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Abstract: Healthcare is now an important part of daily life because of rising consciousness of
health management. Medical professionals can know users’ health condition if they are able to
access information immediately. Telemedicine systems, which provides long distance medical
communication and services, is a multi-functional remote medical service that can help patients in
bed in long-distance communication environments. As telemedicine systems work in public networks,
privacy preservation issue of sensitive and private transmitted information is important. One of the
means of proving a user’s identity are user-controlled single sign-on (UCSSO) authentication scheme,
which can establish a secure communication channel using authenticated session keys between the
users and servers of telemedicine systems, without threats of eavesdropping, impersonation, etc., and
allow patients access to multiple telemedicine services with a pair of identity and password. In this
paper, we proposed a smartcard-based user-controlled single sign-on (SC-UCSSO) for telemedicine
systems that not only remains above merits but achieves privacy preservation and enhances security
and performance compared to previous schemes that were proved with BAN logic and automated
validation of internet security protocols and applications (AVISPA).

Keywords: telemedicine systems; user-controlled; single sign-on; multi-server; BAN logic; AVISPA

1. Introduction

Healthcare is now an important part of daily life because of rising consciousness
of health management. People can check up health conditions by themselves, such as
heartbeat rate, quality of sleep, amount of exercise, and so on, by supporting wearable
technology, including smart phone, smart watch, smart bracelet, etc., which measures
biodata and assists self-health management. Currently, biodata is only transferred to a
smartphone and analyzed by applications on a smart phone, without being transferred
to other outside systems [1]. Medical professionals can know users’ health conditions, if
medical professionals are able to access the information immediately [1].

Telemedicine systems provide long distance medical communication and services
through which patient and medical professionals can communicate online, and patient
benefits from being supported with ambulatory care or other medical services, even in
remote areas [1–4]. Telemedicine systems allow health related data and image to be reliably
transmitted from one point to another [1]. Many researchers focused on monitoring
patient’s health with specific diseases using telemedicine, such as diabetes and Parkinson’s
disease, and telemedicine systems can help a patient recover from illness through this
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way [5–8]. In other words, telemedicine can help patients improve their quality of life [1].
Moreover, telemedicine systems can provide better solutions in emergency situations and
serious disease monitoring [1,8–10]. Telemedicine systems are implemented with wireless
communication environments, such as Wi-Fi, Internet of Things (IoT), and fifth generation
(5G), to achieve long distance medical communication and services [8,11]. The sensors,
such as wearable devices, for example, gather measured data, and measured data are then
transmitted through gateways, 5G base stations, and core networks. After this, data is
stored or analyzed by applications in back-end servers or cloud servers.

Telemedicine systems are implemented with wireless communication environments,
which means data are transmitted through public networks. The patient sends healthcare-
related information through public networks when using telemedicine technology, and
the transmitted information is important, sensitive, and private [1]. Security issues related
to data transmission were discussed, such as eavesdropping, man-in-the-middle (MITM)
attack, data tempering attack, message modification attack, data interception attack, etc. [12]
Although the Health Insurance Portability and Accountability Act (HIPAA), General Data
Protection Regulation (GDPR), and Safe Harbor Laws have regulations that provide privacy
of personal information, technical support is still not enough [12–14].

Security issues exist in multi-server environments when applying conventional
password-based authenticated key exchange schemes. Users have to maintain pairs of
identifiers and passwords that increase computational cost and security risks. Moreover,
a trustworthy third party is required, while users utilize a single pair of identity and
password in multi-server telemedicine systems. However, a malicious third party is able to
impersonate users to access other services, with knowledge of shared keys. The same can
be proved if a malicious server exists. In terms of performance, the cost of establishing a
session key for users is related to the number of servers in conventional schemes. A single
sign-on (SSO) mechanism can overcome the above issues that allow users a single action
to achieve authentication with a single pair of identity and password, rather than with
multiple passwords [15–17].

In the proposed scheme, we apply a user-controlled SSO (UCSSO) authenticated key
agreement. The key allows patients access to services in multi-server telemedicine systems
with a user-defined password, and establishes a secret shared key among servers for secur-
ing subsequent communications and designing a smartcard-based user-controlled single
sign-on (SC-UCSSO) scheme that can be applied in 5G-IoT multi-server telemedicine sys-
tems. The patients has data ownership as they can control and decide the data’s destination
and time of transmission. The proposed scheme establishes a secure communication chan-
nel using authenticated session keys between patients and services, while meeting general
security requirements. Moreover, computational complexity is better than the compared
previous schemes. We sketch the remaining organization of paper below. We introduce
telemedicine systems and the Chebyshev chaotic maps in Section 2. We introduce our
scheme in Section 3, and security and performance analysis are detailed in Sections 4 and 5.
We present our results of implementation in Section 6. Finally, the conclusion is drawn in
Section 7.

2. Related Works
2.1. Telemedicine Systems

Telemedicine systems is a technology of electronic message and telecommunication
related to healthcare [1,18]. The National Health Services (NHS) of United Kingdom defines
changes to NHS service model as “out of hospital care”, “reducing emergency hospital
services”, “personalized care”, “digitally enables care”, and “integrated care systems
models”, which can correspond to the features of telemedicine systems [19,20]. Thanks to
the IoT technology, which enable medical professionals to monitor patients who are outside
of medical institutes in real-time, medical professionals can know users’ health condition,
if they are able to view the information immediately [1,20]. In other words, telemedicine
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systems with IoT can enhance functions of patient’s health monitor and proactive and
preventive healthcare interventions [20].

