achieve a correlation accuracy of 11.98% while in the case of machine learning models, the
best correlation accuracy of 4.74% is obtained for a Gradient Boosting Regressor algorithm. Also, our
solution manages to distribute the workload so that the temperature setpoint is met in a reasonable
time, while the server power demand is accurately following the heat demand.

Keywords: heat reuse; distributed data centers; workload scheduling; machine learning; mathemati-
cal modeling

1. Introduction

Data centers (DCs) are consuming about 2–3% of the total electrical energy generated
worldwide, thus, they are becoming a global problem. The high energy demand is used not
only for the DCs’ primary business objective, which is to execute their client’s workload, but
also to maintain temperature conditions for the safe operation of IT equipment. As result,
dealing with excess heat has become an expensive process that is negatively affecting
the DCs’ profit and sustainability [1]. The continuous hardware upgrades of computing
resources that are increasing the power density of the processor make the cooling processes
even more complex. This generated even higher energy demands for cooling systems in an
effort to remove the heat produced by the computing resources. Studies show that DCs in
2019 consumed over 1900 MW of energy, while the associated heat generated is sufficient
to heat around 2 million households need 20 GJ of heating on average [2].

In current DCs, the cooling processes are executed continuously to remove the heat
generated by the computing resources and transfer it to a heat exchanger that uses air or
liquid coolant [3]. This is rather inefficient, as the energy is consumed twice: first by the
computing resources to execute the clients’ workload and second by the cooling system
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to dissipate the accumulated heat. To address this issue, new research directions have
emerged lately aiming to reuse the otherwise wasted heat of the DCs in nearby district
heat grids [4–6].

Despite these recent efforts, only a few DCs are effectively reusing the generated heat
and only a fraction of the excess heat is being recovered [7,8]. There are several reasons
making heat reuse difficult. First, the DCs should be in an urban agglomeration benefiting
from policies, operations, and infrastructure that enable the smart distribution of thermal
energy. Few cities are offering the needed conditions for DCs to re-use their heat. A positive
example is Stockholm where almost 10 percent of the city’s heating needs are assured by
using heat recovery [9,10]. Second is the relatively low quality of the recovered heat and
the losses that occur when it is transported over long distances. To cope with this problem,
systems were designed to transfer the absorbed heat at a higher temperature, making it
suitable for long-distance transportation. Heat pumps are used to increase the temperature
of the recovered heat to make it more marketable. With the help of heat pumps, the heat
generated by servers at around 40 degrees Celsius can be transferred to heat water to
around 80 degrees Celsius, suited for long-distance transportation in the nearby residences.
At the same time, studies have shown that the coolant flow rate and server room outlet
temperatures are important factors for the system’s overall efficiency. The third is the
concern regarding the exploitation of DCs’ thermal flexibility of the server rooms in safe
conditions for the IT equipment’s operation [11]. The equipment can overheat leading to
malfunctions if the temperature within the server room increases to generate more heat.
The formation of hot spots needs to be prevented using complex management strategies
and accurate simulations of the thermodynamic processes within the DC are used to avoid
dangerous hot spots [12,13].

In this paper, we address the problem of DCs heat reuse from a novel perspective
while considering the case of distributed DCs. In such a design, the IT equipment is not
deployed in a server room but is distributed and deployed into buildings and used to
provide heat for the tenants while executing the workload (see Figure 1).

Sensors 2021, 21, x FOR PEER REVIEW 2 of 23 
 

 

In current DCs, the cooling processes are executed continuously to remove the heat 
generated by the computing resources and transfer it to a heat exchanger that uses air or 
liquid coolant [3]. This is rather inefficient, as the energy is consumed twice: first by the 
computing resources to execute the clients’ workload and second by the cooling system 
to dissipate the accumulated heat. To address this issue, new research directions have 
emerged lately aiming to reuse the otherwise wasted heat of the DCs in nearby district 
heat grids [4–6].  

Despite these recent efforts, only a few DCs are effectively reusing the generated heat 
and only a fraction of the excess heat is being recovered [7,8]. There are several reasons 
making heat reuse difficult. First, the DCs should be in an urban agglomeration benefiting 
from policies, operations, and infrastructure that enable the smart distribution of thermal 
energy. Few cities are offering the needed conditions for DCs to re-use their heat. A posi-
tive example is Stockholm where almost 10 percent of the city’s heating needs are assured 
by using heat recovery [9,10]. Second is the relatively low quality of the recovered heat 
and the losses that occur when it is transported over long distances. To cope with this 
problem, systems were designed to transfer the absorbed heat at a higher temperature, 
making it suitable for long-distance transportation. Heat pumps are used to increase the 
temperature of the recovered heat to make it more marketable. With the help of heat 
pumps, the heat generated by servers at around 40 degrees Celsius can be transferred to 
heat water to around 80 degrees Celsius, suited for long-distance transportation in the 
nearby residences. At the same time, studies have shown that the coolant flow rate and 
server room outlet temperatures are important factors for the system’s overall efficiency. 
The third is the concern regarding the exploitation of DCs’ thermal flexibility of the server 
rooms in safe conditions for the IT equipment’s operation [11]. The equipment can over-
heat leading to malfunctions if the temperature within the server room increases to gen-
erate more heat. The formation of hot spots needs to be prevented using complex man-
agement strategies and accurate simulations of the thermodynamic processes within the 
DC are used to avoid dangerous hot spots [12,13].  

In this paper, we address the problem of DCs heat reuse from a novel perspective 
while considering the case of distributed DCs. In such a design, the IT equipment is not 
deployed in a server room but is distributed and deployed into buildings and used to 
provide heat for the tenants while executing the workload (see Figure 1).  

 
Figure 1. Distributed DC and computing power-based heating. Figure 1. Distributed DC and computing power-based heating.

The aforementioned design can be more energy efficient because it will also reuse
the electricity that is normally used for space heating for executing the workload. The IT
equipment is used as a primary source of heat being deployed in the building’s rooms,
which eliminates the costs associated with the cooling processes. The building network
connection is used to get the delay-tolerant workload to be executed.