A general telemedicine system can be divided into three level [21]. Level 1 (primary
healthcare unit) consists of users with webcam, smart phone, or wearable devices, which is
enables communications of measured biodata through wireless communications, including
radio frequency identification (RFID), near field communication (NFC), Bluetooth, Wi-Fi,
Zigbee, etc. [20]. Measured biodata are transmitted to the user’s smartphone without
being transferred to other systems [1]. Level 2 (city or district hospital) is clinic or local
hospital that the patient might visit before being transferred to a large hospital or medical
center. Level 3 (specialty center) takes part in telemedicine in case of a rare disease or
an incurable disease [21]. Figure 1 illustrates a general telemedicine system including
two scenarios—asynchronous telemedicine and synchronous telemedicine [21,22]. Asyn-
chronous telemedicine allows patients to decide a proper time to send medical image
and health record to medical service providers for detailed examination. Synchronous
telemedicine, also called synchronous video conferencing or interactive telemedicine, pro-
vides real-time communication between patient and medical professional [22].
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2.2. Medical Privacy

Telemedicine systems have many challenges, such as infrastructure, connections,
professional requirements, data management, and real-time monitoring [23,24]. Medical
privacy is of the utmost importance, and damage of medical privacy not only brings huge
economic losses and losses of credibility to hospitals and other related institutions but
does potential harm to patients and endangers lives of patients [24,25]. Unfortunately, thus
far, healthcare-related industries did not achieve users’ expectations [24]. Trust manage-
ment (TM) is important for allowing reliable data collection and transmission, to provide
qualified services and enhance user privacy and information security [26]. Gambetta
first defined two widely accepted definitions of trust called reliability trust and decision
trust [26,27]. Recently, researchers had discussions about TM of IoT [28–32]. Fortino et al.
summarized and discussed main trust concepts, including behavior trust, reputation,
honesty, and accuracy [26].

As we mentioned, telemedicine is implemented in public networks, so privacy preser-
vation is one of notable security issues, which has caught researchers’ attention. Mishra
et al. [33] and Renuka et al. [34] utilized a biometric feature to design authentication
schemes for telemedicine systems. Zriqat and Altamimi discussed issues through data
collection, data transmission, and data storage and access level [12]. Dharminder et al.
discussed authorized access to healthcare services [35]. Zhang et al. [36], Zhang et al. [37],
and Sureshkumar et al. [38] designed authentication and key agreement for telemedicine
system. Baker et al. [8], Guo et al. [39], and Anwar et al. [11] focused on telemedicine using
IoT, blockchain, and 5G technology and proposed framework or scheme. In summary, three
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keys to the question must be solved for assuring telemedicine environments. First, image
storage should be highly efficient. Second, transmitting sensitive image should satisfy
confidence, integrity, and accessibility. Finally, encryption progress should be efficient,
especially for the end-point.

3. Proposed Scheme

In the proposed system, there are i users and j servers. User Ui can use a smartcard or
a smart token to log in to whichever server Sj user Ui wishes to access, as shown in Figure 2.
The proposed scheme includes four phases—system initialization phase, registration phase,
authenticated key exchange phase, and offline password change phase. In the system
initialization phase, Server Sj generates essential parameters and functions for the whole
scheme. User Ui becomes a legitimate member in the system through the registration phase.
In the authenticated key exchange phase, User Ui and server Sj authenticate each other
and establish a session key for symmetric encryption for communication and transmitted
measured biodata. The proposed scheme provides offline password change phase such
that user Ui can change the password periodically, without the participation of server Sj.
Notations are defined in Table 1.
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Table 1. Notations of the proposed scheme.

Notations Definitions

IDi Identity of user Ui.
SIDj Identity of server Sj.
⊕ Exclusive OR (XOR) operation.

H(.) Collision-resistant one-way hash function.
PWi Password of user Ui.
xSj Secret value of server Sj.
k Encryption/decryption key k.

Ek(.)/Dk(.) A symmetric encryption/decryption algorithm with secret key k.
x, yi, ρi Random numbers.

hk(.) Collision-resistance secure one-way chaotic hash function.
USB Portable USB device.

sj Server Sj’s new chaotic random number.

3.1. Preliminary

We briefly introduce Chebyshev chaotic maps in this section. The chaotic system
has properties that can correspond to the cryptosystem’s properties. First, the result is
unpredictable if small changes in initial values occur [40–42]. Second, the chaotic system is a
complex oscillation [40–42]. Third, the chaotic system shows qualitative change of character
of solutions [40–42]. The above features can correspond to confusion and diffusion of the
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cryptosystem, which was discussed for decades [24,40–50]. Mathematical definitions of the
Chebyshev chaotic maps are introduced as below [24,46–50].

• Polynomials of Chebyshev chaotic maps Tn(x) : [−1, 1]→[ − 1, 1] is formed as
Tn(x) = cos(ncos−1(x)) in x of degree n.

• If n ≥ 2, polynomials of the Chebyshev chaotic maps is formed as Tn(x) = 2xTn−1(x)
−Tn−2(x). However, results of the Chebyshev chaotic maps are 1 and x when n is 0
and 1, respectively.

• If (s, r) ∈ Z and s ∈ [−1, 1], Tr(T s(x)) = Trs(x) = Ts(T r(x)), which is the so-called
semi-group property.

• Zhang [51] proved that semi-group property can hold if Chebyshev polynomials are
extended on interval [−∞,+∞]. In the situation, polynomials of Chebyshev chaotic
maps become Tn(x) = (2xT n−1(x)− Tn−2(x)) mod N where n ≥ 2, x ∈ (−∞,+∞),
and N is a large prime number, and Tr(T s(x)) mod N = Trs(x) mod N = Ts(T r(x))
mod N.

• Even only with the knowledge of x and y, n is computationally infeasible to be
obtained such that Tn(x) mod N = y, which is the so-called Chaotic maps-based
discrete logarithm problem (CMDLP).

• Even only with the knowledge of (x Tr(x) mod N, Ts(x) mod N), Trs(x) mod N is
computationally infeasible to be obtained, which is the so-called Chaotic maps-based
Diffie-Hellman problem (CMDHP).

The proposed scheme applies the extended Chebyshev chaotic maps, which satisfies
the above definitions.

3.2. System Initialization Phase

User Ui sets up smartcard by entering an identifier and password in the system
initialization phase. Server Sj sets up the system’s parameters by performing the following
steps.

Step 1. Server Sj generates a secret value xSj , a big prime p, and a random number
x ∈ (−∞,+∞).

Step 2. Server Sj choses a symmetric encryption algorithm Ek( .) , a symmetric decryption
algorithm Dk( .) , a collision-resistance one-way hash function H(.), and a collision-
resistance secure one-way chaotic hash function hk(.).

3.3. Registration Phase

User Ui and server Sj perform the following steps to complete the registration phase
to become a legitimate member, as illustrated in Figure 3.

Step 1. User Ui enters IDi and PWi.
Step 2. User Ui uses the smartcard to choose a random number yi ∈ Z∗p. After that,

smartcard computes (αi, Ai) as below. Finally, smartcard stores yi and sends
(IDi, Ai) to server Sj.

αi= Tyi (x) mod p (1)

Ai= hαi (PW i)⊕hαi (y i, SIDj
)

(2)

Step 3. After receiving (IDi, Ai), server Sj computes elements below. Then, server Sj
returns (Bi, Bj) to user Ui.

β j= TxSj
(x) mod p (3)

ui= hβ j(ID i) (4)

uj= hβ j(SID i) (5)

Bi= Ui ⊕ Ai (6)

Bj= U j ⊕ Ai (7)
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Step 4. Upon receiving (Bi, Bj), user Ui stores (Bi, Bj) in USB or smartcard.
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3.4. Authenticated Key Exchange Phase

To complete the mutual authentication and session key confirmation and obtain the
remote server’s services, user Ui, user Ui’s smartcard, and a server Sj perform the following
steps, as illustrated in Figure 4.

Step 1. User Ui enters IDi and PWi.
Step 2. Smartcard checks PWi, utilizes (yi, x) to compute Ai, retrieves (Bi, Bj) to recover ui,

and computes (Ki, Ri), as below.

ui= Bi ⊕ Ai (8)

Ki= Ai ⊕ hαi (y i) (9)

Ri= Bj ⊕ hαi (y i
)

(10)

Step 3. Smartcard chooses integer ρi ∈ (−∞,+∞) and a big prime Ni to compute (µi, bi,
Ci) as below, and sends (Ri, Ci, Ni) to server Sj.

µi= Tyi (ρ i) mod Ni (11)

bi= Eui (N i||µ i) (12)

Ci= EKi (ID i, bi, ρi
)

(13)

Step 4. After receiving (Ri, Ci, Ni), server Sj computes the equations below. If server Sj can
decrypt bi successfully, server Sj successfully authenticates user Ui.

Ki= Ri ⊕ hβ j(SIDj) (14)

(ID i, bi, ρi) = DKi
(C i) (15)

ui= hβ j(ID i) (16)

(N i||µ i) = Dui
(b i) (17)
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Step 5. For establishing a shared session key, server Sj chooses a random number sj ∈ Z∗p,
utilizes ρi, Ni, and µi retrieved from Step 4 to compute ωj, kji, and MACSj , and

sends
(

MACSj , ω j

)
to user Ui.

ωj= Tsj(ρ i) mod Ni (18)

kji = H
(

Tsj(µi) mod Ni

)
(19)

MACSj= hkji

(
SIDj, IDi, µi

)
(20)

Step 6. Upon receiving
(

MACSj , ω j

)
, user Ui’s smartcard computes kij and checks whether

MACSj is correct. If it holds, the mutually shared session key is correct. Then, user
Ui’s smartcard computes MACUi and sends it to server Sj.

kij = H(Tyi (ω j) mod Ni) (21)

MACSj ? = hkji

(
SIDj, IDi, µi

)
(22)

MACUi= hkij(ID i, SIDj, ω j

)
(23)

Step 7. Upon receiving MACUi , server Sj checks whether MACUi is correct. If it holds, the
shared session key confirmation is complete.

MACUi ? = hkij(ID i, SIDj, ω j

)
(24)
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3.5. Offline Password Change Phase

User Ui and smartcard cooperatively perform the following steps to complete the
password changing process, as illustrated in Figure 5.
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Step 1. User Ui enters PIN to start smartcard and inputs old PWi and new PW′ i.
Step 2. Smartcard updates Ai and stores it.