In summary, the paper provides the following contributions:
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• Definition of the thermal aware workload scheduling for the distributed DC case as a
constraint satisfaction problem aiming to meet the workload service level agreements
and at the same time meet the heat demand of the tenants.

• Definition of a thermodynamic model to accurately estimate the heat demand needed
to be generated by the IT equipment and the workload to be allocated for execution to
meet the temperature setpoint defined by the tenant.

• Development of a machine learning-based model for learning and correlating the
heat demand with monitored data related to the actual temperature in the room, the
temperature of the heat generated by the IT equipment, and temperature setpoint.

• The heat models and workload scheduling solution were tested and validated consid-
ering the characteristics and actual monitored data from an operational distributed
DC, with the results being promising in terms of meeting the heat demand and heat
model’s correlation accuracy.

The rest of the paper is structured as follows: Section 2 presents the related work on DC
heat reuse and workload scheduling models; Section 3 defines the thermal aware workload
scheduling in a distributed DC, Section 4 describes the models defined to determine the
heat demand and correlation between the workload to be executed and the temperature
of the generated heat, Section 5 presents experimental results for using test data from an
operation distributed DC, while Section 6 concludes the paper.

2. Related Work

Most approaches in the literature address the heat reuse of the common type of DC
in which all the IT equipment is hosted in one building (i.e., a server room) and features
a support infrastructure for power and cooling management [6,14,15]. Several heat reuse
options are proposed such as for district heating, [7–9] hot water grid [16,17], or nearby
office buildings [4,5,18]. The heat reuse policy and infrastructure are well established in
Nordic European countries [6,9,10], thus the DC potential for heat reuse is usually analyzed
considering this use case. The efficient heat reuse will provide new revenue streams for DCs
but at the same time, several research challenges still need to be faced such as the low-grade
waste heat generated by the servers, especially in the case of the air-cooled DCs and the high
investment costs [1,19]. These investments usually address the deployment and installation
of heat pumps that are used for raising the quality of the heat [20–22]. District heating
is seen as one of the most promising alternatives for residual heat recycling. The DCs’
waste heat has the potential of replacing natural gas-based heat, bringing considerable cost
savings and a lower carbon footprint to local communities [19,23].

In the area of DCs’ heat reuse, two main research topics have a strict relation to this
paper’s objective and contributions: modeling and simulating the thermal characteristics
of the DC and the thermal aware workload scheduling.

The first topic addresses the development of models to study the thermodynamic
processes inside a DC and to determine the heat generation, transfer, and reuse characteris-
tics [4,24–26]. The thermodynamics impose limits on both the maximum allowable temper-
ature of the microprocessors and the coefficient of performance of the heat pumps [27,28].
Setting higher temperature setpoints in the server room is proposed and used to improve
the quality of the recovered heat [4,29]. In this case, accurate thermal models of the server
room are developed to predict the temperature variations, detect the formation of hot spots
which may lead to equipment malfunctioning, and evaluate alternatives in cooling system
configurations [3,11]. Computational Fluid Dynamics (CFD) models of the server room are
used to run simulations for studying the interactions between servers and cooling units
and their effect on the heat and temperature distribution [5,13,30]. The server heat gener-
ation and dissipation rates are analyzed and used to set the recommended temperature
values for inlet air into the server room [15,31]. The CFD models of the IT server room are
used to analyze the supply air temperature of the cooling system units and the inlet air
temperature to find the allowed range of temperature for not damaging the equipment and
activating the cooling systems [11]. As a result, higher temperature setpoints can be used
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for short periods while techniques such as pre- or post-cooling may be used for thermal
profile adaptation [4,32]. Even though the CFD simulations provide accurate temperature
predictions, they are computationally expensive [33]. Tradeoffs should be done among the
accuracy of the simulation, execution time, and resource overheads. Mathematical models
and machine-leaning-based approaches are used to address such tradeoffs [4,29,34] with
varying levels of success. Mathematical models of the temperature evolution in a server
room are presented in [35,36] addressing the thermal behavior concerning heat generation,
circulation, and air-cooling system using Navier–Stokes equations expressing thermal laws
or by using fast approximate solvers [37,38].

The combination of thermodynamics processes simulations with machine learning
techniques offers promising results for determining a set of parameters empirically from
monitored data [5,39,40]. In [39], a thermal forecasting model is defined and used for
predicting temperatures surrounding servers in data centers. Continuous streams of
temperature and airflow measurements are collected for obtaining online predictions with
real-time sensor measurements. In [40], a fast converging solution is proposed using both
a feed-forward network and a dynamic recurrent artificial neural network. The neural
networks learn incrementally, using the incoming stream of data samples. Adaptiveness
is presented as an essential feature, as the model can learn the characteristics of a server
room with minimal training, and then it may continuously adapt to new data fed without
retraining [41]. In [5], a heat reuse model is defined which combines the simulation of
the thermodynamic processes in a server room with deep learning processes. Multi-Layer
Perceptron neural networks are used for predicting the hot air temperature distribution
in the server room. Some models use a set of parameters from the server room that are
relevant for the thermodynamics processes and use machine learning to predict their
evolution. Gradient boosting decision trees, artificial neural networks, or deep learning
models are used to predict the server room temperature [42,43]. Finally, Grammatical
Evolution techniques [44] and Environmentally Opportunistic Computing [45] are used for
analyzing server and inlet air temperatures and predicting the temperatures, in conjunction
with thermal models of DCs. The models should reflect the physical nature of the system,
rather than fitting the data purely mathematically. This is enforced using rules for a model’s
generation expressed grammars written in Backus–Naur form [46].