Ai= hαi

(
PW′ i

)
⊕hαi (PW i)⊕hαi (y i, SIDj

)
(25)

4. Security Analysis

We apply BAN logic [52] and AVISPA tool [53] for formal security proof. We also
present informal security proof, which proves that the proposed scheme can achieve some
security requirements.

4.1. Formal Security Proof Using BAN Logic

This subsection describes the logical analyses of the proposed scheme by using the
logical tool defined by Burrows et al. [52]. The process of proof in this section is similar
with some schemes, because these schemes, including the proposed scheme, aim to prove
that the principles in schemes can believe the established session keys. The notations used
in the BAN logic [52] analysis are defined in Table 2.

Table 2. Notations of BAN logic [52] used in analyzing the proposed scheme.

Notations Definitions

P, Q Principles.
X, Y Statements.
r, w Readers (receivers) and writers (senders).
K Encryption key.

P believes X P believes X.
P once said X P once said X.

C(X) X is transited through communication channel C.
r(C)/w(C) Readers/writers of C.
P sees C(X) P sees C(X).
P sees X|C P sees X via C.

(X)K X is encrypted with the key K.

P K↔ Q
P and Q establish a secure communication channel

using K.

4.1.1. Initial Assumptions

Making initial assumptions is necessary for ensuring success of scheme and establish-
ing the foundation of logical proof [52]. Initial assumptions of the proposed scheme are
listed below.

• A1. P ∈ r(C P, Q): P can read from channel CP, Q.
• A2. P believes w(C P, Q) = {P, Q}: P believes that P and Q can write on CP, Q.
• A3. P believes Q once said (Φ → Φ) : P believes that Q only says what it believes.
• A4. P believes #(N P): P believes that NP is fresh.
• A5. P believes ( a→ECMDH(secret) P): P believes that a is P’s extended chaotic maps-based

Diffie-Hellman secret [24,49].
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4.1.2. Inference Rules

The purpose of inference rules is analyzing belief, which pays attention to beliefs
of principals in authentication and key agreement schemes, in order to verify message,
freshness, and trustworthiness of origin of scheme [52,54–57]. We apply the seeing rules,
interpretation rules, freshness rules, and the rationality rules for logical proof.

The seeing rules define that if a principle sees a formula, the principle also sees its
components with knowing necessary keys. We apply S1 and S2 as below.

• S1. P sees C(X), P∈r(C)
P believes (P sees X|C), P sees X : If P receives and reads X via C, then P believes that X

has arrived on C and P sees X.
• S2. P sees C(X, Y)

P sees X, P sees Y : If P sees a hybrid message (X, Y), then P sees X and Y separately.

The interpretation rules define that a principle can believe some hybrid facts by logical
reasoning. We apply I1, I2, and I3, as below.

• I1. P believes (w(C)={P, Q})
P believes (P sees X|C)→Q once said X : If P believes that C can only be written by P and Q,

then P believes that if P receives X via C, then Q said X.
• I2. P believes (Q once said (X, Y))

P believes (Q once said X), P believes (Q once said Y) : If P believes that Q said a hybrid message
(X, Y), then P believes that Q has said X and Y separately.

• I3.
P believes (

a→ECMDH(secret) P), P believes (
Tb(x) mod N
→ ECMDH(public) Q)

P believes (P
Tab(x) mod N

↔ Q)
: If P believes that a is P’s

extended chaotic maps-based Diffie-Hellman secret and Tb(x) mod N is extended
chaotic maps-based Diffie-Hellman component from Q, then P believes that Tab(x)
mod N is symmetric key shared between P and Q.

The freshness rules define that if one part of a formula is fresh, the entire formula
must be fresh. We apply F1 and F2 as below.

• F1. P believes (Q once said X), P believes #(X)
P believes (Q once said X)

: If P believes that another Q said X and P also
believes that X is fresh, then P believes that Q recently said X.

• F2. P believes #(X)
P believes #(X, Y) : If P believes that a part of a mixed message X is fresh, then it

believes that the whole message (X, Y) is fresh.

The rationality rules define that a principle can only believe what it believes. We have
R1 as below.

• R1. P believes (Φ 1→Φ2), P believes Φ1
P believes Φ2

: If P believes that Φ1 implies Φ2 and P believes that
Φ1 is true, then P believes that Φ2 is true.

4.1.3. Goals

Goals are what schemes must achieve, and goals are required while designing schemes.
The goals of the proposed scheme are listed below.

• Goal 1. Ui believes (Ui

Tyisj (ρi) mod N
i←−−−−−−−−→ Sj): User Ui believes that Tyisj(ρi) mod Ni is a

symmetric key shared between participants Ui and Sj.

• Goal 2. Sj believes (Ui

Tyisj (ρi) mod Ni
←−−−−−−−−→Sj): Server Sj believes that Tyisj(ρ i) mod Ni is a

symmetric key shared between participants Ui and Sj.

• Goal 3. Ui believes Sj believes (Ui

Tyisj (ρi) mod N
i←−−−−−−−−→ Sj): User Ui believes that Sj believes

Tyisj(ρi) mod Ni is a symmetric key shared between Ui and Sj.

• Goal 4. Sj believes Ui believes (Ui

Tyisj (ρi) mod N
i←−−−−−−−−→ Sj): Server Sj believes that Ui believes

Tyisj(ρ i) mod Ni is a symmetric key shared between Ui and Sj.

4.1.4. Proof

The proposed scheme can be normalized as Steps 1 and 2.



Sensors 2021, 21, 2880 10 of 22

Step 1. Sj sees (
Tyi (ρi) mod Ni
−−−−−−−−→ECMDH(public)Ui, CSj , Ui (IDi||b i||x i2)Ki, Ni)

Step 2. Ui sees (
Tsj (ρi) mod Ni

−−−−−−−−→ECMDH(public)Sj, CUi , Sj(SIDj, IDi, Tyi (ρ i) mod Ni)kij
, Tsj(ρ i)

mod Ni)

Equation (26) means user Ui believes that yi is its extended chaotic maps-based Diffie-
Hellman secret. Equation (27) means user Ui believes that Tsj(ρ i) mod Ni is the extended
chaotic maps-based Diffie-Hellman component from server Sj. To accomplish Goal 1 (User
Ui believes that kij= Tyisj(ρ i) mod Ni is a symmetric key shared between participants user
Ui and server Sj), Equations (25) and (26) must hold, because of the interpretation rule (I3)
and assumption (A5).

Ui believes (
yi→ECDHM(secret)Ui) (26)

Ui believes (
Tsj (ρi) mod Ni

−−−−−−−−→ECDHM(public)Sj) (27)

The meaning of Equation (28) is described below. The first fact is that server Sj once
said that Tsj (x) mod p is the extended chaotic maps-based Diffie-Hellman public component
from server Sj, (SIDj, IDi, Tyi (ρ i) mod Ni) is encrypted by kij and Tsj(ρi) mod Ni. The
second fact is that server Sj once said that Tsj (x) mod p is the extended chaotic maps-based
Diffie-Hellman public component from server Sj. In Equation (29), user Ui believes that
the first fact implies the second fact. Equation (28) means that user Ui believes that server
Sj once said that Tsj(ρ i) mod Ni is the extended chaotic maps-based Diffie-Hellman public
component from server Sj. Next, to accomplish Equation (27), Equations (28) and (29) must
hold because of assumption (A3) and the rationality rule (R1).

Ui believes (Sj once said (
Tsj (ρi) mod Ni

−−−−−−−−→ECDHM(public)Sj, (SID j, IDi, Tyi (ρ i) mod Ni)kij, Tsj(ρ i) mod p)→ (
Tsj (ρi) mod Ni

−−−−−−−−→ECDHM(public)Sj)) (28)

Ui believes (Sj once said (
Tsj (ρi) mod Ni

−−−−−−−−→ECDHM(public)Sj)) (29)

To accomplish Equation (29), Equation (30) must hold, which means that user Ui
believes that Tsj(ρ i) mod Ni, which is that the extended chaotic maps-based Diffie-Hellman
public component from server Sj is fresh because of freshness rules (F1) and (F2), and
assumption (A4).

Ui believes #(
Tsj (ρi) mod Ni

−−−−−−−−→ECDHM(public)Sj) (30)

Equation (31) means that user Ui can read from the channel CSj , Ui . Equation (32)
means that user Ui believes that user Ui and server Sj can write messages on channel CSj , Ui .
Equation (33) means that user Ui sees and believes that Tsj(ρ i) mod Ni is in the channel
CSj , Ui , which is the extended chaotic maps-based Diffie-Hellman public component from
server Sj. To accomplish Equation (30), we have Equations (31)–(33) that must hold because
of the interpretation rules (I1), the seeing rules (S1), (S2), assumptions (A1) and (A2). By
using the interpretation rules (I3), our proposed scheme realizes that Goal 1 is achieved.
Similarly, we ensured that the proposed scheme realizes Goal 2 by using the same argu-
ments of Goal 1.

Ui ∈ r(CSj , Ui ) (31)

Ui believes (w(C Sj , Ui
) = {U i, Sj}) (32)

Ui sees believes CSj , Ui (
Tsj (ρi) mod Ni

−−−−−−−−→ECDHM(public)Sj) (33)

The meaning of Equation (34) is described below. The first fact is that server Sj once
said that Tyisj(ρ i) mod Ni is the symmetric key shared between Ui and Sj. The second
fact is that server Sj believes that Tyisj(ρ i) mod Ni is the symmetric key shared between
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Ui and Sj. In Equation (35), user Ui believes that the first fact implies the second fact. To
accomplish the Goal 3, we have Equations (34) and (35), which must hold because of the
rationality rule (R1) and assumption (A3).

Ui believes ((S j once said Ui

Tyisj (ρi) mod Ni
←−−−−−−−−→ Sj)Sj believes (U i

Tyisj (ρi) mod Ni
←−−−−−−−−→ Sj)) (34)

Ui believes (S j once said Ui

Tyisj (ρi) mod Ni
←−−−−−−−−→ Sj) (35)

Equation (36) means that user Ui believes symmetric key Tyisj(ρ i) mod Ni is fresh. To
accomplish Equation (35), Equation (36) must hold because of the freshness rules (F1) and (F2)
and assumption (A4).