Thermal aware workload scheduling algorithms for heat reuse are derived from
scheduling algorithms developed to minimize the cooling system energy consumption
[12,47]. The main goal of these scheduling algorithms is to distribute the workload in a data
center to maintain a low ambient temperature and avoid hotspot formation [47,48]. In the
case of heat reuse, the workload scheduling aims to increase the efficiency of heat pump
operation and to meet the heat demand of the district heating network [49]. They rely on an
optimization problem, defined either reactively or proactively, whose complexity is highly
dependent on the representation of the thermodynamics processes and the correlations
considered among workload and power and heat demand [50,51]. Workload placement
strategies considered are based on zones discretization, minimize the heat recirculation, and
prioritize the servers for task allocation by observing hot airflow within the DC [47,48,51].
Scheduling methodologies common in DCs such as first-come-first-serve or backfilling
do not usually consider the thermal perspective [52,53]. Machine learning-based models
are proposed to infer scheduling policies with thermal features. Server room temperature
prediction approaches using machine learning are proposed in conjunction with scheduling
algorithms to avoid thermal stress and hotspot formation [54]. In [4], thermal aware
workload scheduling is proposed to adapt the DC heat generation to the district heating
demand and maximize the waste heat reuse. Neural networks are used to learn the heat
generation and heat distribution in the server room. Thermal aware scheduling may
consider different heuristics such as tasks and servers’ classification in hot or cold thermal
prediction models, node ranking based on heat generation features, etc. [48,51,55]. In [56],
an optimization problem is proposed for thermal scheduling considering the optimal
setpoints for the workload distribution and the temperature in the server room. Heat flow
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models are proposed for determining temperatures in case of a thermal aware workload
scheduling policy, while a heat recirculation matrix is used to define the thermal influences
between the servers [57,58]. Algorithms are prosed to allocate workload on multiprocessors
while minimizing the makespan and temperature constraints [59,60]. They aim to reduce
the chip temperature while meeting the workload SLA, with the optimization problem
being usually modeled as a mixed-integer linear program. Thermal aware task scheduling
approaches to adjust CPU frequency based on Dynamic Voltage Frequency Scaling [61] are
used to manage the energy demand and heat generation [62–64]. In [65], the authors build
a steady and dynamical thermal interaction model of the DC. Based on these models, a
task assignment and frequency optimization are performed in the first optimization stage,
while the second stage uses a model predictive control (MPC) to represent the optimization
problems that aim to minimize the cooling system power demand. In [12], a thermal
aware consolidation mechanism is defined using a heat recirculation matrix and a set of
bio-inspired algorithms that minimize overall DC energy consumption. Finally, in [56], the
scheduling optimization problem is defined by considering the energy footprint reduction
with thermal exchanges while incorporating both temperature and workload constraints.

After analyzing the existing state of the art, we did not find any relevant literature
approach that addresses the thermal aware workload scheduling in the case of distributed
DCs while considering the IT equipment as a primary source of heat. Several papers
advocate the Data Furnace as the method of heating residential homes by deploying IT
equipment in their premises [66,67]. Nevertheless, they are at the stage of ideas promot-
ing some of its advantages such as a smaller carbon footprint or a reduced total cost of
ownership per server without offering an actual scheduling solution.

In our paper, we address the identified knowledge gap in the literature by proposing
a thermal-aware workload scheduling solution for distributed DCs. Our approach can
consider both the service level agreements constraints of the workload to be executed
and the heat demand of the residential home’s tenants. To accurately estimate the heat
to be generated by the IT equipment for meeting the heat demand levels, we define
thermodynamic and machine learning models. They evaluate the heat demand based on
the temperature of the heat generated by the IT equipment to determine the workload to
be allocated for execution such that the temperature setpoint defined by the tenant is meet.
The scheduling algorithm and heat models are evaluated considering relevant data sets
from an operational distributed DC showing promising results.

3. Thermal Aware Workload Scheduling

The distributed DC should be modeled as a collection of N isolated IT equipment
(i.e., servers or micro data centers) deployed in residential buildings. Each one uses the
building internet network and is deployed in a room that needs to be heated:

DCDistributed = {< roomk, serverk >}, k = 1, . . . N. (1)

The IT equipment offers a direct heat source, converting the electrical energy con-
sumed for workload execution into thermal energy (i.e., a computing heater). The thermal
energy is dissipated through radiators in the surrounding air, heating the room as conven-
tional heaters to maintain the thermal comfort of the inhabitants. The objective, in this
case, is to schedule the workload tasks to be executed by the IT equipment deployed in the
room k to bring and maintain the ambient temperature Tk

Room close to a set point Tk
set−point

temperature desired by the dwellers:

roomk : < Tk
Room, Tk

set−point >. (2)

The workload scheduling should consider the dockerized tasks and Service Level
Agreements constraints in terms of computational resources to be allocated and execution
time deadline. Also, the number of task migration should be kept as low as possible to
minimize its impact on task SLA.
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We defined the workload to be scheduled for execution over an interval [0 . . .∇] as a
set of M tasks:

Workload =
{

Task j, j = 1, . . . M
}

. (3)

Each task specifies the computational resources that need to be allocated, estimated
execution time, and deadline according to the Service Level Agreements:

Task : < CPU, RAM, HDD, texecution, tdeadline >, texecution, tdeadline ∈ [0 . . .∇]. (4)

The rooms should be heated by reusing residual heat generated by the servers.
For each server, the computational resources, the idle, and maximum power consumption
are specified:

Server : < CPU, RAM, HDD, PIDLE, PMAX >. (5)

To allocate tasks on servers to be executed during the interval [0 . . .∇], a scheduling
matrix Wscheduling is defined. The matrix stores the starting time for tasks execution and
their allocation on specific servers:

Wscheduling ∈ RN×M, Wscheduling[Serverk]
[
Task j

]
= tkj

start. (6)

If there is a task j scheduled to the executed-on server k, then:

0 < tkj
start < T (7)

otherwise, the tkj
start = 0.