Ui believes #(U i

Tyisj (ρi) mod Ni
←−−−−−−−−→ Sj) (36)

Equation (37) means that user Ui sees and believes that Tyisj(ρ i) mod Ni is in the
channel CSj , Ui . To accomplish Equation (36), Equations (31), (32) and (37) must hold
because of the interpretation rule (I1), the assumptions (A1) and (A2), and the seeing
rules (S1) and (S2). Thus, the proposed scheme realizes that Goal 3 is achieved. Similarly,
using the same arguments of Goal 3, the proposed scheme realizes Goal 4.

Ui sees believes CSj , Ui (U i

Tyisj (ρi) mod Ni
←−−−−−−−−→ Sj) (37)

Therefore, the proposed scheme realizes Goals 1, 2, 3, and 4.

4.2. Formal Security Proof Using AVISPA

Automated validation of internet security protocols and applications (AVISPA) is a
high-level language tool for security protocols, and it provides automatic analysis tech-
niques through its back-ends, called on-the-fly model-checker (OFMC), constraint logic
based attack searcher (CL-AtSe), SAT-based model-checker (SATMC), and tree automata
based on automatic approximations for the analysis of security protocols (TA4SP) [53,58–60].
The AVISPA tool executes a simulated protocol through high-level protocol specification
language (HLPSL) [61]. We used the AVISPA tool to verify the proposed scheme. The
HLPSL specification of user U and server S are shown in Figures 6 and 7, respectively. The
session role, environment role, and goals are also specified in HLPSL, shown in Figure 8.
Figure 9 shows the results and proves that the proposed scheme is safe.
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4.3. Informal Security Proof

We present theoretical analyses that proved that proposed scheme could achieve
security requirements.

4.3.1. Preventing MITM Attack

In order to prevent MITM attack, user Ui and server Sj can confirm whether the
message is resent, modified, and replaced, by checking information through message
authentication codes MACSj and MACUi . User Ui verifies MACSj= hkji(SID j, IDi, µi) at

Step 6, and server Sj verifies MACUi= hkij(ID i, SIDj, ω j

)
at Step 7 in the authenticated key

exchange phase of the proposed scheme. In this way, the adversary cannot modify message
authentication codes MACSj and MACUi without session key kij.Thus, the proposed scheme
can prevent MITM attack.

4.3.2. Key Confirmation

User Ui can check session key kij by MACSj ? = hkji(SID j, IDi, µi), and server Sj can

also check session key kji through MACUi ? = hkij(ID i, SIDj, ω j

)
in the proposed scheme.

As a result, the proposed scheme achieves key confirmation.

4.3.3. Preventing Key-Compromise Impersonation and Server Spoofing Attacks

User Ui’s random number yi is stored in a smartcard, which is hard to obtain informa-
tion. The adversary must have user Ui’s smartcard and correct password if they want to
impersonate a legitimate user. The number of attempts that a password can be entered is
limited; if the number of attempts to enter a password exceeds the allowable number of
attempts, the smartcard will get locked. On the other hand, the adversary cannot obtain
Ki due to not knowing xSj , and afterwards the process cannot be completed by adversary.
As a result, the proposed scheme can prevent key-compromise impersonation and server
spoofing attacks.

4.3.4. Mutual Authentication

In the authenticated key exchange phase of the proposed scheme, server Sj encrypts
(SID j, IDi, µi) from user Ui to message authentication code MACSj with session key
kji= H(T sj

(µi) mod Ni) and sends (MAC Sj
, ω j) to user Ui. In Step 6, user Ui uses ωj

from server Sj to obtain session key kij and verify MACSj= hkji(SID j, IDi, ω j). Server Sj

verifies message authentication code MACUi= hkij(ID i, SIDj, ω j

)
sent by user Ui in Step 7.

MACSj and MACUi are included in session keys that only two parties of communication
have, so only user Ui and server Sj can verify each other.

4.3.5. User Anonymity

User Ui’s identity IDi is protected by being encrypted in Ci= EKi (ID i, bi, ρi
)

with
Ki, before being sent. Server Sj must obtain Ki by computing Ki= Ri ⊕ hβ j(SID j). The
adversary cannot obtain IDi even with Ri and Ci because only server Sj has knowledge
of secret xSj . The adversary cannot obtain Ki without xSj and decrypting Ci; thus, the
adversary cannot obtain IDi. As a result, the proposed scheme provides user anonymity
during communication.

4.3.6. Resistant to Bergamo et al.’s Attack

Bergamo et al.’s attack is based on [62]. (i) The adversary is able to obtain related
elements (x, ρi, µi, ωj); and (ii) several Chebyshev polynomials pass through the same
point due to periodicity of the cosine function. In the proposed scheme, the adversary is
unable to obtain any related elements (x, ρi, µi, ωj) as these are encrypted in transmitted
messages where only user Ui and server Sj can retrieve decryption key. Moreover, the
proposed protocol utilizes the extended Chebyshev polynomials, in which the periodicity
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of the cosine function is avoided by extending the interval of x to (−∞,+∞) [51]. As a
result, the proposed scheme can resist the attack proposed by Bergamo et al. [62].

5. Performance Analysis

We present relevant security requirements and computational complexity comparison.