The subset of tasks Wk
alocation scheduled to be executed to each server k, from the N

locations where the DC IT equipment is distributed, is determined using the task scheduling
matrix:

Wk
alocation =

{
Task j

∣∣∣Wscheduling(k)(j) > 0, j ∈ {1 . . . M}, k ∈ {1 . . . N}
}

. (8)

In the process of determining the scheduling matrix, several constraints need to be
met. The first one is referring to the execution time of a scheduled task that is not allowed
to exceed the specified execution deadline:

tkj
start + tj

execution ≤ tj
deadline. (9)

The second set of constraints are referring to the relation between the total computa-
tional resources requested by the tasks scheduled for execution on a server and the server’s
available resources. The computational resources allocated to the tasks scheduled on a
server k should be less than the total resources of that server:

∀t ∈ [0 . . .∇], CPUk(t) ≥
M

∑
j=1tkj

start≤t≤tkj
start+tj

execution

CPUj(t) (10)

∀t ∈ [0 . . .∇], RAMk(t) ≥
M

∑
j=1tkj

start≤t≤tkj
start+tj

execution

RAMj(t) (11)

∀t ∈ [0 . . .∇], HDDk(t) ≥
M

∑
j=1tkj

start≤t≤tkj
start+tj

execution

HDDj(t) . (12)

Considering the resources allocated to tasks, the computational resources utilization
levels for a server k are computed as:

µk
server(t) =

{
µk

CPU(t), µk
RAM(t), µk

HDD(t)
}

(13)
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µk
CPU(t) =

∑M
j=1tkj

start≤t≤tkj
start+tj

execution
CPUj(t)

CPUk(t)
(14)

µk
RAM(t) =

∑M
j=1tkj

start≤t≤tkj
start+tj

execution
RAMj(t)

RAMk(t)
(15)

µk
HDD(t) =

∑M
j=1tkj

start≤t≤tkj
start+tj

execution
HDDj(t)

HDDk(t)
. (16)

The power consumed by the server is determined using the utilization ratio and the
power characteristics of the servers as:

Pk
server(t) = fpower

(
µk

CPU(t), µk
RAM(t), µk

HDD(t), Pk
idle, Pk

MAX

)
. (17)

For the function fpower, we used a linear model to compute the power considering the
idle and maximum power of the server k and the CPU utilization level [68]:

Pk
server(t) = Pk

idle + µk
CPU(t) ∗

(
Pk

MAX − Pk
idle

)
. (18)

The energy consumed by the serverk over the time interval [0 . . . ∇] can be computed
as an integral of the power over this time window:

Ek
server =

∫ ∇
0

Pk
server(t)dt . (19)

Among the computational resources considered for a server, the main heat source
is the CPU, which is responsible for 30% up to 65% of the total heat dissipated and also
has the highest temperature. Other resources have less impact with varying proportions,
thus we denoted them with parameters that can be determined empirically. According
to the law of energy conservation, the electrical energy consumed by the servers can be
transformed into heat that is dissipated in the room where the servers reside over the
interval [0 . . . ∇]. This heat can be split according to the nc computational resources of
the server, with each having been assigned a weight ω according to the proportion of the
thermal energy generated:

Qk
server(∇) =

nc

∑
i=1

ω(i) ∗ Ek
component(i) . (20)

Considering the tasks allocated over the interval [0 . . . ∇], the function fschedule : RM → Rnc

estimates for each server, the energy consumed by each component, which can be used to esti-
mate the server heat generation.

Ek
component = fschedule

(
Wk

alocation

)
(21)

The heat dissipation in each room leads to a temperature modification according to a
function fQ that estimates the ambient temperature Tk

Room modification over the interval
[0 . . . ∇]:

Tk
Room(∇) = f k

Q

(
Tk

Room(0), Qk
server(∇)

)
. (22)

In our case, the workload scheduling for a distributed DC aims to allocate the work-
load tasks on the IT servers to optimally generate the heat according to the resident’s
demand. The room temperature setpoints need to be reached as fast as possible and are
kept constant over the rest of the time interval, with no task migrations, in each of the N
locations where the IT equipment is distributed.
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The thermal aware workload scheduling problem is modeled as a constraint satisfac-
tion problem to determine the optimal workload scheduling matrix Wscheduling such that
the set-points temperatures in each of the N rooms are met (see Algorithm 1). Its solving
process involves nonlinear programming [69] because of the non-linearities of the objective
function and the workload scheduling function fschedule and the continuous values of the
Wscheduling matrix. Also, it is an NP-hard problem [70], thus an approximation algorithm is
needed to determine a solution.

Algorithm 1 Thermal aware workload scheduling

Input: DCDistributed, N the number of distributed servers, M the number of workload tasks, TRoom the temperatures in the rooms
where the servers are distributed, Tset−point the desired temperature in the rooms.
Output: Wscheduling matrix keeping the tasks scheduling on servers

OptimizationGoal : determineWschedulingtoMIN
(

N
∑

k=1
distance

(
Tk

Room, Tk
set−point

))
Considering the following constraints for each server k = 1 . . . N
C1 : Wk

alocation =
{

Taskj

∣∣∣j ∈ {1 . . . M}andWscheduling(k)(j) > 0
}

C2 : Qk
generated(T) =

nc
∑

i=1
ω(i) ∗ fschedule

(
Wk

alocation

)
C3 : Tk

Room(∇) = f k
Q

(
Tk

Room(0), Qk
server(∇)

)
C4 : tkj

start + tj
execution ≤ tj

deadline

C5 : ∀t ∈ [0 . . . T], CPUk(t) ≥
M
∑

j=1tkj
start≤t≤tkj

start+tj
execution

CPUj(t)

C6 : ∀t ∈ [0 . . . T], RAMk(t) ≥
M
∑

j=1tkj
start≤t≤tkj

start+tj
execution

RAMj(t)

C7 : ∀t ∈ [0 . . . T], HDDk(t) ≥
M
∑

j=1tkj
start≤t≤tkj

start+tj
execution

HDDj(t)

The main challenge is the unknown nature of the f k
Q function that may feature complex

representations, making the utilization of optimization algorithms derived from stochastic
gradient descent unfeasible [71]. To address this, we split the thermal aware scheduling
problem into two subproblems (see Figure 2). For the first subproblem involving estimates
for each room k, the heat that needs to be generated by the server to make the transition
from Tk