5.1. Comparisons of Security Requirements

Table 3 shows comparisons of security requirements that were presented in the
schemes designed by Wang and Zhao [63], Yoon and Jeon [46], Lin [48], Lin and Zhu [64],
Lee et al. [49], Madhusudhan et al. [65], Sureshkumar et al. [38], and us. Wang and Zhao’s [63],
Lin’s [48], and Lin and Zhu’s schemes [64] are not secure against key-compromise imperson-
ation attack, since the transmitted messages can be replayed by an adversary. Wang and
Zhao’s [63], Madhusudhan et al.’s [65], and Sureshkumar et al.’s [38] scheme cannot prevent
server spoofing attack. Our scheme is secure against both key-compromise impersonation
attack and server spoofing attack. Furthermore, our scheme provides user anonymity,
which Wang and Zhao’s [63], Yoon and Jeon’s [46], and Madhusudhan et al.’s [65] scheme
do not. Our scheme can also prevent MITM attack, which Wang and Zhao’s [63], Yoon
and Jeon’s [46], and Madhusudhan et al.’s [65] scheme cannot. Furthermore, our scheme
ensures that users and servers use the same shared key in a session via key confirmation,
which is not present in Wang and Zhao’s [63], Yoon and Jeon’s [46], Lin’s [48], Lin and
Zhu’s [64], Lee et al.’s [49], Madhusudhan et al.’s [65], and Sureshkumar et al.’s [38] scheme.
Moreover, our scheme can prevent DoS attacks, which Wang and Zhao’s [63], Yoon and
Jeon’s [46], Lin’s [48], and Madhusudhan et al.’s [65] scheme cannot.

Table 3. Comparisons of Security Requirements.

Properties [63] [46] [48] [64] [49] [65] [38] Ours

Preventing key-compromise impersonation attack X O X X O O O O
Preventing server spoofing attack X O O O O X X O

Multi-server environments X X X X X O O O
Preventing MITM attack X X O O O X O O

Stolen-verification table attack X O O O X X O O
Key confirmation X X X X X X X O

Preventing clock synchronization problem O X X O X O X O
User anonymity X X O O O X O O

Preventing denial-of-service (DoS) attack X X X O O X O O

5.2. Comparisons of Computational Complexity

We present the computational complexity comparison with Lee et al.’s [49], Mad-
husudhan et al.’s [65], and Sureshkumar et al.’s [38] scheme, as shown in Table 4. We
ignore the time taken for computing XOR operations because the value is too low to in-
fluence result. Although our scheme needs more one-way hash function operations than
Lee et al.’s [49] scheme and more symmetry encryption operations than Lee et al.’s [49],
Madhusudhan et al.’s [65], and Sureshkumar et al.’s [38] scheme, our scheme allows
key confirmation. Even so, our scheme has the less overall computational cost than Lee
et al.’s [49], Madhusudhan et al.’s [65], and Sureshkumar et al.’s [38] scheme. Users in our
scheme can enjoy telemedicine services witha lower computational cost. As a result, our
scheme is more efficient than Lee et al.’s [49], Madhusudhan et al.’s [65], and Sureshkumar
et al.’s [38]. Figure 10 illustrates the computational complexity of the server with varying
number of users, and Figure 11 illustrates the computational complexity of user with vary-
ing number of servers. The computational complexity of user in Lee et al.’s scheme [49]
is related to the number of servers. Computational complexity of user in Madhusudhan
et al.’s [65], Sureshkumar et al.’s [38], and the proposed scheme is not related to number of
servers, and the proposed scheme shows the least computational complexity among the
compared schemes.
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Table 4. Comparisons of Computational Complexity.

Roles Lee et al. [49] Madhusudhan et al. [65] Sureshkumar et al. [38] Ours

User
3Th+3Tch+Tsym ≈
3Th+525Th+2.5Th

= 530.5Th

8Th+5Tch ≈ 8Th+875Th
= 883Th

7Th+5Tch ≈ 7Th+875Th
= 882Th

5Th+2Tch+2Tsym ≈
5Th+350Th+5Th

= 360Th

Server
Th+3Tch+2Tsym ≈

Th+525Th+5Th
= 531.5Th

5Th+4Tch ≈ 5Th+700Th
= 705Th

3Th+2Tch ≈ 3Th+350Th
= 353Th

4Th+2Tch+2Tsym ≈
4Th+350Th+5Th

= 359Th
Both 1061Th 1588Th 1235 Th 719 Th

Tch: Time for performing a Chebyshev chaotic maps operation; Tsym: Time for performing a symmetry encryption operation; Th: Time for
performing a one-way hash function operation; Tch ≈ 175Th; Tsym ≈ 2.5Th.
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6. Implementation

We developed SC-UCSSO system using the proposed scheme, in a multi-function
smart token, as shown in Figure 12, which supports the public key infrastructure and
the X.509 certificate. A user can insert a smart token to a computer or a laptop and
insert the smartcard shown in Figure 13 into a smart token, in order to use the system.
Figures 14 and 15 show the registration and login interfaces. Figure 16 shows that the user
can login to multiple services, which implies that the proposed system can be used in multi-
server environments. The proposed system also provides account checking (Figure 17)
to manage the user’s accounts. The user can login to the online telemedicine website
using a computer, laptop, smartphone, or any wireless devices that has a webcam with a
smart token and a smartcard in synchronous telemedicine scenario. The channel of online
video consult between the patient and medical professional is protected by the session key
generated by the proposed scheme. In asynchronous telemedicine, the measured biodata
is transmitted to a smartphone using Bluetooth, and the user can decide when to send
data to the designed server of telemedicine systems. The user logins with smart token
and smartcard, before sending data. Transmitted measured data between smartphone and
servers would be protected by the session key generated through the proposed scheme.
The user has data ownership because the user can control data’s destination and the time
of being transmitted. Once data are sent by user, the privacy of user would be protected
because the transmission channel is secure with the session key.
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7. Discussion