Room(0) to Tk
set−point. The second one determines the workload scheduling matrix

Wscheduling such that a large enough workload is scheduled for execution on each server to
generate heat to meet the demand. The latter problem can be solved using an adaptation
of the Multiple Knapsack Problem [72].
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In the case of the first subproblem, we aimed to approximate the heat demand Qk
Demand

needed over the interval [0 . . . ∇] to make the transition from Tk
Room(0) to Tk

set−point and
then keep the temperature constant at the set point level. It can be solved by defining a
function f−1

Q that estimates the amount of heat needed to make the temperature transition:

Qk
demand(∇) = f−1

Q

(
Tk

Room(0), Qk
initial , Tk

set−point

)
. (23)

In the case of the second subproblem, the goal is now to determine the workload
scheduling matrix WScheduling so that the heat generated by each server matches closely the
heat demand of the corresponding room:

MIN(
N

∑
k=1

distance
(

Qk
demand, Qk

generated

)
) . (24)

The optimization still involves nonlinear programming, but the functions are not
defined as black-box models. As result, it can be solved using approximation algorithms
used to determine solutions for the Multiple Knapsack Problem [72]. Using this time
discretization over the interval [0 . . . ∇], the scheduling problem can be reduced to an
N × ∇ knapsack problem, where the N × ∇ knapsacks volumes correspond to the values
of the heat demand to be generated on each of the∇ intervals in each of the N rooms, while
the items being packed are the workload tasks to be deployed on servers and executed.

4. Heat Demand Estimation

The thermal aware workload scheduling model described in the previous section
needs accurate estimations of the heat demand to be generated by the IT equipment such
that the temperature set point in the room set by the residents is met. In this section,
we propose two models for implementing the f−1

Q function used to determine the head
demand estimations.

4.1. Server Heat Transfer Model

We defined a thermodynamic model of the server calibrated with measurements. To
ease the representation, we assumed that the room temperature Tk

Room is constant during
the workload scheduling period [0 . . .∇]. This means that all the power generated by the
server Qserver is dissipated in the surrounding environment by rising to the ceiling, while
cold air from the floor passes through the computing element radiator, leading to an energy
loss Qloss of the room.

The server power consumption for executing the allocated tasks, the temperature of
the heat generated (Tserver), and room temperature are linked as follows [73]:

Pserver = Qserver = cserver ×
∆Tserver

∆t
+ fair × ca × εserver × (Tserver − TRoom) (25)

where cserver is the server heat capacity, fair represents the airflow over the server surface,
cair is the specific heat capacity of air, and εserver is the thermal server efficiency. Thermal
efficiency is defined as the ratio of real to maximum power transfer between the server’s
body and the airflow and can be experimentally determined by measuring the temperature
of emerging airflow denoted as Tex.

εserver =
Pserver

Pmax
server

=
fair × cair × (Tex − TROOM)

fair × cair×(Tserver − TROOM)
=

Tex − TROOM
Tserver − TROOM

(26)

The changes in the server power Pserver influence the temperature of the heat generated.
We assumed that the power is changed linearly with respect to time with the ratio R:

Pserver(t) = R × t + Pserver(0). (27)
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We defined the transient state of server-generated heat temperature Tserver over the
time interval in which Pserver changes, while the equilibrium state was defined to be when
the Pserver reaches a constant value. Relation (25) can be used to define both the transient
and the equilibrium regimes of the computational equipment. The transient temperature is
defined in Equation (28) as a solution of (25), as a function of the time coordinate, while the
solution in the equilibrium regime is given by Equation (29).

Tserver−transient =

[
A× e

− t
( Cserver

fair×ca×εserver
)
+ R× t

fair×ca×εserver

]
−

− R×Cserver
( fair×ca×εserver)

2 + TRoom + Pserver (0)
fair×ca×εserver

(28)

Tserver−equilibrium = B× e
− t

( Cserver
fair×ca×εserver

)
+ TRoom +

Pserver−final

fair × ca × εserver
(29)

In Equations (28) and (29), the constants A and B are fixed by the initial conditions
in each case. The equilibrium regime defined in Equation (29) tends asymptotically to a
state independent of time due to the rapid exponential decay of the first term, eventually
reaching a state depending only on the power workload and predicting the behavior of
Tserver with respect to the change of Pserver. The server temperature after the equilibrium
temperature setting can be estimated with Equation (30), derived from (29) when the first
term decays to zero.

Tserver− f inal ≈ TROOM +
Pserver− f inal

fair × ca × εserver
(30)

The parameters used in defining the server as a heater model are detailed in Table 1,
mentioning which parameter should be measured, and which are tuned experimentally
for a particular model. The parameters from Table 1 that are determined experimentally
can be computed while considering a set of measurements from the physical server room,
allowing the model to be fitted to the exact configuration of the real-world system.

Table 1. Server heater model parameters.

Parameter Description Parameter Type

cair
Air specific heat capacity, defined as a physical constant for air

property dependent on temperature Constant

cserver
Server heat capacity, defined as a physical property of the server,

intrinsic to the system Experimentally determined

fair
Airflow of air pumped by the cooling system over the servers,

measured in m3

s , the intrinsic parameter of the system.
Measured during cooling system

operation

εserver
Server thermal efficiency, defined by Equation (22), considered an

intrinsic parameter of the system Experimentally determined

TROOM Room temperature measured by sensors during system operation Measured

Tserver
Server temperature measured by sensors, directly influencing the

room temperature Measured

Pserver Server power demand due to workload execution The output of the model

Finally, after reaching the equilibrium temperature, the assumption that TRoom is
constant can be relaxed, as the computational equipment will dissipate heat in the room,
leading to a temperature change. Considering the equations developed above, the heat
per unit of time demanded by the servers overtime to pass the transient regime and
transition the temperature TServer to a temperature Tserver−equilibrium close to Tserver− f inal can
be computed as the server demand over the transient regime:

Qdemand(t) = Pserver(t) = R× t + Pserver(0). (31)
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However, to transition the room temperature from TROOM to Tset−point, we considered
that the server has reached a state sufficiently close to the asymptotic equilibrium and the
relation between Tserver− f inal and TROOM is approximately linear, so for small changes and
fluctuations, the difference between the two temperatures is largely unchanged. Using
simple thermodynamic considerations once again, it can then be stated that:

(Pserver− f inal − Ploss)∆t = M× ca ×
(
Tset−point − TROOM

)
(32)

which is an expression of the energy required to heat the room from TROOM to Tset−point
in time ∆t after the server has reached its equilibrium temperature, M is the mass of the
air in the room, computed by multiplying the room volume V by the air density ρair, and
Ploss is the energy lost per unit time by the room due to air drafts and imperfect thermal
insulation. Thus, from (32) we can deduce the expression:

Pserver− f inal = Ploss +
M× ca ×

(
Tset−point − TROOM

)
∆t

. (33)

We can now obtain the more useful expression for QDemand(t), given Tset−point for the
air in the room, knowing that QDemand(∇) = Pserver− f inal and that the increase in power is
linear:

QDemand(t) =
Ploss +

M×ca×(Tset−point−TROOM)
∆t − Pserver(0)
∇ × t + Pserver(0), ∀t ∈ [0 . . .∇] (34)

It should be noted that the time in which the room heats up, ∆t, is a parameter that
can be chosen freely, and should not be made too short, as this will cause the server to
overheat i.e., exceed the recommended functioning temperature of approximately 35 ◦C.
The limiting minimum size ∆t is easily deducible from previous expressions. Finally, if the
room is to be heated, Pserver− f inal must be larger than Ploss, otherwise, the room will not
receive any net heat and will not increase its temperature.

4.2. Machine Learning-Based Model

The machine learning model aims to infer and correlate the heat demand that needs
to be generated by the server executing the allocated workload out of monitored data
(see Figure 3). We considered that the room temperature is collected using heat sensors
placed at a certain distance from the server. The heatsink temperature is collected using
the server’s embedded temperature sensor, whereas the power consumption is obtained
using a wattmeter.
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The machine learning model takes as inputs the actual room temperature TRoom(0),
the initial power consumption Pserver(0), the desired room temperature, Tset−point, and
provides as output the heat demand that the server should generate by executing workload,
to reach the desired temperature, TRoom(∇).

All data needs to be smoothed so that outliers are eliminated. We aimed to detect
areas of interest, defined by a high correlation coefficient between the heatsink and ambient
temperature, limited between two local peaks of the temperatures and power. Thus, we
used the Pearson Correlation Coefficient, as defined in Equation (35), to measure the
linear correlation between two datasets. Only relevant samples with values larger than a
threshold were considered for further processing, namely data where the room temperature,
server temperature, and power consumed by the server present similar patterns.

rwindow
Theatsink ,TROOM

=
cov(Tserver, TROOM)

σTserver σTROOM

> threshold (35)

As the area of interest still may contain data that might be irrelevant for our final
purpose, it needed further processing. Only the initial and final temperatures were se-
lected from the scheduling interval [0 . . .∇]. They represent the relevant information for
predicting the power consumption, given the temperature. The initial temperatures can
be computed as the mean temperature before a sudden change, whereas the final ones
can be computed as the mean temperature after stabilization. The same goes for power,
consequently obtaining the four needed values:

< TRoom(t1), Pserver(t1), Tserver(t1) > → Pserver(t1 +∇)
< TRoom(t2), Pserver(t2), Tserver(t2) > → Pserver(t2 +∇)

. . . . . . . . .
< TRoom(tn), Pserver(tn), Tserver(tn) > → Pserver(tn +∇)

 (36)

where t1, t2, . . . tn ∈ [0 . . .∇], are timestamps of the data acquisition.
Several models were implemented and used to learn the behavior of the function f−1

Q
used to estimate the heat demand. Table 2 presents the description of the models and their
configuration determined empirically on the test data.

Table 2. Machine learning models used for determining the heat demand.

Model Type Model Description

Linear Regression The basic linear regressor was used to determine the baseline for prediction accuracy

Polynomial Regression A second-degree polynomial regressor. Multiple degrees were considered, but the validation
score began to drop after the degree was set to 2.

Gradient Boosted Regression 90 estimators with a maximum depth of 4. The samples had a minimum split of 5 and the
learning rate was 0.1. The loss was computed using the least-squares method.

Random Forest Regression 9 estimators with a maximum depth of 4 are defined.

Support Vector Regression A support vector regressor with kernel type of radial basis function and parameters:
C = 100, γ = 0.01, ε = 0.1

K Neighbors Regression The K-Nearest Neighbors Regression with 2 neighbors and uniform weights.

Deep Learning Regression

Multi-Layer Perceptron having one input layer, two hidden layers of 128 and 256 neurons, and
one output layer. The activation function for the hidden layers is of type Rectified Linear Units

(ReLU), and 500 epochs were used for training. The loss function was the mean squared error and
the optimizer ADAM. Early stopping was employed with the patience of 50 epochs and a

minimum validation loss as the monitor.
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5. Evaluation Results

To evaluate the thermal aware workload scheduling and the heat demand estimation
models, we considered a test case distributed DC [74] composed of a main DC and a set
of edge sites (see Figure 4). Each edge site hosts a workload distribution node, the QBox,
and a set of server heater nodes, the QRads, that provide heat by executing the workload
provided by the QBox. The QRad is a server-heater with no moving parts and three
motherboards equipped with CPUs that execute workload and dissipate the heat in the
surrounding environment, leading to a temperature rise. Each QRad node consumes about
400 W of electrical energy and generates an amount of roughly 400 W of heat, depending
mainly on the CPU model. The workload that runs on the QRad is composed of tasks that
use full CPU resources, such as 3D animation or financial risk computing.
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A sensors-based monitoring infrastructure was used to acquire relevant data regarding
the Ambiental temperature TRoom, power consumption of the QRad (Pserver) and tempera-
ture of the server (Tserver). The data acquired spans over several months, being recorded
at a granularity of 10 s. Both the characteristics of the QRad heaters and monitored data
acquired by the installed infrastructure are the inputs of our study.