We give a discussion for brief review, real-life scenario, and limitations of this research.
Telemedicine systems work in public networks, where privacy preservation issue of

users and sensitive and private transmitted information is important [1]. Security issues
related to data transmission are discussed, such as eavesdropping, MITM attack, data
tempering attack, message modification attack, data interception attack, etc. [12] Although
regulations, such as HIPAA, GDPR, Safe Harbor Laws, etc., were developed, technical
support is still not enough [12–14]. We proposed an SC-UCSSO for the 5G-IoT telemedicine
systems, which can be applied in the 5G-IoT telemedicine multi-server environments.
Security of the proposed scheme was proved by BAN logic, AVISPA tool, and theoretical
analyses. The proposed scheme achieved general security requirements, such as preventing
MITM attack, preventing key-compromise impersonation, and server spoofing attacks, and
user anonymity, key confirmation, and mutual authentication. Moreover, the proposed
scheme overcomes the drawbacks of the compared previous schemes, such as stolen-
verification table attack, clock synchronization problem, and DoS attack, as shown in
Table 3 in the previous section. The proposed scheme applies the extended Chebychev
chaotic maps that can resist Bergamo et al.’s attack [62]. Performance of the proposed
scheme is also compared with Lee et al.’s [49], Madhusudhan et al.’s [65], and Sureshkumar
et al.’s [38] scheme by analyzing the computational complexity of each scheme, and the
results showed that the proposed scheme was less expensive (719Th) in total than Lee
et al.’s [49] (1061Th), Madhusudhan et al.’s [65] (1588Th), and Sureshkumar et al.’s [38]
scheme (1235Th), as shown in Table 4.

We give four possible real-life scenarios of telemedicine systems in 5G-IoT environ-
ments that can apply the proposed scheme.

Scenario 1: Patient inserts smartcard (e.g., health insurance card or smartcard, as in Fig-
ure 13) into measurement devices that include a smartcard reader, such as
sphygmomanometer or blood-glucose meter, before measuring biodata. Once
a patient inserts smartcard, the authenticated key agreement phase of the pro-
posed scheme is activated, and measured biodata can be transmitted securely
to server as it is encrypted by the session key.

Scenario 2: Patient’s wearable healthcare device (e.g., sensors, smart watch, etc.) transmits
the measured biodata to the related mobile application (APP) on a smart-
phone, through data synchronization via Bluetooth, NFC, RFID, etc. If the
patient wants to transmit the measured biodata to server, the patient can use
a smartphone with a smartcard adopter, such as the smart token in Figure 13.
Once a patient inserts the smartcard, the authenticated key agreement phase
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of proposed scheme is activated, and the measured biodata can be securely
transmitted to server as it is encrypted by the session key.

Scenario 3: Patient’s measured biodata are recorded or stored in storage at home. If the
patient wants to transmit the measured biodata to server, the patient can use the
smartcard with a reader. Once a patient inserts the smartcard, the authenticated
key agreement phase of proposed scheme is activated, and the measured
biodata can be transmitted securely to server as it is encrypted by the session
key.

Scenario 4: If a medical professional would like to access the measured biodata on server,
the medical professional has to use the smartcard (e.g., healthcare certification
IC card [66]) with a reader. Once a medical professional inserts smartcard, the
authenticated key agreement phase of proposed scheme is activated, and the
measured biodata can be securely transmitted as it is encrypted by the session
key.

Scenario 1 to 3 allow the patient to decide the data’s destination and time of transmission.
This research has limitations. We only give a software security analysis, but hardware

security and availability are other aspects of security in telemedicine systems, such as
electromagnetic interference (EMI), which might affect the functions on wearable devices.
Although there are already measurement devices with a smartcard reader on the market,
we did not evaluate the hardware’s effects with the proposed scheme. We assumed that the
users (patient/medical professional) have a smartcard (health insurance card/ healthcare
certification IC card) and proposed a smartcard-based scheme, but authentication could
be achieved in many ways, such as three-factor authentication, two-step verification, fast
identity online (FIDO), etc., which can be related to works in the future.

8. Conclusions

Telemedicine systems is a multi-functional remote medical service that can help pa-
tients in bed in long-distance communication environments [1–4]. As telemedicine systems
work in public networks, privacy preservation issue of sensitive and private transmitted
information is important. [1]. We proposed a SC-UCSSO for 5G-IoT telemedicine systems,
which could achieve some general security requirements, such as preventing MITM at-
tack, preventing key-compromise impersonation and server spoofing attacks, provide user
anonymity, and overcomes the drawbacks of the previous schemes compared herein. The
proposed scheme establishes a secure communication channel using the authenticated
session keys between patients and services of telemedicine systems, without threats of
eavesdrop, impersonation, etc., and allow patient access to multiple telemedicine services,
with a pair of identity and password. Formal security analysis using BAN logic [52] and
the AVISPA tool [67] was given. We also gave a performance analysis and proved that the
proposed scheme is more efficient than previous compared schemes, and computational
complexity of the user in proposed scheme was not related to the number of servers. More-
over, the proposed scheme is suitable for asynchronous and synchronous telemedicine, and
patients have data ownership because the user can control and decide data’s destination
and time of transmission.
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