However, the monitored data used to model the thermal behavior of the QRad heaters
must be extracted for larger intervals that show suggestive temperature and power changes.
Thus, a pipeline of data pre-processing operations was employed to extract the relevant
data samples (see Figure 5).
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The acquired data were smoothed using an exponential weighted moving average
window with the span of 90 data points corresponding to a time window of 15 min. A mean
filter with a window span of 60 data points, corresponding to a time window of 10 min,
was applied to ignore sudden fluctuations. To find the exact times when the ambient
(TRoom) and the server temperatures (Tserver) rise or fall together, Pearson’s r coefficient was
used. This was applied on a rolling window with the span of 360 data points corresponding
to a time interval of 1 h to compute the correlation. The samples corresponding to intervals
where the scores exceeded 0.5 were considered. Finally, local maximum and minimum
peaks were found over window sizes of 180 data points corresponding to 30 min time
intervals. Only samples that started at a local minimum and ended at a local maximum
or vice-versa were taken into consideration. The process involved manual inspection of
the selected data and fine fitting so that the included regions could also contain the power
instant change, which sometimes takes place before a local peak.

Figure 6 shows a relevant data sample obtained by filtering, smoothing, and applying
Pearson’s coefficient. The length of the time interval ∇ is determined between the start
of the temperature change and the end of the temperature change. Analyzing the data
set, we determined ∇ for each sequence to record most temperature changes and to reach
a steady-state situation. Since most of the samples show that the server power change
is similar to a linear function, only the final server power consumption was considered
(PServer(tn +∇)). This can be computed based on the initial state parameters at the time tn:
the ambient temperature at the time TRoom(tn), the server temperature, Tserver(tn), and the
server power demand Pserver(tn).
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Firstly, we considered the server heat transfer model detailed in Section 4.1. The model
was calibrated by fitting some of its parameters on the actual data gathered from the QRad
heaters. The heat model parameters from Table 1 (i.e., the server heat capacity Cserver, the
server thermal efficiency, εserver) have to be computed to fit best on monitored data, while
the airflow over the server (i.e., fair) has to also be estimated.

The fitting process consists of feeding a trace of processed data in the form
TROOM(tn), Pserver(tn), Tserver(tn)→ PServer(tn + T) for each QRad server CPU to an opti-
mizer that can compute the model parameters using gradient descent-based algorithms [71].
The processed data samples were split into 80% training data for model fitting, while 20%
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was used to validate the model. The fitting process is performed iteratively, at each step a
sample of training data is read, and the variables Cserver, εserver and fair were varied from
a set of initial values until they fit best the data. The sequential fitting was done using a
custom script from the SciPy library, namely the scipy.optimize method [75], applied on each
data sample, recording values of Cserver, εserver and fair from the fit process and using them
as initial guesses for the next sample’s fit. Repeating this operation gave us progressively
refined values of the server’s parameters.

After having determined the characteristics for each QRad server, we predicted the
change in power workload on the testing data. This was done by fixing Cserver, εserver, and
fair to the values obtained, reading Tserver and TRoom from the data and finally obtaining
our prediction for the change in Pserver, which we would compare to the one in the data.
A prediction chart is shown in Figure 7, illustrating as a linear function the power change
for a server heater (depicted in green line) to increase the temperature (depicted in blue
line) to match the requested temperature as closely as possible (depicted in red line), over a
time interval of 20 min.
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The model was evaluated on a set of scenarios, with both fitting processes described
above, achieving the average prediction accuracy from Table 3.

Table 3. Evaluation of the server heat transfer model power prediction capability.

Server MAPE RMSPE RMSE

QRad Heater 11.98 14.28 20.15

Secondly, we evaluated the machine learning-based heat model presented in Section 4.2.
A set of several machine learning algorithms were implemented to model the QRad server
heat generation. The Linear and Polynomial Regression, Random Forest Regression, Sup-
port Vector Regression, and K Neighbors Regression were implemented using Python’s
SciKitLearn [76] library. The Multi-Layer Perceptron was implemented using Keras [77] and
Tensorflow [78] while for the Gradient Boosting Regression, the XGBoost’s [79] was used.

The dataset processed using the defined pipeline of operations can be split into train
and test subsets, with the proportions of 0.8 and 0.2 of the initial data. The models were
validated using 5-fold cross-validation and were evaluated by computing the Root Mean
Square Error (RMSE), Root Mean Percentage Square Error (RMSPE), the coefficient of
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determination R2 (R Squared), the error mean, the error standard deviation, and MAPE.
The average results obtained are listed in Table 4.

Table 4. Evaluation results of machine learning-based heat models.

Model RMSE R2 Error Mean Error Standard
Deviation RMSPE MAPE

Linear Regressor 14.4 0.89 −0.66 14.04 8.62 13.36
Polynomial Regression 33.12 0.39 2.05 29.19 23.38 13.65

Random Forest Regressor 10.04 0.92 −2.06 9.55 7.6 5.06
Gradient Boosting Regressor 10.65 0.94 −1.12 10.32 7.14 4.74
Support Vector Regression 16.28 0.85 2.33 15.02 9.71 6.89

K Neighbors Regressor 13.7 0.84 1.09 12.85 10.54 6.27
Multi-Layer Perceptron Deep

Neural Network 33.09 1 1.92 24.54 20.62 17.29

As Table 4 shows, considering the MAPE and the RMSPE, the best results are obtained
by the Gradient Boosting Regression (GBR). These are the most relevant metrics for predic-
tion accuracy, considering the percentages of the errors. They are showing that the GBR
model can predict the heater power demand with less than 5% error, corresponding to
less than 10 W of power. However, by analyzing the mean and the standard deviation
on the error besides the RMSPE and the MAPE, the Random Forrest Regression (RFR)
gives better results, showing a small error distribution considering the mean error. Finally,
the R2 metric for the two models is closest to 1, with values of 0.94 for GBR and 0.92 for
RFR. Looking at all calculated metrics, we considered that the GBR gives the best results
considering the datasets collected from the QRad heaters and is most suitable for being
used in a thermal aware workload scheduling algorithm.

Thirdly, we evaluated the thermal aware workload scheduling solution presented in
Section 3. The heating requirements for a room can be determined by several models used
in the industry to determine the recommended size of the heaters [80]. The main factors
that influence the required power of the heaters in a room are the volume of the room
and the caloric coefficient of the room. The latter has a value between 40 and 70 kcal/m3

and is influenced by the thermal insulation of the room, the number of exterior walls, the
number of windows, and their size and type. The power needed to heat a room according
to industry standards can be computed as:

PReccomended
Room = VROOM ∗ Ccal

ROOM ∗ ccal
W (37)

where VROOM is the volume of the room expressed in cubic meters m3, Ccal
ROOM is the caloric

coefficient of the room expressed in kcal
m3 , and ccal

W is the conversion factor from kcal to W
having an approximate value of 1.163 W/mcal.

We determined the required heating power for rooms with different configurations and
we assessed the number of QRad heaters needed to be installed (see Table 5). We considered
that the heat losses from the room are much smaller than the heat generation ratio.

From the electrical energy consumption perspective, a heating system based on electri-
cal heater radiators would consume the same amount of electricity as the server heaters for
generating the same amount of heat. This is a result of the server design having no moving
components, thus according to the law of energy conservation, most of the electrical en-
ergy consumed by the servers is converted into thermal energy and dissipated as heat in
the room. Finally, as the server design is like a standard heater, they are installed in the
room in the same positions as standard heaters, requiring no ventilation system for heat
recirculation.

To illustrate our case study, we have considered the power and thermal behavior of
4 QRad server heaters containing three motherboards, each with an Intel® Core™ i7-6950X
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CPU with 10 cores [81], totaling 12 CPU with 120 cores located in a room with a volume of
30 cubic meters, that require roughly 1.8 kWh for heating.

Table 5. Residential heating equipment sizing case study.

VROOM[m3]
Number of

Exterior Walls
Thermal

Insulation Ccal
ROOM [kcal/m3] PReccomended

Room [Watt]
Number of QRad

Heaters

30 1 Yes 51 1838 4
1 No 55 1991 4
2 Yes 55 1991 4
2 No 60 2144 4

35 1 Yes 51 2100 4
1 No 55 2275 4
2 Yes 55 2275 4
2 No 60 2450 5

50 1 Yes 51 3000 6
1 No 55 3250 6
2 Yes 55 3250 6
2 No 60 3500 7

The server’s initial temperature is 29 ◦C and their total power demand is 540 W, while
each of the four servers only has one of the three CPUs active with one core active out of
the 10 total cores. The temperature and power status of the server over a time interval of
15 min is displayed in Figure 8, showing a steady-state condition in the room. The desired
server temperature is 34.5 degrees Celsius, requiring the heater to generate thermal energy
to increase the room temperature.
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Figure 8. Initial conditions: the 4 QRad server heaters’ total power demand and initial temperatures.

Figure 9 shows the power demand prediction using the GBR model for total heat
demand estimation for the 4 QRad server heaters to transition the room temperature to the
set-point temperature. Each of the 12 CPUs’ estimated power demand is roughly 115 W,
meaning that the 4 QRads will generate approximately 1.4 kW of heat.
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Figure 9. GBR heat demand estimation model power prediction.

Based on the power demand given by the GBR model for heat demand estimation, the
thermal aware workload scheduling algorithm aims to schedule workload for execution so
that the CPU usage leads to the required power demand. We considered a set of synthetic
tasks running in Docker, each requiring 1 active CPU core processing near 100% and 1 GB
of RAM. The task allocation result after solving the optimization problem from Section 3 is
shown in Figure 10 left. For each of the 4 servers and their 3 CPUs, the plan activates 8 cores
to run at a time interval of 0–100 s and 9 cores to run in the time interval of 100–800 s. Thus,
in total 108 cores will be active during the heating period, leading to a total of 1488 W,
shown in Figure 10-right, a value close to the predicted power demand of 1400 W estimated
by the GBR model.
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Finally, we use the data logs to estimate the thermal behavior of the 4 servers for the
load computed by the thermal aware scheduling algorithm while considering the predicted
load of the GBR model for heat demand estimation. As Figure 11-right shows, the server
power demand is close to the predicted heat demand, being able to match it with 97%
accuracy. As a result of the power demand and workload execution, the servers dissipate
heat in the room, leading to the temperature evolution from Figure 11-left. The blue dotted
line shows the room temperature evolution because of simulating the installed QRad
behavior with the power demand depicted in Figure 11-right. The green dotted line depicts
the room monitored temperature extracted from the data logs, showing a temperature
increase close to the simulated QRad behavior and matching the set-point temperature
after 800 s.
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6. Conclusions

In this paper, we consider the case of distributed DCs and associated problems related
to heat reuse when the servers are installed in residential homes are used as a primary
source of heat. We propose a workload scheduling solution based on constraint satisfaction
to allocate workload on severs for reaching and maintaining the desired temperature
set-point in residential homes by reusing their residual heat. Two models were defined to
correlate the heat demand with the amount of workload to be executed by the servers: a
mathematical model derived from thermodynamic laws calibrated with monitored data
and a machine learning model able to predict the amount of workload to be executed by a
server to reach a desired temperature set point. The results obtained considering monitored
data from an operation distributed DC are promising. The workload scheduling solution
can distribute the workload so that the temperature setpoints are meet in a reasonable time,
while the server heat and power demand correlation models achieve good accuracy levels.
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